
Investigating Morphologial Symmetry and LoomotiveEÆieny using Virtual Embodied EvolutionJosh C. Bongard Chandana PaulArti�ial Intelligene LaboratoryUniversity of ZurihCH-8057 Zurih, Switzerland[bongard,handana℄�ifi.unizh.hAbstratThe reent onvergene of real-time physis-based simulation tools, the growing �eld ofembodied ognitive siene, and tehniques forevolving omplete agents has reated a newmethodology, whih we refer to as Virtual Em-bodied Evolution. This methodology an be usedto explore a wide range of issues related to the in-terplay between morphology and ontrol in adap-tive behaviour researh. Here, we explore theintuitive, but previously unexplored orrelationbetween morphologial symmetry and loomotiveeÆieny in mobile, simulated agents. By evolv-ing the morphologies and ontrol strutures ofsimulated agents using a geneti algorithm, it wasfound that agents with a higher degree of bilateralsymmetry tended to exhibit greater loomotiveeÆieny than agents with less bilateral symme-try. This �nding lends redene to the argumentthat for biologial organisms, natural seletionmay have preeded, and ontinues to supplementsexual seletion pressure favouring morphologialsymmetry. We onlude by disussing the futurepossibilities of virtual embodied evolution.1. IntrodutionThe �eld of embodied ognitive siene has de-veloped into a oherent oneptual frameworkfor the advanement of embodied arti�ial in-telligene (Thelen and Smith, 1994, Clark, 1998,Pfeifer and Sheier, 1999). However, embodiment raisesnew researh issues. Geneti and/or learning methodsare often used for automating the generation of adaptiveagents, and it is diÆult and time-onsuming to itera-tively modify the shape of, and sensor and e�etor plae-ments on real-world robots (Matari and Cli�, 1996).On the other hand, developing adaptive agents om-pletely in simulation raises its own hallenges, suhas e�etively preserving observed behaviour of sim-ulated agents when transferred to real-world robots

(Jakobi et al., 1995, Eggenberger et al., 1999).One possibility for bridging the gap between simu-lation and the real world is by employing a physis-based simulation tool for investigating embodiment-related issues (Sims, 1994, Terzopoulos et al., 1996,Matari et al., 1999). In this paper, the MathEnginephysis-based simulation pakage1 is used to study therelationship between symmetri morphology and eÆ-ient loomotion in evolved agents.The �rst attempt to evolve both the morphologyand ontrol struture of simulated agents is reportedin (Sims, 1994): agents were evolved for a variety oftasks using a reursive, graph-based geneti algorithm.In (Terzopoulos, 1996), a learning algorithm is used togenerate behaviours for �sh with three-dimensional bodyplans, whih an deform and loomote within a simu-lated, physis-based environment. Ventrella (1994) alsoevolved morphologies for simulated agents using a ge-neti algorithm: initial attempts to generate symmet-ri morphologies by using a �tness funtion based solelyon loomotion were not suessful. Subsequent experi-ments built symmetry into the genotype to phenotypemapping, so that evolved agents exhibited slight varia-tions on an underlying bilaterally symmetri body plan.However, this work did not investigate the loomotiveeÆieny of the evolved agents.In biologial studies, the positive orrelation be-tween morphologial symmetry and loomotive eÆienyhas been demonstrated indiretly: it has been shownthat utuating asymmetry (slight, random deviationsfrom bilateral symmetry) an have an aerodynami ostin bird speies (Balmford et al., 1993, Thomas, 1993,Evans et al., 1994). In a study of the harpatioid ope-pod T. alifornius, whih exhibits bilateral variation, itwas found that geneti fators whih inuene relativelimb size, in turn a�eting loomotion, are expressed onboth sides of the animal equally (Palmer et al., 1993).In the biologial literature, it is interesting to notethat of all the reports of large-sale morphologial asym-metry (Norberg, 1977, Freeman and Lundelius, 1982,1MathEngine PLC, Oxford, UK, www.mathengine.om



a) b)Figure 1: Morphologies of two evolved agents. a) showsthe morphology of a symmetri agent shematially; b) showsthe morphology of an asymmetri agent.Govind, 1989, Bok and Marsh, 1991), none of theasymmetri features investigated diretly a�et loomo-tion.In this paper, we report a positive orrelation betweenbilateral symmetry and loomotive eÆieny for agentsevolved in a physis-based, virtual task environment.Agents are evolved using two di�erent �tness funtions:one that awards for direted loomotion and bilateralsymmetry, and another that awards for direted loo-motion and bilateral asymmetry. We ompare the loo-motive eÆienies of the two types of agents.In the next setion, we desribe this task environment,details of the �tness funtion, the geneti enoding andparameters of the geneti algorithm. In Set. 3 we dis-uss the quantitative measures used for deteting loo-motive eÆieny. In Set. 4 we report our results; inSet. 5 we disuss the impliations of our �ndings. Weonlude in Set. 6 with a disussion of the rih potentialof this methodology for future studies into the interde-pendene of morphology and ontrol in both simulationand for real-world embedded systems.2. The ModelAll of the agents reported here operate within a vir-tual, real-time physis-based environment that simu-lates the dynamis of multiple bodies whih are af-feted by gravity, inertia, torque, and other inter-nal and external fores. The morphologies of theevolved agents are treated as direted trees, simi-lar to the agents reported in (Ventrella, 1994) and(Komosinski and Ulatowski, 1999). Eah agent is om-posed of a number of spherial units with idential sizeand mass. The units are onneted to eah other withlinks of uniform length and no mass. Units an be on-neted to a maximum of six other units. Connetionsbetween units are onstrained to the six ardinal dire-tions up, down, north, south, east and west. Fig. 1shows the morphologies of two agents evolved for bilat-eral symmetry and bilateral asymmetry, respetively.

Figure 2: A typial embedded, evolved neural networkThis network was evolved to ontrol the agent shown in Fig.1 b): only part of the network is displayed. The darker ir-les F1 and F2 indiate the two types of motor neurons. Thelighter irles R, A and C represent range, joint angle and on-tat sensors. The grey irles represent internal neurons. Thelarge irles represent morphologial units. The dark linesrepresent intra-unit synapses. The grey lines represent inter-unit synapses. The weights of the synapses are not shown forlarity.2.1 Control arhitetureThe ontrol of the agents is ahieved through a reurrentneural network. The network is embedded within theagent's morphology. Fig. 2 shows a typial neural net-work, whih evolved in onert with the morphology ofthe agent shown in Fig. 1 b). Neural onnetions an beonstruted between onneted units; neural ativationto distant units an be ahieved by propagating a neu-ral signal along the synapses of neighbouring units. Theneurons within the network fall into three lasses: sensorneurons; motor neurons, and internal neurons. Duringeah time step of the simulation, eah neuron sums itsinput, applies the sigmoid ativation funtion 11+e�a �0:5(where a is the summed ativation to the neuron), andplaes the result on its output synapse(s). These resultsare used when the network is updated again at the nexttime step.Three types of sensor neurons are used here. Contatneurons emit a maximum positive signal when the unitin whih it is ontained is in ontat with the ground;otherwise, they emit a maximum negative signal. Pro-prioeptive neurons emit a signal ommensurate with theurrent joint angle between two links onneting the par-ent unit and two hild units; if the joint is rigid, or if theunit housing the neuron does not have two hildren, theneuron emits a zero signal. Range sensors emit a valueinversely proportional to the distane between the unit



Figure 3: The two types of joint atuation Figs. a) andb) illustrate the di�erent joints reated by the two types ofmotor neurons.housing the neuron and the single external target objetin the environment. The target is plaed 10 units2 in thediretion in whih the agent should move. Thus, if theagent moves towards the target, the distane betweenthe agent and the target will derease, and the rangesensors will emit a higher signal. By plaing range sen-sors in di�erent units, an agent an use a ombinationof di�ering range values to orient towards the target.Two types of motor neurons are available for use bythe agent. The presene of a motor neuron within aunit onverts that unit into the entral point of a one-dimensional hinge joint. The two motor neuron typesorrespond to the two kinds of hinge joints, with di�erentaxes of rotation (see Fig. 3).Sine the morphology is treated as a tree struture,only the �rst unit annot ontain motor neurons. Eahunit an ontain at most one motor neuron. The hingejoints are atuated using virtual springs; the elastiityand damping onstants are �xed for all the agents andtheir onstituent joints. Outputs of the motor neuronsditate hanges in the equilibrium position of the virtualsprings. For example, a onstant, non-zero motor neu-ron output exerts a sequene of non-zero torques on thejoint. This leads to smooth motion of the joints, irre-gardless of whether the motor neurons emit a smooth ordisontinuous signal (Pratt and Williamson, 1995).The internal neurons an be employed by the genetialgorithm to reate mappings and propagate signals be-tween the sensor neuron inputs and the motor neuronoutputs.2.2 Geneti enodingA variable-length geneti algorithm (Harvey, 1992) wasused for evolving the agents. By using variable-lengthgenomes, it is possible for seletion pressure to evolveagents with inreasing or dereasing morphologial sizeand ontrol struture by inreasing or dereasing genomelength. Initial populations of the GA ontain strings of800 bits. Seletion pressure an inrease this length up2A unit in our simulation is equal to the uniform distane be-tween any two morphologial units; all other distane measures inthe simulation are relative to this unit.

to a maximum of 2400 bits. Tournament seletion isused, with a tournament size of three. Mutation rate isproportional to the bit string length, and performs, onaverage, one bit ip for eah new genome generated inthe population. Elitism is employed by arrying the top50 per ent of the population into the next generation. Inontrast to a developmental enoding sheme, we use aompletely expliit enoding, in whih eah unit, onne-tion, neuron, synapse and synapse weight diretly mapsonto a unique set of bits. By using a reursive rule set togrow struture, symmetri forms are more prevalent thanasymmetri forms. This an be observed in the agentsreported in (Sims, 1994) and (Ventrella, 1994), the sym-metri neural networks grown using ellular enoding(Gruau, 1992), and the symmetri strutures generatedby L-systems (Rozenberg and Salomaa, 1992). Anothertype of developmental proess, whih does not ontainreursive rule sets, also tends to produe symmetristrutures, due to the uniform spatial distribution oftransription fators (Eggenberger, 1997).The genome is treated as a string representation of ann-ary tree; this tree beomes the morphologial frame ofthe agent as the read head traverses the genome. Eahsubset of the bit string then odes for a unit in the agent'smorphology. Within this subset is ontained the infor-mation neessary for onstruting the loal network ar-hiteture within that unit, suh as the number and typeof the neurons, their interonneting synapses, and theweights of the synapses. This region also inludes infor-mation for reating outgoing synapses that onnet toneurons in neighbouring units. Eah of the above pa-rameters is enoded in the genome by a four-bit binaryvalue. Fig. 4 demonstrates this mapping in more detail.The agent's phenotype is onstruted from its geno-type as a read head moves linearly along the genome.Mutation or rossover sometimes adds additional bitsto the end of the original genome whih are insuÆientfor reating a new morphologial unit. In suh ases, thenon-expressed bits are retained, in ase subsequent mod-i�ation reativates this part of the genome. If genometrunation ours instead, when the read head reahesthe end of the genome, default values are supplied forthe missing parameters. For example, if the last fewfour-bit setions of the genome are trunated, then theweights of the last few synapses in the most reently re-ated morphologial unit are not available. In this ase,the weights of these synapses are set to the default valuefor that parameter, whih is zero.2.3 The �tness funtionsTwo �tness funtions are used in this report: the �rstawards for direted movement and bilateral symmetry;the other awards for direted movement and bilateralasymmetry. The agent operates in the task environmentfor a spei�ed number of simulation time steps; at the



Figure 4: The genotype to phenotype mapping. Thelefthand olumn shows the growth of the agent's phenotypederived from the parsing of the genotype shown in the right-hand olumn. Figs a) to ) show the mapping from the orig-inal bit string to a deimal, base ten representation. Fig. d)shows the plaement of geneti markers for the urrent unit'sneighbours: the �rst number after the start-of-unit markerindiates how many units will onnet to the urrent unit.Fig. e) shows the reation of internal neural struture for aunit. Fig. f) shows the attahment of a neighbouring unit toa parent unit. Figs. g), h) and i) show the detailed onstru-tion of neural struture. Fig. j) shows the �nal phenotype ofthe agent reahed at the end of parsing.end of the simulation, the northern distane from theorigin of the agent's southernmost unit is returned asthe agent's direted movement away from the origin3.2.4 Measuring bilateral symmetryThe bilateral symmetry of an agent is determined usingthe following algorithm: the vertial plane whih inter-sets the unit whose horizontal position is losest to theaverage horizontal positions of all the units, is onsid-ered the plane of symmetry. The symmetry measure isthen given by s = 4pl(2n� 1)� p� lwhere n is the total number of units omprising theagent; 2n � 1 is the total number of units and linksomprising the agent; p is the number of pairs of unitslying outside the plane of symmetry, and are symmetriabout that plane; and l is the number of pairs of linksnot ontained in the plane of symmetry, and are sym-3The southernmost unit of the agent is found by searhingfor the unit with a position vetor ontaining the minimum z-omponent; the value of this z-omponent then indiates how farnorth the agent was able to move its trailing body part. Thismethod for awarding direted movement eliminates the evolutionof linear, passive agents, as was found in (Sims, 1994).

metri about that plane. It follows from this that agentsomposed of pairs of units and links whih are all sym-metri about the plane of symmetry attain a symmetryvalue of one; agents with dereasing pairs of symmet-ri units and links attain dereasing symmetry values;the minimum possible value is zero. Agents omposedof morphologial units whih all fall within the plane ofsymmetry are given a symmetry value of zero, to avoidthe evolution of two-dimensional agents: it was foundthat suh agents produe unrealisti movement, suh astumbling motions ompletely within the vertial planeentred at the origin.Thus, the two �tness funtions used to evolve theagents reported here are given by ds, and d(1 � s): the�rst awards for direted movement and bilateral sym-metry; the seond awards for direted movement andbilateral asymmetry.3. EÆieny of Transport MeasuresIn order to ompare the eÆieny of transport betweenthe symmetri and asymmetri populations, eÆienymeasures are used whih ompare the populations alongaxes representing di�erent aspets of eÆient loomo-tion.The abstrat idea of loomotive eonomy an be on-eptualized with respet to several di�erent riteria. Inbiology there is a standard nomenlature for ategoriz-ing ideas related to eonomy based on what variables areused (Blake, 1991). EÆieny is de�ned as performanewith respet to an ideal, independent of the purpose ofa task. For example, in the ontext of mehanis it isde�ned as the ratio of work or energy input to output.The other is the term e�etiveness or ompeteny in per-formane (Full, 1991). These de�nitions fous on thephysial nature of a proess. E�etiveness is de�ned asa qualitative evaluation of how a mehanism is adaptedto its funtion. It is a study of form, and physial traits.Perfetion is de�ned as the 100% eÆient performane.Optimality represents the best performane that an beahieved given a set of limiting irumstanes.For the omparison of eÆieny of transport we usethree di�erent measures related to these ideas, whihtogether give us a robust basis for drawing qualitativeonlusions about loomotive di�erenes.3.1 Path EÆienyIn general terms, eÆieny haraterizes the perfor-mane of a system relative to an ideal, applied to a singleproess at a time. In our simulation, every agent takesa ertain path between point A, its starting point, andpoint B, its loation at the end of the simulation. Themost eÆient way for the agent to travel this path is tofollow the straight line between A and B. A more on-voluted path between these two points indiates that the



agent's loomotion is less eÆient. The path eÆieny,as we de�ne it, quantitatively represents this eÆienymeasure. It is the ratio of the minimum distane be-tween points A and B with respet to the length of theagent's atual path between these points:P:E: = Dmin(A B)Dreal(A B) ; where (1)Dmin(A B) = jj ~ABjj: (2)If the agent's atual path lies exatly on the straightline from the starting point to end point, P.E. is 1, whihindiates that it is 100% eÆient. The further its atualpath diverges from this straight line, P.E. dereases andapproahes 0.In our simulations, eah agent ats for a �nite timeperiod, whih is onstant aross simulations. However,some agents have a stohasti path with no �nite peri-odiity, so the alulation of the absolute path eÆienyis only attainable as the simulation time approahes in-�nity. P:E:� = limx!1 Dmin(A B)Dreal(A B) (3)Our P.E. measure alulated in equation 1 is thus anapproximation to this absolute eÆieny and we assumethat our simulation time is large enough that P.E. isasymptotially approahing the value P.E.�. It has beenempirially observed that our simulation time is largeenough to see large stable di�erenes between agents'loomotor trajetories, whih supports our assumption.3.2 Loomotive E�etivenessE�etiveness is de�ned as a qualitative evaluation of howa mehanism is adapted to its purpose or funtion. In oursimulation the agents are evolved to make the greatestpossible progress in the heading diretion of the target,arbitrarily de�ned as North. Given that the most e�e-tive way to move towards the target is to travel exatlyon the straight line between the starting point and thetarget loation T , the Loomotive E�etiveness quanti-�es the relationship between the agent's atual path anddistane moved in the target diretion, as the ratio be-tween these values.L:E: = DNorthDreal(A B) (4)DNorth = ~AB � ~AT (5)If the agent's atual path lies exatly on the straight linefrom the starting point to the target, i.e. along vetor~AT , then Dreal(A B) = DNorth (6)and the L.E. is 1, whih indiates maximum e�etive-ness. The more its atual path diverges from thisstraight line, the more its L.E. value drops o�.

3.3 Metaboli EÆienyIn robotis the integral over all the atuator fores is rep-resentative of the internal metaboli energy input intothe system. In our model, eah of the joints is atu-ated by a virtual damped torsional spring with springequation: F = k� � d _� (7)where k is the spring onstant, d the damping onstant,and � the angular displaement of the spring from itsequilibrium position.The position of a joint is ontrolled by the motor neu-rons whih hange the equilibrium position of the joint.Thus at eah time step the fore applied on the arm isa funtion of the angular displaement between the nat-ural angle value �nat of the joints and its atual angle,�at.The Total Metaboli Energy (T.M.E) is a measure ofthe internal metaboli energy used by the agent to pro-due its entire sequene of motions. This an be alu-lated here as the integral over all the fores used by eahjoint: T:M:E: = k( �Z0 �at � �nat)� d(�� � �0) (8)Sine we will only be using the T.M.E as a relative mea-sure we hoose k = 1 for onveniene sake.In robotis, optimality of loomotion an be measuredas simply the T.M.E as de�ned above or as the T.M.E.value divided by the yle period (given a periodi gait),or step length (for legged loomotion). Sine our gaitsmay be aperiodi and without learly identi�able steps,we use the measure of the T.M.E. value divided by thedistane travelled in the target diretion, DNorth.M:E: = T:M:EDNorth (9)This gives us an eÆieny measure in terms of energyused per unit distane and enables us to onretely om-pare the energy usage of agents with equal �tness.4. ResultsA total of 10 runs were performed, for 300 generationseah, and using a population size of 300. After an agentis onstruted from a bit string, it was allowed to atwithin the physis-based environment for 20; 000 timesteps. Five of the runs used the �tness funtion ds, andthe other �ve used d(1� s), where d and s are desribedin setion 2. At the end of eah run, the �ve most �t,unique agents were extrated from eah run, and aspetsof their loomotive eÆieny were measured.



Figure 5: The motion of a symmetri agentIt was found that for the �rst �tness funtion, whihawarded for movement and symmetry, the geneti algo-rithm rapidly onverges to almost ompletely bilaterallysymmetri (s approahes 1:0) agents. In a similar fash-ion, the geneti algorithm employing the �tness fun-tion awarding for movement and asymmetry rapidly on-verges to almost ompletely asymmetri (s approahes0:0) agents. For this reason, it was possible to lassifythe extrated agents into two distint lasses, a symmet-ri and an asymmetri lass.Fig. 5 shows the behaviour of one ompletely bilat-erally symmetri agent that was evolved. Fig. 6 showsthe behaviour of an asymmetri agent. Both agents hadsimilar �tness values. The morphologies for these agentsare shown in Figs. 1 a) and b), respetively. For eahevolved agent, the trajetory of its entre of mass wasreorded. The trajetories of the agents shown in Figs.5 and 6 are plotted in Fig. 7.For eah agent in the symmetri and asymmetrilasses, we measured the distane travelled in the di-retion of the target. These distanes are plotted in Fig.8. Apart from the few symmetri agents whih travelmuh farther than agents from either lass, there is nosigni�ant di�erene in distane travelled.The path eÆieny of eah agent, P.E. (see Eqn. 1),was alulated. Di�erenes between the path eÆien-ies of the symmetri and asymmetri agents are plottedagainst �tness in Fig. 9.For eah of the two lasses, the agents were groupedaording to �tness, and Dreal was omputed for eahagent, using the starting point of the agent's entre of

Figure 6: The motion of an asymmetri agent
a) b)Figure 7: Trajetories for a symmetri and an asym-metri agent. Trajetories are measured as hanges in theagent's entre of mass over the length of the simulation. Theatual trajetories are shown using a thik line; the orre-sponding distane from A to B are drawn with a thin line.Note that both agents move a similar distane north, imply-ing similar �tness values.

Figure 8: Distanes travelled by symmetri and asym-metri agents



Figure 9: Path eÆienies for symmetri and asym-metri agents.

Figure 10: Di�erenes in average, atual distane(Dreal) travelled by agents with similar Dnorth values,indiating di�erenes in L:E:mass as point A, and the �nal point of its entre of massas point B. The atual distane the agent travels be-tween A and B is then alulated by summing the dis-tane travelled by its entre of mass during eah timestep of the simulation. The Dreal values were then aver-aged within eah group of similarly �t agents, for boththe symmetri and asymmetri agent lasses. The re-sulting averages are shown in Fig. 10. Sine L:E: isde�ned as DnorthDreal , Fig. 10 reports di�erenes in L:E: be-tween symmetri and asymmetri agents. In eah �tnessgroup, a lower average Dreal value indiates that thatlass has a higher L:E: than the other lass.The metaboli eÆieny of eah agent was alulated,using Eqn. 9. Agents were then grouped aording tosymmetry, and similar values for M:E. The numbers ofagents falling within these groups are shown in Fig. 11.

Figure 11: Di�erenes in metaboli eÆieny betweensymmetri and asymmetri agents. Note that the x-axis uses 1M:E , so that agents near the y-axis have highermetaboli eÆieny than agents grouped further from the y-axis.5. Disussion5.1 Symmetry and EÆienyBy observing the behaviours of many bilaterally sym-metri and asymmetri agents, it beomes lear that themovement of asymmetri agents is almost always moreerrati for asymmetri agents. The trajetories of twoagents|one ompletely bilaterally symmetri, the otherompletely bilaterally asymmetri|are shown in Fig. 7.The morphologies of the two agents are shown in Fig.1. The relative eentriity of the asymmetri agent'strajetory is evident from its greater deviation from theorresponding Dmin vetor.A general trend towards greater path eentriity forasymmetri as opposed to symmetri agents is shown byFig. 10. For agents that travel a similar distane inthe diretion of the target, asymmetri agents tend totravel a further distane to reah the target than theorresponding symmetri agents. Fig. 9 shows a simi-lar result, where the distane travelled in the diretionof the target is replaed by the line-of-ight vetor fromthe agent's starting point to its ending point. Again, itwas found that for agents with similar distanes betweentheir starting and ending points, asymmetri agents tendto travel further to ahieve this distane than the orre-sponding symmetri agents.In addition to lower loomotive e�etiveness and patheÆieny, asymmetri agents were found to be moremetabolially ineÆient than symmetri agents, as isshown in Fig. 11. For agents whih move similar dis-tanes in the diretion of the target, asymmetri agentstend to apply more total fore to their atuators thanorresponding symmetri agents.



5.2 Impliations for Biology and RobotisBilateral symmetry in biologial organisms is be-lieved to have evolved only one, and has beomea permanent feature of most higher animal speies.However, why bilateral symmetry evolved initially isnot well understood (Palmer, 1996). Also, althoughthe prevalene of sexual seletion for symmetry iswidely doumented (Brookes and Pomiankowski, 1994,Enquist and Arak, 1994), the origins of sexual seletionfor symmetry are not well explained. Our results suggestthat natural seletion for eÆieny may be a ommonause underlying both the evolution of bilateral symme-try and the origin of sexual seletion for symmetry.Initial, random variations in bilateral symmetry mayhave given slightly more symmetri males an evolution-ary advantage due to inreased loomotive or metabolieÆieny. Coupled with an initial, slight variation infemale preferene for symmetry, the o�spring would besymmetri, and the female o�spring would be both sym-metri and have a higher mating preferene for symme-try. Again, beause symmetry implies eÆieny, thesesymmetri females would have a seletive advantage overless symmetri females and would mate more. This leadsto sexual seletion for symmetry: positive feedbak oversubsequent generations auses morphologial symmetryand sexual preferene for symmetry to saturate the pop-ulation. In addition, due to the mehanis of sexual se-letion, both the preferene for symmetry, and symmetryitself would beome more exaggerated.Apart from the biologial impliations, this workalso ontributes to design priniples for building mobilerobots. These �ndings support the intuition that in or-der to ahieve diretional �delity a robot must have anear symmetri morphology. In addition, they also illu-minate the less intuitive, latent orrelation between sym-metri morphologies and energy eÆient loomotion. Bymaking this orrelation expliit, this work ontributes tothe entral issues of eÆieny in robotis researh.5.3 Morphology and Control Tradeo�There are several ways in whih physis an be exploitedto ahieve simpli�ed ontrol in agents.An agent may exploit the physial harateristis of itsmorphology, suh as damped springs, to reate motionswhih do not need to be expliitly spei�ed by the on-trol arhiteture. For example, observations of severalof the evolved agents' loomotion patterns have revealedthat some agents exploit the physis for movement morethan others. Many agents were observed to be stati-ally unstable. These agents begin their movement bybuilding on the momentum generated by falling forward.The behaviours are reminisent of the tehniques olle-tively referred to as passive dynami ontrol in robotis(MGeer, 1990).

Also, ontrol an exploit the environment as a meansof ommuniating between di�erent parts of its morphol-ogy, reduing the need for internal ommuniation in theontrol struture (Cruse et al., 1996). This seond typeof tradeo� is illustrated by agents whih were observedto aelerate a passive joint in a forward diretion byatuating a distant joint.Evolution is able to ahieve these exploitations by tun-ing the agent's morphology to the task. For a majority ofthe evolved agents with rih loomotive behaviours, themotor neurons were observed to only emit a onstantsignal over the length of the simulation. Although themotor neuron output is onstant, the real-time intera-tion between the agent's ontrol and physial dynamisprodues omplex behaviour. This is a lear exampleof how morphologial adaptations an lead to reduedontrol omplexity.These examples illustrate that there is no positive or-relation between path eÆieny and metaboli eÆieny.An agent with high path eÆieny may be metaboliallyineÆient beause it atuates all of its limbs over thelength of the simulation. In ontrast, another agent withlow path eÆieny may only atuate its limbs for a smallfration of the trajetory, leaving the rest to physis.Beause no positive orrelation an be drawn betweenpath eÆieny and metaboli eÆieny, it shows thatthere is no ausal link between them and that they areindependent measures. As it was shown that symmet-ri agents had both higher path eÆieny and metabolieÆieny than asymmetri agents, it follows that thepresene of symmetry is the ause of both kinds of eÆ-ieny.5.4 Virtual Embodied EvolutionBy evolving agents in a physis-based environment, it ispossible to generate agents whih are more situated andembodied than agents evolved in more abstrat environ-ments. Also, beause of the inreased �delity of the sim-ulation vis a vis the real world, it is easier to transportevolved designs to the real world while retaining the ob-served behaviour (Funes and Pollak, 1999). Therefore,it remains possible to generate and test a large num-ber of di�ering body plans and related ontrol strutureompletely in simulation. We refer to this methodologyas Virtual Embodied Evolution.Although some studies have reported the evolution ofomplete, funtioning agents in a physis-based environ-ment (Sims, 1994, Ventrella, 1994), these studies haveserved more as proof-of-onept investigations: severalassumptions and `tweaks' were built into the neural ir-uitry, genotype/phenotype mapping or morphologialform in order to redue the omputational requirements,or to evolve more `realisti' agents.However, with the advent of ommerially availablephysis-based simulation tools, and the ontinued ad-



vanes in personal omputer power and speed, it is nowpossible to use Virtual Embodied Evolution to furtherthe maturation of onepts related to embodiment inadaptive behaviour researh. This paper has investi-gated one suh onept, namely the relationship be-tween morphologial symmetry and loomotive eÆienyin evolved agents.6. Future Researh DiretionsThis work has foussed primarily on only one aspet ofloomotion; namely, eÆieny of motion in a forwarddiretion. However, symmetry may lead to other typesof loomotive eonomy, suh as maneouverability. Forexample, it may be that a symmetri organism is bet-ter able to hange diretion. It seems intuitive thatan asymmetri organism would exhibit unequal abili-ties to turn in di�erent diretions, leading to handiapsrelated to eeing from predators or pursuing prey. In(Ijspeert and Kodjabahian, 1999), ontrol arhiteturesfor swimming behaviour in simulated lampreys were in-vestigated, and a �tness funtion was used whih re-warded both speed and diretion of motion. It is inter-esting to note in that work, in whih a radially symmetribody plan was used, eÆient loomotion was evolved.In addition to questions related to the various types ofloomotive eonomy, there are a host of other researhquestions that an be pursued with Virtual EmbodiedEvolution: some examples might inlude whether allow-ing seletion pressure to evolve entral pattern genera-tors leads to more eÆient loomotion in the resultingagents; how sensor plaement a�ets direted loomo-tion; what task environments favour (or disourage) theevolution of entralized neural struture; or how the ad-dition of various developmental mehanisms to an ex-pliit genotype/phenotype mapping (suh as the one pre-sented here) a�et the onvergene to �t agents in thegeneti algorithm.7. ConlusionThrough the use of an expliit genotype/phenotype map-ping, whih does not impliitly favour either morpho-logial or ontrol symmetries, distint sets of bilaterallysymmetri and asymmetry agents were evolved by usingtwo �tness funtions, one whih awards for loomotionand symmetry, and the other for loomotion and asym-metry. It was then shown, by omparing a suite of ef-�ieny measures against morphologial symmetry, thatevolved agents with relatively high bilateral symmetrytend to move more eÆiently than highly asymmetriagents.The result that bilateral symmetry leads to loomotiveand metaboli eÆieny in the evolved agents reportedhere suggests that there may be a ommon ause un-derlying the evolution of bilateral symmetry and sexual
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