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Abstract. We investigate the dynamics of agent groups evolved to per-
form a collective task, and in which the behavioural heterogeneity of the
group is under evolutionary control. Two task domains are studied: solu-
tions are evolved for the two tasks using an evolutionary algorithm called
the Legion system. A new metric of heterogeneity is also introduced,
which measures the heterogeneity of any evolved group behaviour. It
was found that the amount of heterogeneity evolved in an agent group
is dependent of the given problem domain: for the first task, the Legion
system evolved heterogeneous groups; for the second task, primarily ho-
mogeneous groups evolved. We conclude that the proposed system, in
conjunction with the introduced heterogeneity measure, can be used as
a tool for investigating various issues concerning redundancy, robustness
and division of labour in the context of evolutionary approaches to col-
lective problem solving.

1 Introduction

Investigations into heterogeneous agent groups are only just getting under way.
To cite two examples, in [20], morphological heterogeneity is studied, in which
physical robots have non-overlapping sets of sensors and effectors; in [3], phys-
ical and simulated robots with distinct motor schemata are referred to as be-
haviourally heterogeneous groups.

These studies stand in contrast to biological models, such as action selection
[17] and behaviour thresholds [24, 7], in which the underlying control algorithms
of the agents are equivalent, but changes to the parameters of an agent’s con-
trol algorithm lead to behavioural differentiation. Agents in [22] exhibit large
morphological and behavioural variation, but this variation, in the context of
collective problem solving, was not addressed.

In biological systems, individual cells in an organism contain (near-) identical
genomes; although individual organisms within a species exhibit differing alle-
les, the actual gene complement across organisms within a species is the same.
In contrast, evolutionary algorithms are not limited by this constraint: evolved



agent groups can exhibit large behavioural differentiation. To this end, the work
presented here is concerned with the dynamics of behaviourally heterogeneous
groups, in which not only the observed behaviours, but also the underlying con-
trol architectures of the agents are differentiated.

In this report, simulated agents are studied. However, there is a growing
body of literature dedicated to heterogeneous robot groups. Arkin and Hobbs
[1] delineate a number of dimensions along which enlightened design of robot
groups should proceed. Mataric et al have implemented groups of robots in
which heterogeneity is realized through spatial differentiation within the task
space in order to minimize physical interference [10,11], or by implementing a
dominance hierarchy, in which inferior robots can only perform a subset of the
basic behaviours available to more dominant robots [16].

These studies, however, take a simplistic view of heterogeneity, in that the
differences between agents in the group are decided upon by the designers. For
example, in the case of territoriality, each agent is assigned its own area prior
to execution of the task. It has been pointed out [3] that most of this work is
also simplistic in that heterogeneity is treated as a binary property. In a series
of studies [3], groups of robots learned to perform a collective task by tuning the
heterogeneity of the group to best perform the task. For foraging and cooperative
movement tasks, it was shown that groups invariably converge on homogeneous
behaviours; in the case of robot soccer, the teams converge on heterogeneous
behaviours [3].

Although these studies were concerned with the degree of heterogeneity in a
group as a consequence of the task domain, emphasis was placed on exercising
a measure for heterogeneity called social entropy [5]. Herein it is shown that by
using an evolutionary approach to heterogeneous group behaviours, a simpli-
fied measure of heterogeneity can be formulated which overcomes some of the
drawbacks of social entropy, explained in Sect. 2.

Evolutionary approaches to heterogeneity include the work by Bull and Fog-
arty [8], who present an island-model genetic algorithm that encodes classifier
systems used to control a quadruped robot; in [21], cascade neural networks [9]
are evolved for parity computation using an incremental genetic algorithm. In
both investigations, however, the behavioural niches of the groups are predeter-
mined.

In [14], a genetic programming approach is introduced in which niche de-
termination is more dynamic: behaviours are evolved for a pride of lions in a
predator/prey task domain. Each individual s-expression in the GP population
codes for each and all of the behaviours required by members of the pack. The
merit of evolving team behaviours, as opposed to evolving individual behaviours
which are later combined to form a team, is pointed out in [12]: individual-level
evolutionary systems must somehow overcome the credit assignment problem.!

! The credit assignment problem also appears in learning approaches to group het-
erogeneity. This problem, as noted in [4], prompted the development of a new (and
heavily domain specific) type of reinforcement learning heuristic, shaped reinforce-
ment learning [15].



In Luke and Spector’s model, the behaviour for each individual lion in a pride
is represented as a branch in an s-expression which encodes all of the behaviours
for the team. This model successfully avoids the credit assignment problem,
and allows for emergent problem decomposition: the amount of divergence (and
convergence) between the behaviours of the individual lions is shaped by the se-
lection pressure exerted by the predator/prey task domain. However, this model
suffers from two serious drawbacks.

First, more diverse groups are implicitly favoured by the system, because
each individual agent possesses its own distinct behaviour: in order to obtain a
subset of k£ agents that perform equivalent behaviours, the system must evolve
the same behaviour & times in the same s-expression. Second, the system scales
with the number of agents performing the task: for n agents, the s-expression
must contain n branches.

2 The Model

We now introduce an augmented genetic programming system, called the Le-
gion system, which shares the advantages of the system described in [14], but
overcomes its limitations.

2.1 The Legion System

Each individual s-expression in the Legion population encodes behaviours for
an entire agent group, and is composed of two or more branch s-expressions.
The first branch s-expression is the partition s-expression, and dictates how an
agent group is to be partitioned into a set of behavioural classes. The partition
s-expression is evaluated in depth-first order, in order to determine how many
behavioural classes the agent group will contain, and how many agents will be
assigned to each behavioural class. When a SPLIT operator is encountered, k f
agents are assigned to the next available behavioural class, where k is the number
of agents not yet assigned a behavioural class, and f is the floating point value
(0 < f < 1) returned by the SPLIT operator’s left branch. The remaining k(1— f)
agents are further partitioned when the next SPLIT operator is encountered.
When the final SPLIT operator is encountered, the remaining agents are placed
into the two next behaviour classes. Any remaining behavioural s-expressions are
deleted. If the final SPLIT operator is encountered and there remains only one
more behaviour s-expression, this last behaviour s-expression is duplicated, and
the remaining agents are divided into the two identical behaviour s-expressions.
In subsequent generations, mutation and crossover events may differentiate these
two branch s-expressions.

It follows from this that, as opposed to the model in [14], the Legion system
can dynamically change the number of behavioural classes in an agent group
over evolutionary time, as well as modifying the behaviours of members of



each class?. Moreover, by modifying the number of SPLIT operators in parti-
tion s-expressions, selection pressure can increase or decrease the number of
behavioural classes—and thus the heterogeneity—of agent groups over evolu-
tionary time.

The remaining branch s-expressions in a Legion s-expression, referred to as be-
haviour s-expressions, are domain-dependent and encode the actions performed
by agents assigned to that behavioural class. Fig. 1 presents the architecture of
the Legion population in pictorial form.
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Fig. 1. A pictorial representation of the Legion system The bracketed numbers
next to the three behaviour s-expressions denote the percentage of agents from a group
that would be assigned to that behavioural class. The percentages, and the number of
behavioural classes, are determined by the partition s-expression.

Crossover in the Legion system is accomplished by restricted breeding, sim-
ilar to [14]: given two Legion s-expressions s; and s» with partition and be-
haviour s-expressions {pi,b1,1,b2,1...0;1} and {pa2,b1,2,b22...b;2}, the parti-
tion s-expressions of the two children are created by sub-tree crossover of p;

2 This process was modelled on the biological concept of gene families, which are
produced by gene duplication and differentiation over evolutionary timescales [19],
[18].



and po, and the behaviour s-expressions are created by the pairwise crossings of
{(b171, bl’g), (b271, b272), . (bl'71, b@g)}, where ¢ S ]

If it is accepted that the amount of heterogeneity in an agent group is depen-
dent on the number, membership and differentiation of the behavioural classes
in a Legion s-expression, and the constitution of behavioural classes in a Legion
system is under evolutionary control, then it follows that the amount of het-
erogeneity in the agent groups evolved by the Legion system is subject to the
selection pressure of the task domain.

2.2 The Heterogeneity Measure

In [3] a measure of heterogeneity, social entropy, is presented and defined as

M
H=- Zpilogﬂpi), (1)

where M is the number of behavioural classes in an agent group, and p; is
the probability that any given agent is a member of the behavioural class i.
Social entropy thus takes into account the number and membership sizes of
the behavioural classes in a group, but does not consider the differences between
agents in different classes. A more complicated measure of social entropy is given
in [5] which takes into account inter-class behavioural differences. However, this
measure is domain-specific, and relies on details of the capabilities of agents
within the group, such as perceptual or internal state.

When evolving behaviours for agent groups, a fitness function is usually for-
mulated which calculates some quantitative measure of the facility of the group
to accomplish its assigned task. The fitness function is dependent on the be-
haviours of the agents within the group; differences in fitness between any two
given agent groups imply behavioural differences between those groups. Thus,
in an evolutionary context, a measure of heterogeneity can be formulated based
solely on the fitness values of agents within the group, and not directly on the
behaviours of the agents themselves.

Consider a group of n agents which has been partitioned by the Legion sys-
tem (or some other evolutionary algorithm) into a set of behavioural classes
B = {by,bs,...,b.}. Let f be the fitness value of this agent group. Let P =
{p1,p2,...,p2c—1} — 0 be the power set of B. We can then iteratively assign
agents in the group to the behavioural classes of p;, and compute the fitness
f(p;) of the group. Each behavioural class in p; is assigned \p_TZ\ agents. We can
now define the heterogeneity measure as

i | a: '
H=1- ZP:'GP(ZJ:E .“ ]Df(pz). (2)
(X piep 2 lag)) f

From Eqn. 2 it follows that if the groups assigned to all the subsets of P
achieve the same fitness value as that attained by the original, heterogeneous




group, the heterogeneity value is zero. This indicates that agents in the dif-
ferent classes, as determined by the original partition, do not exhibit distinct
behaviours. If the groups all behave differently than the original heterogeneous
group, then the heterogeneity measure will differ from zero. This indicates that
members in the different classes perform distinct behaviours. Moreover, if the
fitness values f(p;) are lower® than the fitness value for the original partition f,
then H will approach unity. This is formalized as

0 : if VpeP flp)=Ff
H={>0 : if ' ePfp)<f and VpeP—-p, f(p)=f (3)
1 if VpeP f(p)=0

The advantage of this domain-independent, fitness-based heterogeneity mea-
sure is that it explicitly incorporates the concept of division of labour. When all
of the agents in the group are forced to perform only a subset of the behaviours
evolved for them (chosen from among the behavioural class combinations in P),
and then perform poorly (indicated by a lowered fitness value for the chosen com-
bination), this indicates that a range of behaviours have evolved for this group,
all of which must be performed in order to successfully solve the collective task.

3 Results

The first task domain studied is synthetic, and was designed in order to test the
Legion system on a task domain in which both homogeneous and heterogeneous
groups can optimally solve the given task. This task is named the Travelling
Mailman Problem, or the TMP.

Consider a city with s streets that produce {ly,ls,...,ls} letters each day,
which must be collected by a fleet of mailmen. Each mailman can collect one
letter each day. The goal of the mailmen is to arrange themselves across the
streets in the city so as to minimize the amount of uncollected mail. At the
beginning of each simulation, each mailman indicates the street number which
will be his mail route for the duration of the simulation. The total amount of
uncollected mail at the end of the simulation is given by

n S
Uj —m; 1 Uj > My
_ ; (4)
where s is the number of streets, n is the number of iterations in the simulation,
u; is the amount of uncollected mail at street j, and m; is the number of mailmen
servicing street j.
In Table 1, the information necessary for applying the Legion system to the
TMP is given.

% We here assume that a high fitness value is desirable; for tasks in which low fitness
values are desirable, H is computed by flipping the numerator and denominator
given in Eqn. 2.



Fitness Function Equivalent to Eqn. 4

Termination Criteria 500 generations are completed
Non-terminal Nodes Name Arity|Description

IF_ST_CAP|2 j = evaluated left branch

k = evaluated right branch
if w; > m;, move to street j
else move forward k streets

PLUS 2 left branch + right branch
Terminal Nodes The two integer constants zero and unity
Population Size 500
Number of Generations 250
Selection Method Tournament selection; tournament size = 2
Maximum Tree Depth 7
Maximum Behavioural Classes||3
Mutation Rate 1% chance of node undergoing random replacement

Table 1. Legion System Parameters for the Travelling Mailman Problem The
fitness function is a decreasing function; lower fitness values imply a more fit solution.

The second task studied was food foraging in simulated ant colonies [2, 6, 4].
Twenty ants operating within a 32 by 32 toroidal grid must locate food placed
at two food sources, and return as much food as possible to a single nest. Ants
may lay and sense pheromones, which can be used by the ant group to increase
the rate of food retrieval. At each time step of the simulation, each ant performs
one action, based on the state of its local environment.

The fitness function used to evaluate the performance of an ant colony is
given by

fHr+) t (5)
i=1

In the fitness function, f stands for functionality. Given an ant colony (a1, as,
., Gy), [ is set to 0 if no ant attempts any behaviour; 1 if at least one ant
attempts one of the three behaviours grab food, drop pheromone or move; 2
if at least two ants a; and a; attempt one of these three behaviours, and the
behaviours of a; and a; are distinct; and 3 if at least three ants a;, a; and a;
attempt one of the three behaviours, and the behaviours of a;, a; and a; are
distinct. The functionality term f is used to motivate initial Legion groups to
evolve ant colonies with high functionality.*
Ants removing food from the food piles are rewarded by r, the number of food
pellets removed by the colony from the food piles. The final term of the fitness

* In [6], a similar fitness function to that of Eqn. 5 was employed, but the function-
ality term f was not used. Because of this, evolved behaviours reported in [6] were
produced with a population size of 64000 over 80 generations. These solutions were
roughly as fit as the evolved solutions reported in this work, which were generated
using a population size of 500 over 250 generations.



function rewards colonies for returning food to the nest as quickly as possible: n
is the number of food pellets returned to the nest, and ¢; is the number of time
steps remaining in the simulation when food pellet i was returned to the nest.

In Table 2, the information necessary for applying the Legion system to the
food foraging problem is given.

Fitness Function See Eqn. 5

Termination Criteria 250 generations completed, or all food returned to nest

Non-terminal Nodes IF_FD_HERE The ant is standing on a food pellet
IF_FD_FORW There is food in front of the ant

IF_CARRYING_FD|The ant is carrying a food pellet
IF_NEST_HERE |The ant is standing on the nest
IF_FACING_NEST|The ant is facing the nest
IF_SMELL_FOOD |There is a food pellet next to the ant
IF_SMELL_PHER |There is pheromone next to the ant
IF_PHER_FORW |There is pheromone in front of the ant

Terminal Nodes MOVE_FORW Move one cell forward in current direction
TURN_RT Turn 90 degrees clockwise
TURN_LT Turn 90 degrees counterclockwise
MOVE_RAND Move two cells in a random direction
GRAB_FD Pick up a food pellet, if one is here
DROP_PHER Drop pheromone at current position
NO_ACT Do not perform any action
MOVE_DROP Move one cell forward; drop pheromone

Population Size 500

Number of Generations |{|250

Selection Method Tournament selection; tournament size = 2

Max Tree Depth 7

Max Behavioural Classes||3

Mutation Rate | 1% chance of node undergoing random replacement

Table 2. Legion System Parameters for the Food Foraging Problem The fit-
ness function is an increasing function; higher fitness values indicate a more fit solution.

The thin lines in Fig. 2 report data generated by 30 runs of the Legion system
applied to the TMP. Figs. 2 a) and b) plot the heterogeneity (as given in Eqn.
2) and the number of behavioural classes, respectively, of the fittest mailman
group at the end of each generation from a typical run of the Legion system.
Figs. 2 ¢) and d) depict the average heterogeneity and number of behavioural
classes, respectively, in the Legion population as a whole, averaged over the 30
runs. The parameters for the runs are given in Table 1.

The thick lines in Fig. 2 report data generated by 30 runs of the Legion system
applied to the food foraging problem. Figs. 2 a) and b) plot the heterogeneity
(as given in Eqn. 2) and the number of behavioural classes of the most fit ant
group at the end of each generation in a single run of the Legion system. Figs.
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Fig. 2. Changes in heterogeneity for a set of runs of the travelling mailman
and the food foraging problems: a) and b) show changes in the heterogeneity
and the number of behavioural classes, respectively, of the fittest agent group at each
generation during a typical run; c¢) shows changes in the average heterogeneity of the
Legion population; d) shows changes in the average number of behavioural classes for
the population. The results in ¢) and d) are averaged over 30 runs.

2 ¢) and d) depict the average heterogeneity and number of behavioural classes,
respectively, in the Legion population as a whole, averaged over the 30 runs. The
parameters for the runs are given in Table 2.

4 Discussion

For the mailman groups evolved for the TMP, Fig. 2 ¢) shows that the hetero-
geneity of the groups increases over evolutionary time. Fig. 2 d) shows that mail-
man groups rapidly approach the asymptote of the maximum possible number of
behavioural classes. By comparing the slopes of Figs. 2 ¢) and d) it becomes clear
that even after the Legion population is saturated with agent groups with the
maximum number of behavioural classes, new agent groups continue to exhibit
increased heterogeneity.



This result is further supported by the data from the sample TMP run shown
in Figs. 2 a) and b). In this run, after generation 100, the most fit mailman group
always contains three behavioural classes (see Fig. 2 b)). However, subsequent
agent groups continue to increase in heterogeneity until the 200th generation
(see Fig. 2 a)).

In contrast to these results, the data in Figs. 2 ¢) and d) show that for the
food foraging problem, simulated ant colonies exhibit less heterogeneity over
evolutionary time. Our investigations suggest that the initial, rapid increase and
subsequent gradual decrease in heterogeneity seen in Figs. 2 ¢) and d) is due
to the generation of a fit behaviour within a single behavioural class of a het-
erogeneous, ancestral colony. This fit behaviour is then assimilated by a larger
fraction of ants in descendant colonies, until eventually all ants in a descendent
colony use this behaviour, rendering these descendent colonies completely ho-
mogeneous. This hypothesis was supported by studying the lineages of several
ant colonies during evolution (data not shown). Note also that the height of the
peaks in Figs. 2 ¢) and d) fall short of the values obtained by corresponding
mailman groups in Figs. 2 ¢) and d).

The tendency of foraging groups to converge on homogeneous solutions, as
shown in Fig. 2, supports the findings in [3], in which a set of simulated robots
foraging for different coloured pucks converge, via a learning algorithm, on iden-
tical members.

In both sets of runs, the maximum number of behavioural classes for any
agent group was restricted to three. This was done to minimize computation
time: computation of Eqn. 2 increases exponentially with the number of be-
havioural classes. However, this upper limit was sufficient to demonstrate the
convergence to heterogeneous and homogeneous agent groups in the TMP and
the food foraging tasks, respectively, and also that group heterogeneity can
change even when the number of behavioural classes remains fixed.

These two sets of experiments demonstrate that heterogeneity is neither im-
plicitly nor explicitly affected by the Legion system alone; rather, the amount
of heterogeneity is domain-specific. From this it follows that the Legion system
serves as a kind of heterogeneity 'divining rod’: agent groups that perform better
with either differentiated or undifferentiated members are revealed as such by
the Legion system.

The Legion system can also be used to artificially exert selection pressure
in favour of either homogeneous or heterogeneous groups. For groups that tend
to converge on heterogeneous solutions, clamping the maximum number of be-
havioural classes to one ensures the evolution of only homogeneous groups (this
follows from the definition of H in Eqn. 2).

Conversely, by incorporating the heterogeneity measure into fitness functions
for problem domains in which agent groups tend to become more homogeneous
over time, groups with both a high fitness and high heterogeneity can be gener-
ated. This technique was applied to the food foraging problem: the same proce-
dure was used as that summarized in Table 2, but the fitness function used was
h(f +r+ Y/, ti), where h is defined in Eqn. 2, and f, r and ¢; are explained
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Fig. 3. Artificially evolving heterogeneity for the food foraging task: The
Legion system was run for the food foraging task, using the parameters given in Table
2. The fitness function used was h(f +r 4+ > t:), where h is defined in Eqn. 2.
a) reports changes in the average heterogeneity of simulated colonies in the Legion
population after each generation. b) reports changes in the number of behavioural
classes.

in section 3. Fig. 3 reports data generated by a run of the food foraging task
using this fitness function. Note the differences between Figs. 3 a) and 2 c), and
between Figs. 3 b) and 2 d).

5 Conclusions

The results documented here support the claim that heterogeneity is a domain-
specific property. Using an evolutionary algorithm applied to two task domains,
selection pressure consistently evolved heterogeneous agent groups for the one
task, and homogeneous groups for the other. Bloat [13] and random diffusion
have been cited as two possible alternative explanations for the repeated ap-
pearance of multiple behavioural classes in the TMP, but these hypotheses are
refuted by the repeated convergence to a single behavioural class in the food
foraging problem (see Figs. 2 ¢) and d) ).

The importance of heterogeneity (or the lack thereof) in agent groups is man-
ifold. In the case of physical agents, homogeneous groups may suffer reduced ro-
bustness: a group of wheeled robots designed for smooth terrain will fail entirely
in a rocky terrain; a mixed group of wheeled and legged robots may perform
in both types of terrain. Conversely, morphological and behavioural redundancy
may be addressed using the Legion system: for example, by automatically tuning
the amount of heterogeneity in a robot group (similar to the technique used for
generating the data reported in Fig. 3), one may be able to optimally tune the
amount of sensor and effector overlap displayed among members of the group.

In addition to robustness and redundancy, division of labour is another con-
cept intimately linked to heterogeneity. In some initial investigations, we have
found that for agent groups with similar fitness values, heterogeneous groups



tend to contain less s-expression nodes than homogeneous groups. This may
suggest that agents within heterogeneous groups specialize to a specific set of
sub-tasks within the main task, and thus exhibit reduced functionality in the
form of smaller control architectures. It follows from this that the Legion sys-
tem may be used to generate not only heterogeneous, but also specialized agent
groups. We are currently pursuing this promising avenue of study.

Finally, it follows from the relationship between our heterogeneity measure
and division of labour that collective tasks for which heterogeneous agent groups
evolve may be decomposable tasks. Some tasks may be composed of a number of
different subtasks; behavioural classes may then emerge and differentiate in agent
groups to solve these subtasks. This was observed in the case of the TMP: be-
havioural classes emerged, each containing mailmen that serviced a subset of the
streets in the city. Conversely, the homogeneity of evolved ant colonies may sup-
port the hypothesis that the simulated food foraging task is non-decomposable:
all ants must be able to perform all basic behaviours to successfully achieve the
collective task. The use of the Legion system for measuring the decomposability
of collective tasks may be another interesting topic of future investigation.

In closing, we conclude that the Legion system, in conjunction with the
domain-independent heterogeneity measure introduced here, is a powerful tool
ideally suited for investigations of heterogeneity in agent-based systems and col-
lective problem solving.
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