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hAbstra
t. We investigate the dynami
s of agent groups evolved to per-form a 
olle
tive task, and in whi
h the behavioural heterogeneity of thegroup is under evolutionary 
ontrol. Two task domains are studied: solu-tions are evolved for the two tasks using an evolutionary algorithm 
alledthe Legion system. A new metri
 of heterogeneity is also introdu
ed,whi
h measures the heterogeneity of any evolved group behaviour. Itwas found that the amount of heterogeneity evolved in an agent groupis dependent of the given problem domain: for the �rst task, the Legionsystem evolved heterogeneous groups; for the se
ond task, primarily ho-mogeneous groups evolved. We 
on
lude that the proposed system, in
onjun
tion with the introdu
ed heterogeneity measure, 
an be used asa tool for investigating various issues 
on
erning redundan
y, robustnessand division of labour in the 
ontext of evolutionary approa
hes to 
ol-le
tive problem solving.1 Introdu
tionInvestigations into heterogeneous agent groups are only just getting under way.To 
ite two examples, in [20℄, morphologi
al heterogeneity is studied, in whi
hphysi
al robots have non-overlapping sets of sensors and e�e
tors; in [3℄, phys-i
al and simulated robots with distin
t motor s
hemata are referred to as be-haviourally heterogeneous groups.These studies stand in 
ontrast to biologi
al models, su
h as a
tion sele
tion[17℄ and behaviour thresholds [24, 7℄, in whi
h the underlying 
ontrol algorithmsof the agents are equivalent, but 
hanges to the parameters of an agent's 
on-trol algorithm lead to behavioural di�erentiation. Agents in [22℄ exhibit largemorphologi
al and behavioural variation, but this variation, in the 
ontext of
olle
tive problem solving, was not addressed.In biologi
al systems, individual 
ells in an organism 
ontain (near-) identi
algenomes; although individual organisms within a spe
ies exhibit di�ering alle-les, the a
tual gene 
omplement a
ross organisms within a spe
ies is the same.In 
ontrast, evolutionary algorithms are not limited by this 
onstraint: evolved



agent groups 
an exhibit large behavioural di�erentiation. To this end, the workpresented here is 
on
erned with the dynami
s of behaviourally heterogeneousgroups, in whi
h not only the observed behaviours, but also the underlying 
on-trol ar
hite
tures of the agents are di�erentiated.In this report, simulated agents are studied. However, there is a growingbody of literature dedi
ated to heterogeneous robot groups. Arkin and Hobbs[1℄ delineate a number of dimensions along whi
h enlightened design of robotgroups should pro
eed. Matari
 et al have implemented groups of robots inwhi
h heterogeneity is realized through spatial di�erentiation within the taskspa
e in order to minimize physi
al interferen
e [10, 11℄, or by implementing adominan
e hierar
hy, in whi
h inferior robots 
an only perform a subset of thebasi
 behaviours available to more dominant robots [16℄.These studies, however, take a simplisti
 view of heterogeneity, in that thedi�eren
es between agents in the group are de
ided upon by the designers. Forexample, in the 
ase of territoriality, ea
h agent is assigned its own area priorto exe
ution of the task. It has been pointed out [3℄ that most of this work isalso simplisti
 in that heterogeneity is treated as a binary property. In a seriesof studies [3℄, groups of robots learned to perform a 
olle
tive task by tuning theheterogeneity of the group to best perform the task. For foraging and 
ooperativemovement tasks, it was shown that groups invariably 
onverge on homogeneousbehaviours; in the 
ase of robot so

er, the teams 
onverge on heterogeneousbehaviours [3℄.Although these studies were 
on
erned with the degree of heterogeneity in agroup as a 
onsequen
e of the task domain, emphasis was pla
ed on exer
isinga measure for heterogeneity 
alled so
ial entropy [5℄. Herein it is shown that byusing an evolutionary approa
h to heterogeneous group behaviours, a simpli-�ed measure of heterogeneity 
an be formulated whi
h over
omes some of thedrawba
ks of so
ial entropy, explained in Se
t. 2.Evolutionary approa
hes to heterogeneity in
lude the work by Bull and Fog-arty [8℄, who present an island-model geneti
 algorithm that en
odes 
lassi�ersystems used to 
ontrol a quadruped robot; in [21℄, 
as
ade neural networks [9℄are evolved for parity 
omputation using an in
remental geneti
 algorithm. Inboth investigations, however, the behavioural ni
hes of the groups are predeter-mined.In [14℄, a geneti
 programming approa
h is introdu
ed in whi
h ni
he de-termination is more dynami
: behaviours are evolved for a pride of lions in apredator/prey task domain. Ea
h individual s-expression in the GP population
odes for ea
h and all of the behaviours required by members of the pa
k. Themerit of evolving team behaviours, as opposed to evolving individual behaviourswhi
h are later 
ombined to form a team, is pointed out in [12℄: individual-levelevolutionary systems must somehow over
ome the 
redit assignment problem.11 The 
redit assignment problem also appears in learning approa
hes to group het-erogeneity. This problem, as noted in [4℄, prompted the development of a new (andheavily domain spe
i�
) type of reinfor
ement learning heuristi
, shaped reinfor
e-ment learning [15℄.



In Luke and Spe
tor's model, the behaviour for ea
h individual lion in a prideis represented as a bran
h in an s-expression whi
h en
odes all of the behavioursfor the team. This model su

essfully avoids the 
redit assignment problem,and allows for emergent problem de
omposition: the amount of divergen
e (and
onvergen
e) between the behaviours of the individual lions is shaped by the se-le
tion pressure exerted by the predator/prey task domain. However, this modelsu�ers from two serious drawba
ks.First, more diverse groups are impli
itly favoured by the system, be
auseea
h individual agent possesses its own distin
t behaviour: in order to obtain asubset of k agents that perform equivalent behaviours, the system must evolvethe same behaviour k times in the same s-expression. Se
ond, the system s
aleswith the number of agents performing the task: for n agents, the s-expressionmust 
ontain n bran
hes.2 The ModelWe now introdu
e an augmented geneti
 programming system, 
alled the Le-gion system, whi
h shares the advantages of the system des
ribed in [14℄, butover
omes its limitations.2.1 The Legion SystemEa
h individual s-expression in the Legion population en
odes behaviours foran entire agent group, and is 
omposed of two or more bran
h s-expressions.The �rst bran
h s-expression is the partition s-expression, and di
tates how anagent group is to be partitioned into a set of behavioural 
lasses. The partitions-expression is evaluated in depth-�rst order, in order to determine how manybehavioural 
lasses the agent group will 
ontain, and how many agents will beassigned to ea
h behavioural 
lass. When a SPLIT operator is en
ountered, kfagents are assigned to the next available behavioural 
lass, where k is the numberof agents not yet assigned a behavioural 
lass, and f is the 
oating point value(0 � f � 1) returned by the SPLIT operator's left bran
h. The remaining k(1�f)agents are further partitioned when the next SPLIT operator is en
ountered.When the �nal SPLIT operator is en
ountered, the remaining agents are pla
edinto the two next behaviour 
lasses. Any remaining behavioural s-expressions aredeleted. If the �nal SPLIT operator is en
ountered and there remains only onemore behaviour s-expression, this last behaviour s-expression is dupli
ated, andthe remaining agents are divided into the two identi
al behaviour s-expressions.In subsequent generations, mutation and 
rossover events may di�erentiate thesetwo bran
h s-expressions.It follows from this that, as opposed to the model in [14℄, the Legion system
an dynami
ally 
hange the number of behavioural 
lasses in an agent groupover evolutionary time, as well as modifying the behaviours of members of



ea
h 
lass2. Moreover, by modifying the number of SPLIT operators in parti-tion s-expressions, sele
tion pressure 
an in
rease or de
rease the number ofbehavioural 
lasses|and thus the heterogeneity|of agent groups over evolu-tionary time.The remaining bran
h s-expressions in a Legion s-expression, referred to as be-haviour s-expressions, are domain-dependent and en
ode the a
tions performedby agents assigned to that behavioural 
lass. Fig. 1 presents the ar
hite
ture ofthe Legion population in pi
torial form.
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Fig. 1. A pi
torial representation of the Legion system The bra
keted numbersnext to the three behaviour s-expressions denote the per
entage of agents from a groupthat would be assigned to that behavioural 
lass. The per
entages, and the number ofbehavioural 
lasses, are determined by the partition s-expression.Crossover in the Legion system is a

omplished by restri
ted breeding, sim-ilar to [14℄: given two Legion s-expressions s1 and s2 with partition and be-haviour s-expressions fp1; b1;1; b2;1 : : : bi;1g and fp2; b1;2; b2;2 : : : bj;2g, the parti-tion s-expressions of the two 
hildren are 
reated by sub-tree 
rossover of p12 This pro
ess was modelled on the biologi
al 
on
ept of gene families, whi
h areprodu
ed by gene dupli
ation and di�erentiation over evolutionary times
ales [19℄,[18℄.



and p2, and the behaviour s-expressions are 
reated by the pairwise 
rossings off(b1;1; b1;2); (b2;1; b2;2); : : : (bi;1; bi;2)g, where i � j.If it is a

epted that the amount of heterogeneity in an agent group is depen-dent on the number, membership and di�erentiation of the behavioural 
lassesin a Legion s-expression, and the 
onstitution of behavioural 
lasses in a Legionsystem is under evolutionary 
ontrol, then it follows that the amount of het-erogeneity in the agent groups evolved by the Legion system is subje
t to thesele
tion pressure of the task domain.2.2 The Heterogeneity MeasureIn [3℄ a measure of heterogeneity, so
ial entropy, is presented and de�ned asH = � MXi=1 pilog2(pi); (1)where M is the number of behavioural 
lasses in an agent group, and pi isthe probability that any given agent is a member of the behavioural 
lass i.So
ial entropy thus takes into a

ount the number and membership sizes ofthe behavioural 
lasses in a group, but does not 
onsider the di�eren
es betweenagents in di�erent 
lasses. A more 
ompli
ated measure of so
ial entropy is givenin [5℄ whi
h takes into a

ount inter-
lass behavioural di�eren
es. However, thismeasure is domain-spe
i�
, and relies on details of the 
apabilities of agentswithin the group, su
h as per
eptual or internal state.When evolving behaviours for agent groups, a �tness fun
tion is usually for-mulated whi
h 
al
ulates some quantitative measure of the fa
ility of the groupto a

omplish its assigned task. The �tness fun
tion is dependent on the be-haviours of the agents within the group; di�eren
es in �tness between any twogiven agent groups imply behavioural di�eren
es between those groups. Thus,in an evolutionary 
ontext, a measure of heterogeneity 
an be formulated basedsolely on the �tness values of agents within the group, and not dire
tly on thebehaviours of the agents themselves.Consider a group of n agents whi
h has been partitioned by the Legion sys-tem (or some other evolutionary algorithm) into a set of behavioural 
lassesB = fb1; b2; : : : ; b
g. Let f be the �tness value of this agent group. Let P =fp1; p2; : : : ; p2
�1g � ; be the power set of B. We 
an then iteratively assignagents in the group to the behavioural 
lasses of pi, and 
ompute the �tnessf(pi) of the group. Ea
h behavioural 
lass in pi is assigned njpij agents. We 
annow de�ne the heterogeneity measure asH = 1� Ppi2P (Pjpijj=1 jaj j)f(pi)(Ppi2P Pjpijj=1 jaj j)f : (2)From Eqn. 2 it follows that if the groups assigned to all the subsets of Pa
hieve the same �tness value as that attained by the original, heterogeneous



group, the heterogeneity value is zero. This indi
ates that agents in the dif-ferent 
lasses, as determined by the original partition, do not exhibit distin
tbehaviours. If the groups all behave di�erently than the original heterogeneousgroup, then the heterogeneity measure will di�er from zero. This indi
ates thatmembers in the di�erent 
lasses perform distin
t behaviours. Moreover, if the�tness values f(pi) are lower3 than the �tness value for the original partition f ,then H will approa
h unity. This is formalized asH = 8<: 0 : if 8p 2 P; f(p) = f> 0 : if 9p0 2 P; f(p0) < f; and 8�p 2 P � p0; f(�p) = f1 : if 8p 2 P; f(p) = 0 (3)The advantage of this domain-independent, �tness-based heterogeneity mea-sure is that it expli
itly in
orporates the 
on
ept of division of labour. When allof the agents in the group are for
ed to perform only a subset of the behavioursevolved for them (
hosen from among the behavioural 
lass 
ombinations in P ),and then perform poorly (indi
ated by a lowered �tness value for the 
hosen 
om-bination), this indi
ates that a range of behaviours have evolved for this group,all of whi
h must be performed in order to su

essfully solve the 
olle
tive task.3 ResultsThe �rst task domain studied is syntheti
, and was designed in order to test theLegion system on a task domain in whi
h both homogeneous and heterogeneousgroups 
an optimally solve the given task. This task is named the TravellingMailman Problem, or the TMP.Consider a 
ity with s streets that produ
e fl1; l2; : : : ; lsg letters ea
h day,whi
h must be 
olle
ted by a 
eet of mailmen. Ea
h mailman 
an 
olle
t oneletter ea
h day. The goal of the mailmen is to arrange themselves a
ross thestreets in the 
ity so as to minimize the amount of un
olle
ted mail. At thebeginning of ea
h simulation, ea
h mailman indi
ates the street number whi
hwill be his mail route for the duration of the simulation. The total amount ofun
olle
ted mail at the end of the simulation is given bynXi=1 sXj=1�uj �mj : uj > mj0 : uj � mj ; (4)where s is the number of streets, n is the number of iterations in the simulation,uj is the amount of un
olle
ted mail at street j, andmj is the number of mailmenservi
ing street j.In Table 1, the information ne
essary for applying the Legion system to theTMP is given.3 We here assume that a high �tness value is desirable; for tasks in whi
h low �tnessvalues are desirable, H is 
omputed by 
ipping the numerator and denominatorgiven in Eqn. 2.



Fitness Fun
tion Equivalent to Eqn. 4Termination Criteria 500 generations are 
ompletedNon-terminal Nodes Name Arity Des
riptionIF ST CAP 2 j = evaluated left bran
hk = evaluated right bran
hif uj > mj , move to street jelse move forward k streetsPLUS 2 left bran
h + right bran
hTerminal Nodes The two integer 
onstants zero and unityPopulation Size 500Number of Generations 250Sele
tion Method Tournament sele
tion; tournament size = 2Maximum Tree Depth 7Maximum Behavioural Classes 3Mutation Rate 1% 
han
e of node undergoing random repla
ementTable 1. Legion System Parameters for the Travelling Mailman Problem The�tness fun
tion is a de
reasing fun
tion; lower �tness values imply a more �t solution.The se
ond task studied was food foraging in simulated ant 
olonies [2, 6, 4℄.Twenty ants operating within a 32 by 32 toroidal grid must lo
ate food pla
edat two food sour
es, and return as mu
h food as possible to a single nest. Antsmay lay and sense pheromones, whi
h 
an be used by the ant group to in
reasethe rate of food retrieval. At ea
h time step of the simulation, ea
h ant performsone a
tion, based on the state of its lo
al environment.The �tness fun
tion used to evaluate the performan
e of an ant 
olony isgiven by f + r + nXi=1 ti: (5)In the �tness fun
tion, f stands for fun
tionality. Given an ant 
olony (a1; a2;: : : ; an), f is set to 0 if no ant attempts any behaviour; 1 if at least one antattempts one of the three behaviours grab food, drop pheromone or move; 2if at least two ants ai and aj attempt one of these three behaviours, and thebehaviours of ai and aj are distin
t; and 3 if at least three ants ai, aj and akattempt one of the three behaviours, and the behaviours of ai, aj and ak aredistin
t. The fun
tionality term f is used to motivate initial Legion groups toevolve ant 
olonies with high fun
tionality.4Ants removing food from the food piles are rewarded by r, the number of foodpellets removed by the 
olony from the food piles. The �nal term of the �tness4 In [6℄, a similar �tness fun
tion to that of Eqn. 5 was employed, but the fun
tion-ality term f was not used. Be
ause of this, evolved behaviours reported in [6℄ wereprodu
ed with a population size of 64000 over 80 generations. These solutions wereroughly as �t as the evolved solutions reported in this work, whi
h were generatedusing a population size of 500 over 250 generations.



fun
tion rewards 
olonies for returning food to the nest as qui
kly as possible: nis the number of food pellets returned to the nest, and ti is the number of timesteps remaining in the simulation when food pellet i was returned to the nest.In Table 2, the information ne
essary for applying the Legion system to thefood foraging problem is given.Fitness Fun
tion See Eqn. 5Termination Criteria 250 generations 
ompleted, or all food returned to nestNon-terminal Nodes IF FD HERE The ant is standing on a food pelletIF FD FORW There is food in front of the antIF CARRYING FD The ant is 
arrying a food pelletIF NEST HERE The ant is standing on the nestIF FACING NEST The ant is fa
ing the nestIF SMELL FOOD There is a food pellet next to the antIF SMELL PHER There is pheromone next to the antIF PHER FORW There is pheromone in front of the antTerminal Nodes MOVE FORW Move one 
ell forward in 
urrent dire
tionTURN RT Turn 90 degrees 
lo
kwiseTURN LT Turn 90 degrees 
ounter
lo
kwiseMOVE RAND Move two 
ells in a random dire
tionGRAB FD Pi
k up a food pellet, if one is hereDROP PHER Drop pheromone at 
urrent positionNO ACT Do not perform any a
tionMOVE DROP Move one 
ell forward; drop pheromonePopulation Size 500Number of Generations 250Sele
tion Method Tournament sele
tion; tournament size = 2Max Tree Depth 7Max Behavioural Classes 3Mutation Rate 1% 
han
e of node undergoing random repla
ementTable 2. Legion System Parameters for the Food Foraging Problem The �t-ness fun
tion is an in
reasing fun
tion; higher �tness values indi
ate a more �t solution.The thin lines in Fig. 2 report data generated by 30 runs of the Legion systemapplied to the TMP. Figs. 2 a) and b) plot the heterogeneity (as given in Eqn.2) and the number of behavioural 
lasses, respe
tively, of the �ttest mailmangroup at the end of ea
h generation from a typi
al run of the Legion system.Figs. 2 
) and d) depi
t the average heterogeneity and number of behavioural
lasses, respe
tively, in the Legion population as a whole, averaged over the 30runs. The parameters for the runs are given in Table 1.The thi
k lines in Fig. 2 report data generated by 30 runs of the Legion systemapplied to the food foraging problem. Figs. 2 a) and b) plot the heterogeneity(as given in Eqn. 2) and the number of behavioural 
lasses of the most �t antgroup at the end of ea
h generation in a single run of the Legion system. Figs.



Fig. 2. Changes in heterogeneity for a set of runs of the travelling mailmanand the food foraging problems: a) and b) show 
hanges in the heterogeneityand the number of behavioural 
lasses, respe
tively, of the �ttest agent group at ea
hgeneration during a typi
al run; 
) shows 
hanges in the average heterogeneity of theLegion population; d) shows 
hanges in the average number of behavioural 
lasses forthe population. The results in 
) and d) are averaged over 30 runs.2 
) and d) depi
t the average heterogeneity and number of behavioural 
lasses,respe
tively, in the Legion population as a whole, averaged over the 30 runs. Theparameters for the runs are given in Table 2.4 Dis
ussionFor the mailman groups evolved for the TMP, Fig. 2 
) shows that the hetero-geneity of the groups in
reases over evolutionary time. Fig. 2 d) shows that mail-man groups rapidly approa
h the asymptote of the maximum possible number ofbehavioural 
lasses. By 
omparing the slopes of Figs. 2 
) and d) it be
omes 
learthat even after the Legion population is saturated with agent groups with themaximum number of behavioural 
lasses, new agent groups 
ontinue to exhibitin
reased heterogeneity.



This result is further supported by the data from the sample TMP run shownin Figs. 2 a) and b). In this run, after generation 100, the most �t mailman groupalways 
ontains three behavioural 
lasses (see Fig. 2 b)). However, subsequentagent groups 
ontinue to in
rease in heterogeneity until the 200th generation(see Fig. 2 a)).In 
ontrast to these results, the data in Figs. 2 
) and d) show that for thefood foraging problem, simulated ant 
olonies exhibit less heterogeneity overevolutionary time. Our investigations suggest that the initial, rapid in
rease andsubsequent gradual de
rease in heterogeneity seen in Figs. 2 
) and d) is dueto the generation of a �t behaviour within a single behavioural 
lass of a het-erogeneous, an
estral 
olony. This �t behaviour is then assimilated by a largerfra
tion of ants in des
endant 
olonies, until eventually all ants in a des
endent
olony use this behaviour, rendering these des
endent 
olonies 
ompletely ho-mogeneous. This hypothesis was supported by studying the lineages of severalant 
olonies during evolution (data not shown). Note also that the height of thepeaks in Figs. 2 
) and d) fall short of the values obtained by 
orrespondingmailman groups in Figs. 2 
) and d).The tenden
y of foraging groups to 
onverge on homogeneous solutions, asshown in Fig. 2, supports the �ndings in [3℄, in whi
h a set of simulated robotsforaging for di�erent 
oloured pu
ks 
onverge, via a learning algorithm, on iden-ti
al members.In both sets of runs, the maximum number of behavioural 
lasses for anyagent group was restri
ted to three. This was done to minimize 
omputationtime: 
omputation of Eqn. 2 in
reases exponentially with the number of be-havioural 
lasses. However, this upper limit was suÆ
ient to demonstrate the
onvergen
e to heterogeneous and homogeneous agent groups in the TMP andthe food foraging tasks, respe
tively, and also that group heterogeneity 
an
hange even when the number of behavioural 
lasses remains �xed.These two sets of experiments demonstrate that heterogeneity is neither im-pli
itly nor expli
itly a�e
ted by the Legion system alone; rather, the amountof heterogeneity is domain-spe
i�
. From this it follows that the Legion systemserves as a kind of heterogeneity 'divining rod': agent groups that perform betterwith either di�erentiated or undi�erentiated members are revealed as su
h bythe Legion system.The Legion system 
an also be used to arti�
ially exert sele
tion pressurein favour of either homogeneous or heterogeneous groups. For groups that tendto 
onverge on heterogeneous solutions, 
lamping the maximum number of be-havioural 
lasses to one ensures the evolution of only homogeneous groups (thisfollows from the de�nition of H in Eqn. 2).Conversely, by in
orporating the heterogeneity measure into �tness fun
tionsfor problem domains in whi
h agent groups tend to be
ome more homogeneousover time, groups with both a high �tness and high heterogeneity 
an be gener-ated. This te
hnique was applied to the food foraging problem: the same pro
e-dure was used as that summarized in Table 2, but the �tness fun
tion used wash(f + r +Pni=1 ti), where h is de�ned in Eqn. 2, and f , r and ti are explained



Fig. 3. Arti�
ially evolving heterogeneity for the food foraging task: TheLegion system was run for the food foraging task, using the parameters given in Table2. The �tness fun
tion used was h(f + r +Pni=1 ti), where h is de�ned in Eqn. 2.a) reports 
hanges in the average heterogeneity of simulated 
olonies in the Legionpopulation after ea
h generation. b) reports 
hanges in the number of behavioural
lasses.in se
tion 3. Fig. 3 reports data generated by a run of the food foraging taskusing this �tness fun
tion. Note the di�eren
es between Figs. 3 a) and 2 
), andbetween Figs. 3 b) and 2 d).5 Con
lusionsThe results do
umented here support the 
laim that heterogeneity is a domain-spe
i�
 property. Using an evolutionary algorithm applied to two task domains,sele
tion pressure 
onsistently evolved heterogeneous agent groups for the onetask, and homogeneous groups for the other. Bloat [13℄ and random di�usionhave been 
ited as two possible alternative explanations for the repeated ap-pearan
e of multiple behavioural 
lasses in the TMP, but these hypotheses arerefuted by the repeated 
onvergen
e to a single behavioural 
lass in the foodforaging problem (see Figs. 2 
) and d) ).The importan
e of heterogeneity (or the la
k thereof) in agent groups is man-ifold. In the 
ase of physi
al agents, homogeneous groups may su�er redu
ed ro-bustness: a group of wheeled robots designed for smooth terrain will fail entirelyin a ro
ky terrain; a mixed group of wheeled and legged robots may performin both types of terrain. Conversely, morphologi
al and behavioural redundan
ymay be addressed using the Legion system: for example, by automati
ally tuningthe amount of heterogeneity in a robot group (similar to the te
hnique used forgenerating the data reported in Fig. 3), one may be able to optimally tune theamount of sensor and e�e
tor overlap displayed among members of the group.In addition to robustness and redundan
y, division of labour is another 
on-
ept intimately linked to heterogeneity. In some initial investigations, we havefound that for agent groups with similar �tness values, heterogeneous groups



tend to 
ontain less s-expression nodes than homogeneous groups. This maysuggest that agents within heterogeneous groups spe
ialize to a spe
i�
 set ofsub-tasks within the main task, and thus exhibit redu
ed fun
tionality in theform of smaller 
ontrol ar
hite
tures. It follows from this that the Legion sys-tem may be used to generate not only heterogeneous, but also spe
ialized agentgroups. We are 
urrently pursuing this promising avenue of study.Finally, it follows from the relationship between our heterogeneity measureand division of labour that 
olle
tive tasks for whi
h heterogeneous agent groupsevolve may be de
omposable tasks. Some tasks may be 
omposed of a number ofdi�erent subtasks; behavioural 
lasses may then emerge and di�erentiate in agentgroups to solve these subtasks. This was observed in the 
ase of the TMP: be-havioural 
lasses emerged, ea
h 
ontaining mailmen that servi
ed a subset of thestreets in the 
ity. Conversely, the homogeneity of evolved ant 
olonies may sup-port the hypothesis that the simulated food foraging task is non-de
omposable:all ants must be able to perform all basi
 behaviours to su

essfully a
hieve the
olle
tive task. The use of the Legion system for measuring the de
omposabilityof 
olle
tive tasks may be another interesting topi
 of future investigation.In 
losing, we 
on
lude that the Legion system, in 
onjun
tion with thedomain-independent heterogeneity measure introdu
ed here, is a powerful toolideally suited for investigations of heterogeneity in agent-based systems and 
ol-le
tive problem solving.6 A
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