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hAbstra
tThe re
ent 
onvergen
e of real-time physi
s-based simulation tools, the growing �eld ofembodied 
ognitive s
ien
e, and te
hniques forevolving 
omplete agents has 
reated a newmethodology, whi
h we refer to as Virtual Em-bodied Evolution. This methodology 
an be usedto explore a wide range of issues related to the in-terplay between morphology and 
ontrol in adap-tive behaviour resear
h. Here, we explore theintuitive, but previously unexplored 
orrelationbetween morphologi
al symmetry and lo
omotiveeÆ
ien
y in mobile, simulated agents. By evolv-ing the morphologies and 
ontrol stru
tures ofsimulated agents using a geneti
 algorithm, it wasfound that agents with a higher degree of bilateralsymmetry tended to exhibit greater lo
omotiveeÆ
ien
y than agents with less bilateral symme-try. This �nding lends 
reden
e to the argumentthat for biologi
al organisms, natural sele
tionmay have pre
eded, and 
ontinues to supplementsexual sele
tion pressure favouring morphologi
alsymmetry. We 
on
lude by dis
ussing the futurepossibilities of virtual embodied evolution.1. Introdu
tionThe �eld of embodied 
ognitive s
ien
e has de-veloped into a 
oherent 
on
eptual frameworkfor the advan
ement of embodied arti�
ial in-telligen
e (Thelen and Smith, 1994, Clark, 1998,Pfeifer and S
heier, 1999). However, embodiment raisesnew resear
h issues. Geneti
 and/or learning methodsare often used for automating the generation of adaptiveagents, and it is diÆ
ult and time-
onsuming to itera-tively modify the shape of, and sensor and e�e
tor pla
e-ments on real-world robots (Matari
 and Cli�, 1996).On the other hand, developing adaptive agents 
om-pletely in simulation raises its own 
hallenges, su
has e�e
tively preserving observed behaviour of sim-ulated agents when transferred to real-world robots

(Jakobi et al., 1995, Eggenberger et al., 1999).One possibility for bridging the gap between simu-lation and the real world is by employing a physi
s-based simulation tool for investigating embodiment-related issues (Sims, 1994, Terzopoulos et al., 1996,Matari
 et al., 1999). In this paper, the MathEnginephysi
s-based simulation pa
kage1 is used to study therelationship between symmetri
 morphology and eÆ-
ient lo
omotion in evolved agents.The �rst attempt to evolve both the morphologyand 
ontrol stru
ture of simulated agents is reportedin (Sims, 1994): agents were evolved for a variety oftasks using a re
ursive, graph-based geneti
 algorithm.In (Terzopoulos, 1996), a learning algorithm is used togenerate behaviours for �sh with three-dimensional bodyplans, whi
h 
an deform and lo
omote within a simu-lated, physi
s-based environment. Ventrella (1994) alsoevolved morphologies for simulated agents using a ge-neti
 algorithm: initial attempts to generate symmet-ri
 morphologies by using a �tness fun
tion based solelyon lo
omotion were not su

essful. Subsequent experi-ments built symmetry into the genotype to phenotypemapping, so that evolved agents exhibited slight varia-tions on an underlying bilaterally symmetri
 body plan.However, this work did not investigate the lo
omotiveeÆ
ien
y of the evolved agents.In biologi
al studies, the positive 
orrelation be-tween morphologi
al symmetry and lo
omotive eÆ
ien
yhas been demonstrated indire
tly: it has been shownthat 
u
tuating asymmetry (slight, random deviationsfrom bilateral symmetry) 
an have an aerodynami
 
ostin bird spe
ies (Balmford et al., 1993, Thomas, 1993,Evans et al., 1994). In a study of the harpa
ti
oid 
ope-pod T. 
aliforni
us, whi
h exhibits bilateral variation, itwas found that geneti
 fa
tors whi
h in
uen
e relativelimb size, in turn a�e
ting lo
omotion, are expressed onboth sides of the animal equally (Palmer et al., 1993).In the biologi
al literature, it is interesting to notethat of all the reports of large-s
ale morphologi
al asym-metry (Norberg, 1977, Freeman and Lundelius, 1982,1MathEngine PLC, Oxford, UK, www.mathengine.
om



a) b)Figure 1: Morphologies of two evolved agents. a) showsthe morphology of a symmetri
 agent s
hemati
ally; b) showsthe morphology of an asymmetri
 agent.Govind, 1989, Bo
k and Marsh, 1991), none of theasymmetri
 features investigated dire
tly a�e
t lo
omo-tion.In this paper, we report a positive 
orrelation betweenbilateral symmetry and lo
omotive eÆ
ien
y for agentsevolved in a physi
s-based, virtual task environment.Agents are evolved using two di�erent �tness fun
tions:one that awards for dire
ted lo
omotion and bilateralsymmetry, and another that awards for dire
ted lo
o-motion and bilateral asymmetry. We 
ompare the lo
o-motive eÆ
ien
ies of the two types of agents.In the next se
tion, we des
ribe this task environment,details of the �tness fun
tion, the geneti
 en
oding andparameters of the geneti
 algorithm. In Se
t. 3 we dis-
uss the quantitative measures used for dete
ting lo
o-motive eÆ
ien
y. In Se
t. 4 we report our results; inSe
t. 5 we dis
uss the impli
ations of our �ndings. We
on
lude in Se
t. 6 with a dis
ussion of the ri
h potentialof this methodology for future studies into the interde-penden
e of morphology and 
ontrol in both simulationand for real-world embedded systems.2. The ModelAll of the agents reported here operate within a vir-tual, real-time physi
s-based environment that simu-lates the dynami
s of multiple bodies whi
h are af-fe
ted by gravity, inertia, torque, and other inter-nal and external for
es. The morphologies of theevolved agents are treated as dire
ted trees, simi-lar to the agents reported in (Ventrella, 1994) and(Komosinski and Ulatowski, 1999). Ea
h agent is 
om-posed of a number of spheri
al units with identi
al sizeand mass. The units are 
onne
ted to ea
h other withlinks of uniform length and no mass. Units 
an be 
on-ne
ted to a maximum of six other units. Conne
tionsbetween units are 
onstrained to the six 
ardinal dire
-tions up, down, north, south, east and west. Fig. 1shows the morphologies of two agents evolved for bilat-eral symmetry and bilateral asymmetry, respe
tively.

Figure 2: A typi
al embedded, evolved neural networkThis network was evolved to 
ontrol the agent shown in Fig.1 b): only part of the network is displayed. The darker 
ir-
les F1 and F2 indi
ate the two types of motor neurons. Thelighter 
ir
les R, A and C represent range, joint angle and 
on-ta
t sensors. The grey 
ir
les represent internal neurons. Thelarge 
ir
les represent morphologi
al units. The dark linesrepresent intra-unit synapses. The grey lines represent inter-unit synapses. The weights of the synapses are not shown for
larity.2.1 Control ar
hite
tureThe 
ontrol of the agents is a
hieved through a re
urrentneural network. The network is embedded within theagent's morphology. Fig. 2 shows a typi
al neural net-work, whi
h evolved in 
on
ert with the morphology ofthe agent shown in Fig. 1 b). Neural 
onne
tions 
an be
onstru
ted between 
onne
ted units; neural a
tivationto distant units 
an be a
hieved by propagating a neu-ral signal along the synapses of neighbouring units. Theneurons within the network fall into three 
lasses: sensorneurons; motor neurons, and internal neurons. Duringea
h time step of the simulation, ea
h neuron sums itsinput, applies the sigmoid a
tivation fun
tion 11+e�a �0:5(where a is the summed a
tivation to the neuron), andpla
es the result on its output synapse(s). These resultsare used when the network is updated again at the nexttime step.Three types of sensor neurons are used here. Conta
tneurons emit a maximum positive signal when the unitin whi
h it is 
ontained is in 
onta
t with the ground;otherwise, they emit a maximum negative signal. Pro-prio
eptive neurons emit a signal 
ommensurate with the
urrent joint angle between two links 
onne
ting the par-ent unit and two 
hild units; if the joint is rigid, or if theunit housing the neuron does not have two 
hildren, theneuron emits a zero signal. Range sensors emit a valueinversely proportional to the distan
e between the unit



Figure 3: The two types of joint a
tuation Figs. a) andb) illustrate the di�erent joints 
reated by the two types ofmotor neurons.housing the neuron and the single external target obje
tin the environment. The target is pla
ed 10 units2 in thedire
tion in whi
h the agent should move. Thus, if theagent moves towards the target, the distan
e betweenthe agent and the target will de
rease, and the rangesensors will emit a higher signal. By pla
ing range sen-sors in di�erent units, an agent 
an use a 
ombinationof di�ering range values to orient towards the target.Two types of motor neurons are available for use bythe agent. The presen
e of a motor neuron within aunit 
onverts that unit into the 
entral point of a one-dimensional hinge joint. The two motor neuron types
orrespond to the two kinds of hinge joints, with di�erentaxes of rotation (see Fig. 3).Sin
e the morphology is treated as a tree stru
ture,only the �rst unit 
annot 
ontain motor neurons. Ea
hunit 
an 
ontain at most one motor neuron. The hingejoints are a
tuated using virtual springs; the elasti
ityand damping 
onstants are �xed for all the agents andtheir 
onstituent joints. Outputs of the motor neuronsdi
tate 
hanges in the equilibrium position of the virtualsprings. For example, a 
onstant, non-zero motor neu-ron output exerts a sequen
e of non-zero torques on thejoint. This leads to smooth motion of the joints, irre-gardless of whether the motor neurons emit a smooth ordis
ontinuous signal (Pratt and Williamson, 1995).The internal neurons 
an be employed by the geneti
algorithm to 
reate mappings and propagate signals be-tween the sensor neuron inputs and the motor neuronoutputs.2.2 Geneti
 en
odingA variable-length geneti
 algorithm (Harvey, 1992) wasused for evolving the agents. By using variable-lengthgenomes, it is possible for sele
tion pressure to evolveagents with in
reasing or de
reasing morphologi
al sizeand 
ontrol stru
ture by in
reasing or de
reasing genomelength. Initial populations of the GA 
ontain strings of800 bits. Sele
tion pressure 
an in
rease this length up2A unit in our simulation is equal to the uniform distan
e be-tween any two morphologi
al units; all other distan
e measures inthe simulation are relative to this unit.

to a maximum of 2400 bits. Tournament sele
tion isused, with a tournament size of three. Mutation rate isproportional to the bit string length, and performs, onaverage, one bit 
ip for ea
h new genome generated inthe population. Elitism is employed by 
arrying the top50 per 
ent of the population into the next generation. In
ontrast to a developmental en
oding s
heme, we use a
ompletely expli
it en
oding, in whi
h ea
h unit, 
onne
-tion, neuron, synapse and synapse weight dire
tly mapsonto a unique set of bits. By using a re
ursive rule set togrow stru
ture, symmetri
 forms are more prevalent thanasymmetri
 forms. This 
an be observed in the agentsreported in (Sims, 1994) and (Ventrella, 1994), the sym-metri
 neural networks grown using 
ellular en
oding(Gruau, 1992), and the symmetri
 stru
tures generatedby L-systems (Rozenberg and Salomaa, 1992). Anothertype of developmental pro
ess, whi
h does not 
ontainre
ursive rule sets, also tends to produ
e symmetri
stru
tures, due to the uniform spatial distribution oftrans
ription fa
tors (Eggenberger, 1997).The genome is treated as a string representation of ann-ary tree; this tree be
omes the morphologi
al frame ofthe agent as the read head traverses the genome. Ea
hsubset of the bit string then 
odes for a unit in the agent'smorphology. Within this subset is 
ontained the infor-mation ne
essary for 
onstru
ting the lo
al network ar-
hite
ture within that unit, su
h as the number and typeof the neurons, their inter
onne
ting synapses, and theweights of the synapses. This region also in
ludes infor-mation for 
reating outgoing synapses that 
onne
t toneurons in neighbouring units. Ea
h of the above pa-rameters is en
oded in the genome by a four-bit binaryvalue. Fig. 4 demonstrates this mapping in more detail.The agent's phenotype is 
onstru
ted from its geno-type as a read head moves linearly along the genome.Mutation or 
rossover sometimes adds additional bitsto the end of the original genome whi
h are insuÆ
ientfor 
reating a new morphologi
al unit. In su
h 
ases, thenon-expressed bits are retained, in 
ase subsequent mod-i�
ation rea
tivates this part of the genome. If genometrun
ation o

urs instead, when the read head rea
hesthe end of the genome, default values are supplied forthe missing parameters. For example, if the last fewfour-bit se
tions of the genome are trun
ated, then theweights of the last few synapses in the most re
ently 
re-ated morphologi
al unit are not available. In this 
ase,the weights of these synapses are set to the default valuefor that parameter, whi
h is zero.2.3 The �tness fun
tionsTwo �tness fun
tions are used in this report: the �rstawards for dire
ted movement and bilateral symmetry;the other awards for dire
ted movement and bilateralasymmetry. The agent operates in the task environmentfor a spe
i�ed number of simulation time steps; at the



Figure 4: The genotype to phenotype mapping. Thelefthand 
olumn shows the growth of the agent's phenotypederived from the parsing of the genotype shown in the right-hand 
olumn. Figs a) to 
) show the mapping from the orig-inal bit string to a de
imal, base ten representation. Fig. d)shows the pla
ement of geneti
 markers for the 
urrent unit'sneighbours: the �rst number after the start-of-unit markerindi
ates how many units will 
onne
t to the 
urrent unit.Fig. e) shows the 
reation of internal neural stru
ture for aunit. Fig. f) shows the atta
hment of a neighbouring unit toa parent unit. Figs. g), h) and i) show the detailed 
onstru
-tion of neural stru
ture. Fig. j) shows the �nal phenotype ofthe agent rea
hed at the end of parsing.end of the simulation, the northern distan
e from theorigin of the agent's southernmost unit is returned asthe agent's dire
ted movement away from the origin3.2.4 Measuring bilateral symmetryThe bilateral symmetry of an agent is determined usingthe following algorithm: the verti
al plane whi
h inter-se
ts the unit whose horizontal position is 
losest to theaverage horizontal positions of all the units, is 
onsid-ered the plane of symmetry. The symmetry measure isthen given by s = 4pl(2n� 1)� p� lwhere n is the total number of units 
omprising theagent; 2n � 1 is the total number of units and links
omprising the agent; p is the number of pairs of unitslying outside the plane of symmetry, and are symmetri
about that plane; and l is the number of pairs of linksnot 
ontained in the plane of symmetry, and are sym-3The southernmost unit of the agent is found by sear
hingfor the unit with a position ve
tor 
ontaining the minimum z-
omponent; the value of this z-
omponent then indi
ates how farnorth the agent was able to move its trailing body part. Thismethod for awarding dire
ted movement eliminates the evolutionof linear, passive agents, as was found in (Sims, 1994).

metri
 about that plane. It follows from this that agents
omposed of pairs of units and links whi
h are all sym-metri
 about the plane of symmetry attain a symmetryvalue of one; agents with de
reasing pairs of symmet-ri
 units and links attain de
reasing symmetry values;the minimum possible value is zero. Agents 
omposedof morphologi
al units whi
h all fall within the plane ofsymmetry are given a symmetry value of zero, to avoidthe evolution of two-dimensional agents: it was foundthat su
h agents produ
e unrealisti
 movement, su
h astumbling motions 
ompletely within the verti
al plane
entred at the origin.Thus, the two �tness fun
tions used to evolve theagents reported here are given by ds, and d(1 � s): the�rst awards for dire
ted movement and bilateral sym-metry; the se
ond awards for dire
ted movement andbilateral asymmetry.3. EÆ
ien
y of Transport MeasuresIn order to 
ompare the eÆ
ien
y of transport betweenthe symmetri
 and asymmetri
 populations, eÆ
ien
ymeasures are used whi
h 
ompare the populations alongaxes representing di�erent aspe
ts of eÆ
ient lo
omo-tion.The abstra
t idea of lo
omotive e
onomy 
an be 
on-
eptualized with respe
t to several di�erent 
riteria. Inbiology there is a standard nomen
lature for 
ategoriz-ing ideas related to e
onomy based on what variables areused (Blake, 1991). EÆ
ien
y is de�ned as performan
ewith respe
t to an ideal, independent of the purpose ofa task. For example, in the 
ontext of me
hani
s it isde�ned as the ratio of work or energy input to output.The other is the term e�e
tiveness or 
ompeten
y in per-forman
e (Full, 1991). These de�nitions fo
us on thephysi
al nature of a pro
ess. E�e
tiveness is de�ned asa qualitative evaluation of how a me
hanism is adaptedto its fun
tion. It is a study of form, and physi
al traits.Perfe
tion is de�ned as the 100% eÆ
ient performan
e.Optimality represents the best performan
e that 
an bea
hieved given a set of limiting 
ir
umstan
es.For the 
omparison of eÆ
ien
y of transport we usethree di�erent measures related to these ideas, whi
htogether give us a robust basis for drawing qualitative
on
lusions about lo
omotive di�eren
es.3.1 Path EÆ
ien
yIn general terms, eÆ
ien
y 
hara
terizes the perfor-man
e of a system relative to an ideal, applied to a singlepro
ess at a time. In our simulation, every agent takesa 
ertain path between point A, its starting point, andpoint B, its lo
ation at the end of the simulation. Themost eÆ
ient way for the agent to travel this path is tofollow the straight line between A and B. A more 
on-voluted path between these two points indi
ates that the



agent's lo
omotion is less eÆ
ient. The path eÆ
ien
y,as we de�ne it, quantitatively represents this eÆ
ien
ymeasure. It is the ratio of the minimum distan
e be-tween points A and B with respe
t to the length of theagent's a
tual path between these points:P:E: = Dmin(A B)Dreal(A B) ; where (1)Dmin(A B) = jj ~ABjj: (2)If the agent's a
tual path lies exa
tly on the straightline from the starting point to end point, P.E. is 1, whi
hindi
ates that it is 100% eÆ
ient. The further its a
tualpath diverges from this straight line, P.E. de
reases andapproa
hes 0.In our simulations, ea
h agent a
ts for a �nite timeperiod, whi
h is 
onstant a
ross simulations. However,some agents have a sto
hasti
 path with no �nite peri-odi
ity, so the 
al
ulation of the absolute path eÆ
ien
yis only attainable as the simulation time approa
hes in-�nity. P:E:� = limx!1 Dmin(A B)Dreal(A B) (3)Our P.E. measure 
al
ulated in equation 1 is thus anapproximation to this absolute eÆ
ien
y and we assumethat our simulation time is large enough that P.E. isasymptoti
ally approa
hing the value P.E.�. It has beenempiri
ally observed that our simulation time is largeenough to see large stable di�eren
es between agents'lo
omotor traje
tories, whi
h supports our assumption.3.2 Lo
omotive E�e
tivenessE�e
tiveness is de�ned as a qualitative evaluation of howa me
hanism is adapted to its purpose or fun
tion. In oursimulation the agents are evolved to make the greatestpossible progress in the heading dire
tion of the target,arbitrarily de�ned as North. Given that the most e�e
-tive way to move towards the target is to travel exa
tlyon the straight line between the starting point and thetarget lo
ation T , the Lo
omotive E�e
tiveness quanti-�es the relationship between the agent's a
tual path anddistan
e moved in the target dire
tion, as the ratio be-tween these values.L:E: = DNorthDreal(A B) (4)DNorth = ~AB � ~AT (5)If the agent's a
tual path lies exa
tly on the straight linefrom the starting point to the target, i.e. along ve
tor~AT , then Dreal(A B) = DNorth (6)and the L.E. is 1, whi
h indi
ates maximum e�e
tive-ness. The more its a
tual path diverges from thisstraight line, the more its L.E. value drops o�.

3.3 Metaboli
 EÆ
ien
yIn roboti
s the integral over all the a
tuator for
es is rep-resentative of the internal metaboli
 energy input intothe system. In our model, ea
h of the joints is a
tu-ated by a virtual damped torsional spring with springequation: F = k� � d _� (7)where k is the spring 
onstant, d the damping 
onstant,and � the angular displa
ement of the spring from itsequilibrium position.The position of a joint is 
ontrolled by the motor neu-rons whi
h 
hange the equilibrium position of the joint.Thus at ea
h time step the for
e applied on the arm isa fun
tion of the angular displa
ement between the nat-ural angle value �nat of the joints and its a
tual angle,�a
t.The Total Metaboli
 Energy (T.M.E) is a measure ofthe internal metaboli
 energy used by the agent to pro-du
e its entire sequen
e of motions. This 
an be 
al
u-lated here as the integral over all the for
es used by ea
hjoint: T:M:E: = k( �Z0 �a
t � �nat)� d(�� � �0) (8)Sin
e we will only be using the T.M.E as a relative mea-sure we 
hoose k = 1 for 
onvenien
e sake.In roboti
s, optimality of lo
omotion 
an be measuredas simply the T.M.E as de�ned above or as the T.M.E.value divided by the 
y
le period (given a periodi
 gait),or step length (for legged lo
omotion). Sin
e our gaitsmay be aperiodi
 and without 
learly identi�able steps,we use the measure of the T.M.E. value divided by thedistan
e travelled in the target dire
tion, DNorth.M:E: = T:M:EDNorth (9)This gives us an eÆ
ien
y measure in terms of energyused per unit distan
e and enables us to 
on
retely 
om-pare the energy usage of agents with equal �tness.4. ResultsA total of 10 runs were performed, for 300 generationsea
h, and using a population size of 300. After an agentis 
onstru
ted from a bit string, it was allowed to a
twithin the physi
s-based environment for 20; 000 timesteps. Five of the runs used the �tness fun
tion ds, andthe other �ve used d(1� s), where d and s are des
ribedin se
tion 2. At the end of ea
h run, the �ve most �t,unique agents were extra
ted from ea
h run, and aspe
tsof their lo
omotive eÆ
ien
y were measured.



Figure 5: The motion of a symmetri
 agentIt was found that for the �rst �tness fun
tion, whi
hawarded for movement and symmetry, the geneti
 algo-rithm rapidly 
onverges to almost 
ompletely bilaterallysymmetri
 (s approa
hes 1:0) agents. In a similar fash-ion, the geneti
 algorithm employing the �tness fun
-tion awarding for movement and asymmetry rapidly 
on-verges to almost 
ompletely asymmetri
 (s approa
hes0:0) agents. For this reason, it was possible to 
lassifythe extra
ted agents into two distin
t 
lasses, a symmet-ri
 and an asymmetri
 
lass.Fig. 5 shows the behaviour of one 
ompletely bilat-erally symmetri
 agent that was evolved. Fig. 6 showsthe behaviour of an asymmetri
 agent. Both agents hadsimilar �tness values. The morphologies for these agentsare shown in Figs. 1 a) and b), respe
tively. For ea
hevolved agent, the traje
tory of its 
entre of mass wasre
orded. The traje
tories of the agents shown in Figs.5 and 6 are plotted in Fig. 7.For ea
h agent in the symmetri
 and asymmetri

lasses, we measured the distan
e travelled in the di-re
tion of the target. These distan
es are plotted in Fig.8. Apart from the few symmetri
 agents whi
h travelmu
h farther than agents from either 
lass, there is nosigni�
ant di�eren
e in distan
e travelled.The path eÆ
ien
y of ea
h agent, P.E. (see Eqn. 1),was 
al
ulated. Di�eren
es between the path eÆ
ien-
ies of the symmetri
 and asymmetri
 agents are plottedagainst �tness in Fig. 9.For ea
h of the two 
lasses, the agents were groupeda

ording to �tness, and Dreal was 
omputed for ea
hagent, using the starting point of the agent's 
entre of

Figure 6: The motion of an asymmetri
 agent
a) b)Figure 7: Traje
tories for a symmetri
 and an asym-metri
 agent. Traje
tories are measured as 
hanges in theagent's 
entre of mass over the length of the simulation. Thea
tual traje
tories are shown using a thi
k line; the 
orre-sponding distan
e from A to B are drawn with a thin line.Note that both agents move a similar distan
e north, imply-ing similar �tness values.

Figure 8: Distan
es travelled by symmetri
 and asym-metri
 agents



Figure 9: Path eÆ
ien
ies for symmetri
 and asym-metri
 agents.

Figure 10: Di�eren
es in average, a
tual distan
e(Dreal) travelled by agents with similar Dnorth values,indi
ating di�eren
es in L:E:mass as point A, and the �nal point of its 
entre of massas point B. The a
tual distan
e the agent travels be-tween A and B is then 
al
ulated by summing the dis-tan
e travelled by its 
entre of mass during ea
h timestep of the simulation. The Dreal values were then aver-aged within ea
h group of similarly �t agents, for boththe symmetri
 and asymmetri
 agent 
lasses. The re-sulting averages are shown in Fig. 10. Sin
e L:E: isde�ned as DnorthDreal , Fig. 10 reports di�eren
es in L:E: be-tween symmetri
 and asymmetri
 agents. In ea
h �tnessgroup, a lower average Dreal value indi
ates that that
lass has a higher L:E: than the other 
lass.The metaboli
 eÆ
ien
y of ea
h agent was 
al
ulated,using Eqn. 9. Agents were then grouped a

ording tosymmetry, and similar values for M:E. The numbers ofagents falling within these groups are shown in Fig. 11.

Figure 11: Di�eren
es in metaboli
 eÆ
ien
y betweensymmetri
 and asymmetri
 agents. Note that the x-axis uses 1M:E , so that agents near the y-axis have highermetaboli
 eÆ
ien
y than agents grouped further from the y-axis.5. Dis
ussion5.1 Symmetry and EÆ
ien
yBy observing the behaviours of many bilaterally sym-metri
 and asymmetri
 agents, it be
omes 
lear that themovement of asymmetri
 agents is almost always moreerrati
 for asymmetri
 agents. The traje
tories of twoagents|one 
ompletely bilaterally symmetri
, the other
ompletely bilaterally asymmetri
|are shown in Fig. 7.The morphologies of the two agents are shown in Fig.1. The relative e

entri
ity of the asymmetri
 agent'straje
tory is evident from its greater deviation from the
orresponding Dmin ve
tor.A general trend towards greater path e

entri
ity forasymmetri
 as opposed to symmetri
 agents is shown byFig. 10. For agents that travel a similar distan
e inthe dire
tion of the target, asymmetri
 agents tend totravel a further distan
e to rea
h the target than the
orresponding symmetri
 agents. Fig. 9 shows a simi-lar result, where the distan
e travelled in the dire
tionof the target is repla
ed by the line-of-
ight ve
tor fromthe agent's starting point to its ending point. Again, itwas found that for agents with similar distan
es betweentheir starting and ending points, asymmetri
 agents tendto travel further to a
hieve this distan
e than the 
orre-sponding symmetri
 agents.In addition to lower lo
omotive e�e
tiveness and patheÆ
ien
y, asymmetri
 agents were found to be moremetaboli
ally ineÆ
ient than symmetri
 agents, as isshown in Fig. 11. For agents whi
h move similar dis-tan
es in the dire
tion of the target, asymmetri
 agentstend to apply more total for
e to their a
tuators than
orresponding symmetri
 agents.



5.2 Impli
ations for Biology and Roboti
sBilateral symmetry in biologi
al organisms is be-lieved to have evolved only on
e, and has be
omea permanent feature of most higher animal spe
ies.However, why bilateral symmetry evolved initially isnot well understood (Palmer, 1996). Also, althoughthe prevalen
e of sexual sele
tion for symmetry iswidely do
umented (Brookes and Pomiankowski, 1994,Enquist and Arak, 1994), the origins of sexual sele
tionfor symmetry are not well explained. Our results suggestthat natural sele
tion for eÆ
ien
y may be a 
ommon
ause underlying both the evolution of bilateral symme-try and the origin of sexual sele
tion for symmetry.Initial, random variations in bilateral symmetry mayhave given slightly more symmetri
 males an evolution-ary advantage due to in
reased lo
omotive or metaboli
eÆ
ien
y. Coupled with an initial, slight variation infemale preferen
e for symmetry, the o�spring would besymmetri
, and the female o�spring would be both sym-metri
 and have a higher mating preferen
e for symme-try. Again, be
ause symmetry implies eÆ
ien
y, thesesymmetri
 females would have a sele
tive advantage overless symmetri
 females and would mate more. This leadsto sexual sele
tion for symmetry: positive feedba
k oversubsequent generations 
auses morphologi
al symmetryand sexual preferen
e for symmetry to saturate the pop-ulation. In addition, due to the me
hani
s of sexual se-le
tion, both the preferen
e for symmetry, and symmetryitself would be
ome more exaggerated.Apart from the biologi
al impli
ations, this workalso 
ontributes to design prin
iples for building mobilerobots. These �ndings support the intuition that in or-der to a
hieve dire
tional �delity a robot must have anear symmetri
 morphology. In addition, they also illu-minate the less intuitive, latent 
orrelation between sym-metri
 morphologies and energy eÆ
ient lo
omotion. Bymaking this 
orrelation expli
it, this work 
ontributes tothe 
entral issues of eÆ
ien
y in roboti
s resear
h.5.3 Morphology and Control Tradeo�There are several ways in whi
h physi
s 
an be exploitedto a
hieve simpli�ed 
ontrol in agents.An agent may exploit the physi
al 
hara
teristi
s of itsmorphology, su
h as damped springs, to 
reate motionswhi
h do not need to be expli
itly spe
i�ed by the 
on-trol ar
hite
ture. For example, observations of severalof the evolved agents' lo
omotion patterns have revealedthat some agents exploit the physi
s for movement morethan others. Many agents were observed to be stati-
ally unstable. These agents begin their movement bybuilding on the momentum generated by falling forward.The behaviours are reminis
ent of the te
hniques 
olle
-tively referred to as passive dynami
 
ontrol in roboti
s(M
Geer, 1990).

Also, 
ontrol 
an exploit the environment as a meansof 
ommuni
ating between di�erent parts of its morphol-ogy, redu
ing the need for internal 
ommuni
ation in the
ontrol stru
ture (Cruse et al., 1996). This se
ond typeof tradeo� is illustrated by agents whi
h were observedto a

elerate a passive joint in a forward dire
tion bya
tuating a distant joint.Evolution is able to a
hieve these exploitations by tun-ing the agent's morphology to the task. For a majority ofthe evolved agents with ri
h lo
omotive behaviours, themotor neurons were observed to only emit a 
onstantsignal over the length of the simulation. Although themotor neuron output is 
onstant, the real-time intera
-tion between the agent's 
ontrol and physi
al dynami
sprodu
es 
omplex behaviour. This is a 
lear exampleof how morphologi
al adaptations 
an lead to redu
ed
ontrol 
omplexity.These examples illustrate that there is no positive 
or-relation between path eÆ
ien
y and metaboli
 eÆ
ien
y.An agent with high path eÆ
ien
y may be metaboli
allyineÆ
ient be
ause it a
tuates all of its limbs over thelength of the simulation. In 
ontrast, another agent withlow path eÆ
ien
y may only a
tuate its limbs for a smallfra
tion of the traje
tory, leaving the rest to physi
s.Be
ause no positive 
orrelation 
an be drawn betweenpath eÆ
ien
y and metaboli
 eÆ
ien
y, it shows thatthere is no 
ausal link between them and that they areindependent measures. As it was shown that symmet-ri
 agents had both higher path eÆ
ien
y and metaboli
eÆ
ien
y than asymmetri
 agents, it follows that thepresen
e of symmetry is the 
ause of both kinds of eÆ-
ien
y.5.4 Virtual Embodied EvolutionBy evolving agents in a physi
s-based environment, it ispossible to generate agents whi
h are more situated andembodied than agents evolved in more abstra
t environ-ments. Also, be
ause of the in
reased �delity of the sim-ulation vis a vis the real world, it is easier to transportevolved designs to the real world while retaining the ob-served behaviour (Funes and Polla
k, 1999). Therefore,it remains possible to generate and test a large num-ber of di�ering body plans and related 
ontrol stru
ture
ompletely in simulation. We refer to this methodologyas Virtual Embodied Evolution.Although some studies have reported the evolution of
omplete, fun
tioning agents in a physi
s-based environ-ment (Sims, 1994, Ventrella, 1994), these studies haveserved more as proof-of-
on
ept investigations: severalassumptions and `tweaks' were built into the neural 
ir-
uitry, genotype/phenotype mapping or morphologi
alform in order to redu
e the 
omputational requirements,or to evolve more `realisti
' agents.However, with the advent of 
ommer
ially availablephysi
s-based simulation tools, and the 
ontinued ad-



van
es in personal 
omputer power and speed, it is nowpossible to use Virtual Embodied Evolution to furtherthe maturation of 
on
epts related to embodiment inadaptive behaviour resear
h. This paper has investi-gated one su
h 
on
ept, namely the relationship be-tween morphologi
al symmetry and lo
omotive eÆ
ien
yin evolved agents.6. Future Resear
h Dire
tionsThis work has fo
ussed primarily on only one aspe
t oflo
omotion; namely, eÆ
ien
y of motion in a forwarddire
tion. However, symmetry may lead to other typesof lo
omotive e
onomy, su
h as maneouverability. Forexample, it may be that a symmetri
 organism is bet-ter able to 
hange dire
tion. It seems intuitive thatan asymmetri
 organism would exhibit unequal abili-ties to turn in di�erent dire
tions, leading to handi
apsrelated to 
eeing from predators or pursuing prey. In(Ijspeert and Kodjaba
hian, 1999), 
ontrol ar
hite
turesfor swimming behaviour in simulated lampreys were in-vestigated, and a �tness fun
tion was used whi
h re-warded both speed and dire
tion of motion. It is inter-esting to note in that work, in whi
h a radially symmetri
body plan was used, eÆ
ient lo
omotion was evolved.In addition to questions related to the various types oflo
omotive e
onomy, there are a host of other resear
hquestions that 
an be pursued with Virtual EmbodiedEvolution: some examples might in
lude whether allow-ing sele
tion pressure to evolve 
entral pattern genera-tors leads to more eÆ
ient lo
omotion in the resultingagents; how sensor pla
ement a�e
ts dire
ted lo
omo-tion; what task environments favour (or dis
ourage) theevolution of 
entralized neural stru
ture; or how the ad-dition of various developmental me
hanisms to an ex-pli
it genotype/phenotype mapping (su
h as the one pre-sented here) a�e
t the 
onvergen
e to �t agents in thegeneti
 algorithm.7. Con
lusionThrough the use of an expli
it genotype/phenotype map-ping, whi
h does not impli
itly favour either morpho-logi
al or 
ontrol symmetries, distin
t sets of bilaterallysymmetri
 and asymmetry agents were evolved by usingtwo �tness fun
tions, one whi
h awards for lo
omotionand symmetry, and the other for lo
omotion and asym-metry. It was then shown, by 
omparing a suite of ef-�
ien
y measures against morphologi
al symmetry, thatevolved agents with relatively high bilateral symmetrytend to move more eÆ
iently than highly asymmetri
agents.The result that bilateral symmetry leads to lo
omotiveand metaboli
 eÆ
ien
y in the evolved agents reportedhere suggests that there may be a 
ommon 
ause un-derlying the evolution of bilateral symmetry and sexual

sele
tion for symmetry. It is hoped that this work willlead to more biologi
al investigations into these issues.This work has made expli
it the 
onne
tions betweenphysi
s-based simulation, in
reased 
omputing power,the maturation of 
on
epts in embodied 
ognitive s
i-en
e, and evolutionary te
hniques. This 
on
uen
e ofideas is referred to as Virtual Embodied Evolution,whi
h represents a unique methodology for studyingadaptive behaviour.8. A
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