
The Legion System: A Novel Approah toEvolving Heterogeneity forColletive Problem SolvingJosh C. Bongard1AI Lab, Computer Siene DepartmentUniversity of Zurih, Winterthurerstrasse 190CH-8057, Zurih, Switzerlandbongard�ifi.unizh.hAbstrat. We investigate the dynamis of agent groups evolved to per-form a olletive task, and in whih the behavioural heterogeneity of thegroup is under evolutionary ontrol. Two task domains are studied: solu-tions are evolved for the two tasks using an evolutionary algorithm alledthe Legion system. A new metri of heterogeneity is also introdued,whih measures the heterogeneity of any evolved group behaviour. Itwas found that the amount of heterogeneity evolved in an agent groupis dependent of the given problem domain: for the �rst task, the Legionsystem evolved heterogeneous groups; for the seond task, primarily ho-mogeneous groups evolved. We onlude that the proposed system, inonjuntion with the introdued heterogeneity measure, an be used asa tool for investigating various issues onerning redundany, robustnessand division of labour in the ontext of evolutionary approahes to ol-letive problem solving.1 IntrodutionInvestigations into heterogeneous agent groups are only just getting under way.To ite two examples, in [20℄, morphologial heterogeneity is studied, in whihphysial robots have non-overlapping sets of sensors and e�etors; in [3℄, phys-ial and simulated robots with distint motor shemata are referred to as be-haviourally heterogeneous groups.These studies stand in ontrast to biologial models, suh as ation seletion[17℄ and behaviour thresholds [24, 7℄, in whih the underlying ontrol algorithmsof the agents are equivalent, but hanges to the parameters of an agent's on-trol algorithm lead to behavioural di�erentiation. Agents in [22℄ exhibit largemorphologial and behavioural variation, but this variation, in the ontext ofolletive problem solving, was not addressed.In biologial systems, individual ells in an organism ontain (near-) identialgenomes; although individual organisms within a speies exhibit di�ering alle-les, the atual gene omplement aross organisms within a speies is the same.In ontrast, evolutionary algorithms are not limited by this onstraint: evolved



agent groups an exhibit large behavioural di�erentiation. To this end, the workpresented here is onerned with the dynamis of behaviourally heterogeneousgroups, in whih not only the observed behaviours, but also the underlying on-trol arhitetures of the agents are di�erentiated.In this report, simulated agents are studied. However, there is a growingbody of literature dediated to heterogeneous robot groups. Arkin and Hobbs[1℄ delineate a number of dimensions along whih enlightened design of robotgroups should proeed. Matari et al have implemented groups of robots inwhih heterogeneity is realized through spatial di�erentiation within the taskspae in order to minimize physial interferene [10, 11℄, or by implementing adominane hierarhy, in whih inferior robots an only perform a subset of thebasi behaviours available to more dominant robots [16℄.These studies, however, take a simplisti view of heterogeneity, in that thedi�erenes between agents in the group are deided upon by the designers. Forexample, in the ase of territoriality, eah agent is assigned its own area priorto exeution of the task. It has been pointed out [3℄ that most of this work isalso simplisti in that heterogeneity is treated as a binary property. In a seriesof studies [3℄, groups of robots learned to perform a olletive task by tuning theheterogeneity of the group to best perform the task. For foraging and ooperativemovement tasks, it was shown that groups invariably onverge on homogeneousbehaviours; in the ase of robot soer, the teams onverge on heterogeneousbehaviours [3℄.Although these studies were onerned with the degree of heterogeneity in agroup as a onsequene of the task domain, emphasis was plaed on exerisinga measure for heterogeneity alled soial entropy [5℄. Herein it is shown that byusing an evolutionary approah to heterogeneous group behaviours, a simpli-�ed measure of heterogeneity an be formulated whih overomes some of thedrawbaks of soial entropy, explained in Set. 2.Evolutionary approahes to heterogeneity inlude the work by Bull and Fog-arty [8℄, who present an island-model geneti algorithm that enodes lassi�ersystems used to ontrol a quadruped robot; in [21℄, asade neural networks [9℄are evolved for parity omputation using an inremental geneti algorithm. Inboth investigations, however, the behavioural nihes of the groups are predeter-mined.In [14℄, a geneti programming approah is introdued in whih nihe de-termination is more dynami: behaviours are evolved for a pride of lions in apredator/prey task domain. Eah individual s-expression in the GP populationodes for eah and all of the behaviours required by members of the pak. Themerit of evolving team behaviours, as opposed to evolving individual behaviourswhih are later ombined to form a team, is pointed out in [12℄: individual-levelevolutionary systems must somehow overome the redit assignment problem.11 The redit assignment problem also appears in learning approahes to group het-erogeneity. This problem, as noted in [4℄, prompted the development of a new (andheavily domain spei�) type of reinforement learning heuristi, shaped reinfore-ment learning [15℄.



In Luke and Spetor's model, the behaviour for eah individual lion in a prideis represented as a branh in an s-expression whih enodes all of the behavioursfor the team. This model suessfully avoids the redit assignment problem,and allows for emergent problem deomposition: the amount of divergene (andonvergene) between the behaviours of the individual lions is shaped by the se-letion pressure exerted by the predator/prey task domain. However, this modelsu�ers from two serious drawbaks.First, more diverse groups are impliitly favoured by the system, beauseeah individual agent possesses its own distint behaviour: in order to obtain asubset of k agents that perform equivalent behaviours, the system must evolvethe same behaviour k times in the same s-expression. Seond, the system saleswith the number of agents performing the task: for n agents, the s-expressionmust ontain n branhes.2 The ModelWe now introdue an augmented geneti programming system, alled the Le-gion system, whih shares the advantages of the system desribed in [14℄, butoveromes its limitations.2.1 The Legion SystemEah individual s-expression in the Legion population enodes behaviours foran entire agent group, and is omposed of two or more branh s-expressions.The �rst branh s-expression is the partition s-expression, and ditates how anagent group is to be partitioned into a set of behavioural lasses. The partitions-expression is evaluated in depth-�rst order, in order to determine how manybehavioural lasses the agent group will ontain, and how many agents will beassigned to eah behavioural lass. When a SPLIT operator is enountered, kfagents are assigned to the next available behavioural lass, where k is the numberof agents not yet assigned a behavioural lass, and f is the oating point value(0 � f � 1) returned by the SPLIT operator's left branh. The remaining k(1�f)agents are further partitioned when the next SPLIT operator is enountered.When the �nal SPLIT operator is enountered, the remaining agents are plaedinto the two next behaviour lasses. Any remaining behavioural s-expressions aredeleted. If the �nal SPLIT operator is enountered and there remains only onemore behaviour s-expression, this last behaviour s-expression is dupliated, andthe remaining agents are divided into the two idential behaviour s-expressions.In subsequent generations, mutation and rossover events may di�erentiate thesetwo branh s-expressions.It follows from this that, as opposed to the model in [14℄, the Legion systeman dynamially hange the number of behavioural lasses in an agent groupover evolutionary time, as well as modifying the behaviours of members of



eah lass2. Moreover, by modifying the number of SPLIT operators in parti-tion s-expressions, seletion pressure an inrease or derease the number ofbehavioural lasses|and thus the heterogeneity|of agent groups over evolu-tionary time.The remaining branh s-expressions in a Legion s-expression, referred to as be-haviour s-expressions, are domain-dependent and enode the ations performedby agents assigned to that behavioural lass. Fig. 1 presents the arhiteture ofthe Legion population in pitorial form.
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Fig. 1. A pitorial representation of the Legion system The braketed numbersnext to the three behaviour s-expressions denote the perentage of agents from a groupthat would be assigned to that behavioural lass. The perentages, and the number ofbehavioural lasses, are determined by the partition s-expression.Crossover in the Legion system is aomplished by restrited breeding, sim-ilar to [14℄: given two Legion s-expressions s1 and s2 with partition and be-haviour s-expressions fp1; b1;1; b2;1 : : : bi;1g and fp2; b1;2; b2;2 : : : bj;2g, the parti-tion s-expressions of the two hildren are reated by sub-tree rossover of p12 This proess was modelled on the biologial onept of gene families, whih areprodued by gene dupliation and di�erentiation over evolutionary timesales [19℄,[18℄.



and p2, and the behaviour s-expressions are reated by the pairwise rossings off(b1;1; b1;2); (b2;1; b2;2); : : : (bi;1; bi;2)g, where i � j.If it is aepted that the amount of heterogeneity in an agent group is depen-dent on the number, membership and di�erentiation of the behavioural lassesin a Legion s-expression, and the onstitution of behavioural lasses in a Legionsystem is under evolutionary ontrol, then it follows that the amount of het-erogeneity in the agent groups evolved by the Legion system is subjet to theseletion pressure of the task domain.2.2 The Heterogeneity MeasureIn [3℄ a measure of heterogeneity, soial entropy, is presented and de�ned asH = � MXi=1 pilog2(pi); (1)where M is the number of behavioural lasses in an agent group, and pi isthe probability that any given agent is a member of the behavioural lass i.Soial entropy thus takes into aount the number and membership sizes ofthe behavioural lasses in a group, but does not onsider the di�erenes betweenagents in di�erent lasses. A more ompliated measure of soial entropy is givenin [5℄ whih takes into aount inter-lass behavioural di�erenes. However, thismeasure is domain-spei�, and relies on details of the apabilities of agentswithin the group, suh as pereptual or internal state.When evolving behaviours for agent groups, a �tness funtion is usually for-mulated whih alulates some quantitative measure of the faility of the groupto aomplish its assigned task. The �tness funtion is dependent on the be-haviours of the agents within the group; di�erenes in �tness between any twogiven agent groups imply behavioural di�erenes between those groups. Thus,in an evolutionary ontext, a measure of heterogeneity an be formulated basedsolely on the �tness values of agents within the group, and not diretly on thebehaviours of the agents themselves.Consider a group of n agents whih has been partitioned by the Legion sys-tem (or some other evolutionary algorithm) into a set of behavioural lassesB = fb1; b2; : : : ; bg. Let f be the �tness value of this agent group. Let P =fp1; p2; : : : ; p2�1g � ; be the power set of B. We an then iteratively assignagents in the group to the behavioural lasses of pi, and ompute the �tnessf(pi) of the group. Eah behavioural lass in pi is assigned njpij agents. We annow de�ne the heterogeneity measure asH = 1� Ppi2P (Pjpijj=1 jaj j)f(pi)(Ppi2P Pjpijj=1 jaj j)f : (2)From Eqn. 2 it follows that if the groups assigned to all the subsets of Pahieve the same �tness value as that attained by the original, heterogeneous



group, the heterogeneity value is zero. This indiates that agents in the dif-ferent lasses, as determined by the original partition, do not exhibit distintbehaviours. If the groups all behave di�erently than the original heterogeneousgroup, then the heterogeneity measure will di�er from zero. This indiates thatmembers in the di�erent lasses perform distint behaviours. Moreover, if the�tness values f(pi) are lower3 than the �tness value for the original partition f ,then H will approah unity. This is formalized asH = 8<: 0 : if 8p 2 P; f(p) = f> 0 : if 9p0 2 P; f(p0) < f; and 8�p 2 P � p0; f(�p) = f1 : if 8p 2 P; f(p) = 0 (3)The advantage of this domain-independent, �tness-based heterogeneity mea-sure is that it expliitly inorporates the onept of division of labour. When allof the agents in the group are fored to perform only a subset of the behavioursevolved for them (hosen from among the behavioural lass ombinations in P ),and then perform poorly (indiated by a lowered �tness value for the hosen om-bination), this indiates that a range of behaviours have evolved for this group,all of whih must be performed in order to suessfully solve the olletive task.3 ResultsThe �rst task domain studied is syntheti, and was designed in order to test theLegion system on a task domain in whih both homogeneous and heterogeneousgroups an optimally solve the given task. This task is named the TravellingMailman Problem, or the TMP.Consider a ity with s streets that produe fl1; l2; : : : ; lsg letters eah day,whih must be olleted by a eet of mailmen. Eah mailman an ollet oneletter eah day. The goal of the mailmen is to arrange themselves aross thestreets in the ity so as to minimize the amount of unolleted mail. At thebeginning of eah simulation, eah mailman indiates the street number whihwill be his mail route for the duration of the simulation. The total amount ofunolleted mail at the end of the simulation is given bynXi=1 sXj=1�uj �mj : uj > mj0 : uj � mj ; (4)where s is the number of streets, n is the number of iterations in the simulation,uj is the amount of unolleted mail at street j, andmj is the number of mailmenserviing street j.In Table 1, the information neessary for applying the Legion system to theTMP is given.3 We here assume that a high �tness value is desirable; for tasks in whih low �tnessvalues are desirable, H is omputed by ipping the numerator and denominatorgiven in Eqn. 2.



Fitness Funtion Equivalent to Eqn. 4Termination Criteria 500 generations are ompletedNon-terminal Nodes Name Arity DesriptionIF ST CAP 2 j = evaluated left branhk = evaluated right branhif uj > mj , move to street jelse move forward k streetsPLUS 2 left branh + right branhTerminal Nodes The two integer onstants zero and unityPopulation Size 500Number of Generations 250Seletion Method Tournament seletion; tournament size = 2Maximum Tree Depth 7Maximum Behavioural Classes 3Mutation Rate 1% hane of node undergoing random replaementTable 1. Legion System Parameters for the Travelling Mailman Problem The�tness funtion is a dereasing funtion; lower �tness values imply a more �t solution.The seond task studied was food foraging in simulated ant olonies [2, 6, 4℄.Twenty ants operating within a 32 by 32 toroidal grid must loate food plaedat two food soures, and return as muh food as possible to a single nest. Antsmay lay and sense pheromones, whih an be used by the ant group to inreasethe rate of food retrieval. At eah time step of the simulation, eah ant performsone ation, based on the state of its loal environment.The �tness funtion used to evaluate the performane of an ant olony isgiven by f + r + nXi=1 ti: (5)In the �tness funtion, f stands for funtionality. Given an ant olony (a1; a2;: : : ; an), f is set to 0 if no ant attempts any behaviour; 1 if at least one antattempts one of the three behaviours grab food, drop pheromone or move; 2if at least two ants ai and aj attempt one of these three behaviours, and thebehaviours of ai and aj are distint; and 3 if at least three ants ai, aj and akattempt one of the three behaviours, and the behaviours of ai, aj and ak aredistint. The funtionality term f is used to motivate initial Legion groups toevolve ant olonies with high funtionality.4Ants removing food from the food piles are rewarded by r, the number of foodpellets removed by the olony from the food piles. The �nal term of the �tness4 In [6℄, a similar �tness funtion to that of Eqn. 5 was employed, but the funtion-ality term f was not used. Beause of this, evolved behaviours reported in [6℄ wereprodued with a population size of 64000 over 80 generations. These solutions wereroughly as �t as the evolved solutions reported in this work, whih were generatedusing a population size of 500 over 250 generations.



funtion rewards olonies for returning food to the nest as quikly as possible: nis the number of food pellets returned to the nest, and ti is the number of timesteps remaining in the simulation when food pellet i was returned to the nest.In Table 2, the information neessary for applying the Legion system to thefood foraging problem is given.Fitness Funtion See Eqn. 5Termination Criteria 250 generations ompleted, or all food returned to nestNon-terminal Nodes IF FD HERE The ant is standing on a food pelletIF FD FORW There is food in front of the antIF CARRYING FD The ant is arrying a food pelletIF NEST HERE The ant is standing on the nestIF FACING NEST The ant is faing the nestIF SMELL FOOD There is a food pellet next to the antIF SMELL PHER There is pheromone next to the antIF PHER FORW There is pheromone in front of the antTerminal Nodes MOVE FORW Move one ell forward in urrent diretionTURN RT Turn 90 degrees lokwiseTURN LT Turn 90 degrees ounterlokwiseMOVE RAND Move two ells in a random diretionGRAB FD Pik up a food pellet, if one is hereDROP PHER Drop pheromone at urrent positionNO ACT Do not perform any ationMOVE DROP Move one ell forward; drop pheromonePopulation Size 500Number of Generations 250Seletion Method Tournament seletion; tournament size = 2Max Tree Depth 7Max Behavioural Classes 3Mutation Rate 1% hane of node undergoing random replaementTable 2. Legion System Parameters for the Food Foraging Problem The �t-ness funtion is an inreasing funtion; higher �tness values indiate a more �t solution.The thin lines in Fig. 2 report data generated by 30 runs of the Legion systemapplied to the TMP. Figs. 2 a) and b) plot the heterogeneity (as given in Eqn.2) and the number of behavioural lasses, respetively, of the �ttest mailmangroup at the end of eah generation from a typial run of the Legion system.Figs. 2 ) and d) depit the average heterogeneity and number of behaviourallasses, respetively, in the Legion population as a whole, averaged over the 30runs. The parameters for the runs are given in Table 1.The thik lines in Fig. 2 report data generated by 30 runs of the Legion systemapplied to the food foraging problem. Figs. 2 a) and b) plot the heterogeneity(as given in Eqn. 2) and the number of behavioural lasses of the most �t antgroup at the end of eah generation in a single run of the Legion system. Figs.



Fig. 2. Changes in heterogeneity for a set of runs of the travelling mailmanand the food foraging problems: a) and b) show hanges in the heterogeneityand the number of behavioural lasses, respetively, of the �ttest agent group at eahgeneration during a typial run; ) shows hanges in the average heterogeneity of theLegion population; d) shows hanges in the average number of behavioural lasses forthe population. The results in ) and d) are averaged over 30 runs.2 ) and d) depit the average heterogeneity and number of behavioural lasses,respetively, in the Legion population as a whole, averaged over the 30 runs. Theparameters for the runs are given in Table 2.4 DisussionFor the mailman groups evolved for the TMP, Fig. 2 ) shows that the hetero-geneity of the groups inreases over evolutionary time. Fig. 2 d) shows that mail-man groups rapidly approah the asymptote of the maximum possible number ofbehavioural lasses. By omparing the slopes of Figs. 2 ) and d) it beomes learthat even after the Legion population is saturated with agent groups with themaximum number of behavioural lasses, new agent groups ontinue to exhibitinreased heterogeneity.



This result is further supported by the data from the sample TMP run shownin Figs. 2 a) and b). In this run, after generation 100, the most �t mailman groupalways ontains three behavioural lasses (see Fig. 2 b)). However, subsequentagent groups ontinue to inrease in heterogeneity until the 200th generation(see Fig. 2 a)).In ontrast to these results, the data in Figs. 2 ) and d) show that for thefood foraging problem, simulated ant olonies exhibit less heterogeneity overevolutionary time. Our investigations suggest that the initial, rapid inrease andsubsequent gradual derease in heterogeneity seen in Figs. 2 ) and d) is dueto the generation of a �t behaviour within a single behavioural lass of a het-erogeneous, anestral olony. This �t behaviour is then assimilated by a largerfration of ants in desendant olonies, until eventually all ants in a desendentolony use this behaviour, rendering these desendent olonies ompletely ho-mogeneous. This hypothesis was supported by studying the lineages of severalant olonies during evolution (data not shown). Note also that the height of thepeaks in Figs. 2 ) and d) fall short of the values obtained by orrespondingmailman groups in Figs. 2 ) and d).The tendeny of foraging groups to onverge on homogeneous solutions, asshown in Fig. 2, supports the �ndings in [3℄, in whih a set of simulated robotsforaging for di�erent oloured puks onverge, via a learning algorithm, on iden-tial members.In both sets of runs, the maximum number of behavioural lasses for anyagent group was restrited to three. This was done to minimize omputationtime: omputation of Eqn. 2 inreases exponentially with the number of be-havioural lasses. However, this upper limit was suÆient to demonstrate theonvergene to heterogeneous and homogeneous agent groups in the TMP andthe food foraging tasks, respetively, and also that group heterogeneity anhange even when the number of behavioural lasses remains �xed.These two sets of experiments demonstrate that heterogeneity is neither im-pliitly nor expliitly a�eted by the Legion system alone; rather, the amountof heterogeneity is domain-spei�. From this it follows that the Legion systemserves as a kind of heterogeneity 'divining rod': agent groups that perform betterwith either di�erentiated or undi�erentiated members are revealed as suh bythe Legion system.The Legion system an also be used to arti�ially exert seletion pressurein favour of either homogeneous or heterogeneous groups. For groups that tendto onverge on heterogeneous solutions, lamping the maximum number of be-havioural lasses to one ensures the evolution of only homogeneous groups (thisfollows from the de�nition of H in Eqn. 2).Conversely, by inorporating the heterogeneity measure into �tness funtionsfor problem domains in whih agent groups tend to beome more homogeneousover time, groups with both a high �tness and high heterogeneity an be gener-ated. This tehnique was applied to the food foraging problem: the same proe-dure was used as that summarized in Table 2, but the �tness funtion used wash(f + r +Pni=1 ti), where h is de�ned in Eqn. 2, and f , r and ti are explained



Fig. 3. Arti�ially evolving heterogeneity for the food foraging task: TheLegion system was run for the food foraging task, using the parameters given in Table2. The �tness funtion used was h(f + r +Pni=1 ti), where h is de�ned in Eqn. 2.a) reports hanges in the average heterogeneity of simulated olonies in the Legionpopulation after eah generation. b) reports hanges in the number of behaviourallasses.in setion 3. Fig. 3 reports data generated by a run of the food foraging taskusing this �tness funtion. Note the di�erenes between Figs. 3 a) and 2 ), andbetween Figs. 3 b) and 2 d).5 ConlusionsThe results doumented here support the laim that heterogeneity is a domain-spei� property. Using an evolutionary algorithm applied to two task domains,seletion pressure onsistently evolved heterogeneous agent groups for the onetask, and homogeneous groups for the other. Bloat [13℄ and random di�usionhave been ited as two possible alternative explanations for the repeated ap-pearane of multiple behavioural lasses in the TMP, but these hypotheses arerefuted by the repeated onvergene to a single behavioural lass in the foodforaging problem (see Figs. 2 ) and d) ).The importane of heterogeneity (or the lak thereof) in agent groups is man-ifold. In the ase of physial agents, homogeneous groups may su�er redued ro-bustness: a group of wheeled robots designed for smooth terrain will fail entirelyin a roky terrain; a mixed group of wheeled and legged robots may performin both types of terrain. Conversely, morphologial and behavioural redundanymay be addressed using the Legion system: for example, by automatially tuningthe amount of heterogeneity in a robot group (similar to the tehnique used forgenerating the data reported in Fig. 3), one may be able to optimally tune theamount of sensor and e�etor overlap displayed among members of the group.In addition to robustness and redundany, division of labour is another on-ept intimately linked to heterogeneity. In some initial investigations, we havefound that for agent groups with similar �tness values, heterogeneous groups



tend to ontain less s-expression nodes than homogeneous groups. This maysuggest that agents within heterogeneous groups speialize to a spei� set ofsub-tasks within the main task, and thus exhibit redued funtionality in theform of smaller ontrol arhitetures. It follows from this that the Legion sys-tem may be used to generate not only heterogeneous, but also speialized agentgroups. We are urrently pursuing this promising avenue of study.Finally, it follows from the relationship between our heterogeneity measureand division of labour that olletive tasks for whih heterogeneous agent groupsevolve may be deomposable tasks. Some tasks may be omposed of a number ofdi�erent subtasks; behavioural lasses may then emerge and di�erentiate in agentgroups to solve these subtasks. This was observed in the ase of the TMP: be-havioural lasses emerged, eah ontaining mailmen that servied a subset of thestreets in the ity. Conversely, the homogeneity of evolved ant olonies may sup-port the hypothesis that the simulated food foraging task is non-deomposable:all ants must be able to perform all basi behaviours to suessfully ahieve theolletive task. The use of the Legion system for measuring the deomposabilityof olletive tasks may be another interesting topi of future investigation.In losing, we onlude that the Legion system, in onjuntion with thedomain-independent heterogeneity measure introdued here, is a powerful toolideally suited for investigations of heterogeneity in agent-based systems and ol-letive problem solving.6 AknowledgmentsThe author would kindly like to thank faulty and students of the Shool ofCognitive and Computing Sienes at the University of Sussex, without whomthis work would not have been possible. Speial thanks to Inman Harvey, forgenerous ontributions of time, thought, ritiism and enouragement.Referenes1. Arkin, R. C. & J. D. Hobbs. Dimensions of Communiation and Soial Organizationin Multi-agent Roboti Systems. In Meyer, J.-A., H. L. Roitblat & S. W. Wilson(eds.), Pros. of the Seond Intl. Conf. on Simulation of Adaptive Behavior. MITPress, pp. 486{493. (1992)2. Arkin, R. C. & K. S. Ali. Integration of Reative and Teleroboti Control in Multi-agent Roboti Systems. In Cli�, D., P. Husbands, J.-A. Meyer & S. W. Wilson(eds.), Pros. of the Third Intl. Conf. on Simulation of Adaptive Behavior. MITPress, pp. 473{478. (1994)3. Balh, T. Behavioral Diversity in Learning Robot Teams. PhD thesis, College ofComputing, Georgia Institute of Tehnology. (1998)4. T. Balh. Reward and Diversity in Multirobot Foraging. In IJCAI-99 Workshop onAgents Learning About, From and With other Agents. Sweden, July 31{August 6.(1999)5. Balh, T. Hierarhi Soial Entropy: An Information Theoreti Measure of RobotGroup Diversity. Autonomous Robots, 8:3, July, to appear. (2000)



6. Bennett, F. H. Automati Creation of an EÆient Multi-Agent Arhiteture UsingGeneti Programming with Arhiteture-Altering Operations. In Koza, J. R., D.E. Goldberg & D. B. Fogel (eds.), Geneti Programming 1996 : Proeedings of theFirst Annual Conferene. MIT Press, pp. 30{38. (1996)7. Bonabeau, E., A. Sobkowski, G. Theraulaz & J.-L. Deneubourg. Adaptive TaskAlloation Inspired by a Model of Division of Labour in Soial Insets. Sante FeInstitute Teh. Rep. 98-01-004. (1998)8. Bull, L. & C. Fogarty. Evolutionary Computing in Multi-Agent Environments: Spe-iation and Symbiogenesis. In Voigt, H.-M., W. Ebeling & I. Rehenberg (eds.),Parallel Problem Solving from Nature-PPSN IV. Springer-Verlag, pp. 12{21. (1996)9. Fahlman, S. & C. Lebiere. The Casade-Correlation Learning Arhiteture. CarnegieMellon University Teh. Rep. CMU-CS-90-100. (1990)10. Fontan, M. S. & M. J. Matari. A Study of Territoriality: The Role of CritialMass in Adaptive Task Division. In Maes, P., M. Matari, J.-A. Meyer, J. Pollak& S. W. Wilson (eds.), Pros. of the Fourth Intl. Conf. on Simulation of AdaptiveBehavior. MIT Press, pp. 553{561. (1996)11. Goldberg, D. & M. J. Matari. Interferene as a Tool for Designing and Evaluat-ing Multi-Robot Controllers. In AAAI-97: Pros. of the Fourteenth Natl. Conf. onArti�ial Intelligene. MIT Press, pp. 637{642. (1997)12. Haynes, T. & S. Sen. Crossover Operators for Evolving a Team. In Koza, J. R., K.Deb, M. Dorigo, D. B. Fogel, M. Gazon, H. Iba & R. L. Riolo (eds.), Geneti Pro-gramming 1997: Proeedings of the Seond Annual Conferene. pp. 162{167, MorganKau�man. (1997)13. Langdon, W. B. & R. Poli. \Fitness Causes Bloat". Seond On-Line World Confer-ene on Soft Computing in Engineering Design and Manufaturing. Springer-Verlag,London, pp. 13{22. (1997)14. Luke, S. & L. Spetor. Evolving Teamwork and Coordination with Geneti Pro-gramming. In Koza, J. R., D. E. Goldberg, D. B. Fogel & R. L. Riolo (eds.), GenetiProgramming 1996: Proeedings of the First Annual Conferene. MIT Press, pp.141{149. (1996)15. M. J. Matari. Reinforement Learning in the Multi-Robot Domain. In Au-tonomous Robots, 4(1):73{83. (1997)16. M. J. Matari. Designing and Understanding Adaptive Group Behavior. AdaptiveBehavior 4(1):51{80. (1995)17. MFarland, D. J. Animals as Cost-Based Robots. In Boden, M. (ed.), The Philos-ophy of Arti�ial Life. Oxford University Press, Oxford. (1996)18. Ohno, S. Evolution by Gene Dupliation. Springer-Verlag, New York. (1970)19. Ohta, T. Multigene and Supergene Families. Oxford Surv. Evol. Biol., 5:41{65.(1988)20. Parker, L. Heterogeneous Multi-Robot Cooperation. PhD thesis, MassahussetsInstitute of Tehnology. (1994)21. Potter, M. & K. De Jong. Evolving neural networks with ollaborative speies. InPros. of the 1995 Summer Computer Simulation Conferene Ottawa. (1995)22. Sims, K. Evolving 3D Morphology and Behaviour by Competition. In Brooks, R.and P. Maes (eds.), Arti�ial Life VI. MIT Press, pp. 28{39. (1994)23. Sneath, P. & R. Sokal. Numerial Taxonomy W. H. Freeman and Company, SanFraniso. (1973)24. Theraulaz, G., S. Goss, J. Gervet & J.-L. Deneubourg. Task Di�erentiation inPolistes Wasp Colonies: a Model for Self-organizing Groups of Robots. In Meyer,J. A. & S. W. Wilson (eds.), Pros. of the First Intl. Conf. on the Simulation ofAdaptive Behaviour. MIT Press, pp. 346{355. (1991)


