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Abstract

The recent convergence of real-time physics-
based simulation tools, the growing field of
embodied cognitive science, and techniques for
evolving complete agents has created a new
methodology, which we refer to as Virtual Em-
bodied Evolution. This methodology can be used
to explore a wide range of issues related to the in-
terplay between morphology and control in adap-
tive behaviour research. Here, we explore the
intuitive, but previously unexplored correlation
between morphological symmetry and locomotive
efficiency in mobile, simulated agents. By evolv-
ing the morphologies and control structures of
simulated agents using a genetic algorithm, it was
found that agents with a higher degree of bilateral
symmetry tended to exhibit greater locomotive
efficiency than agents with less bilateral symme-
try. This finding lends credence to the argument
that for biological organisms, natural selection
may have preceded, and continues to supplement
sexual selection pressure favouring morphological
symmetry. We conclude by discussing the future
possibilities of virtual embodied evolution.

1. Introduction

The field of embodied cognitive science has de-

veloped into a coherent conceptual framework
for the advancement of embodied artificial in-
telligence (Thelen and Smith, 1994, Clark, 1998,

Pfeifer and Scheier, 1999). However, embodiment raises
new research issues. Genetic and/or learning methods
are often used for automating the generation of adaptive
agents, and it is difficult and time-consuming to itera-
tively modify the shape of, and sensor and effector place-
ments on real-world robots (Mataric and Cliff, 1996).
On the other hand, developing adaptive agents com-
pletely in simulation raises its own challenges, such
as effectively preserving observed behaviour of sim-
ulated agents when transferred to real-world robots

(Jakobi et al., 1995, Eggenberger et al., 1999).

One possibility for bridging the gap between simu-
lation and the real world is by employing a physics-
based simulation tool for investigating embodiment-
related issues (Sims, 1994, Terzopoulos et al., 1996,
Mataric et al., 1999). In this paper, the MathEngine
physics-based simulation package® is used to study the
relationship between symmetric morphology and effi-
cient locomotion in evolved agents.

The first attempt to evolve both the morphology
and control structure of simulated agents is reported
in (Sims, 1994): agents were evolved for a variety of
tasks using a recursive, graph-based genetic algorithm.
In (Terzopoulos, 1996), a learning algorithm is used to
generate behaviours for fish with three-dimensional body
plans, which can deform and locomote within a simu-
lated, physics-based environment. Ventrella (1994) also
evolved morphologies for simulated agents using a ge-
netic algorithm: initial attempts to generate symmet-
ric morphologies by using a fitness function based solely
on locomotion were not successful. Subsequent experi-
ments built symmetry into the genotype to phenotype
mapping, so that evolved agents exhibited slight varia-
tions on an underlying bilaterally symmetric body plan.
However, this work did not investigate the locomotive
efficiency of the evolved agents.

In biological studies, the positive correlation be-
tween morphological symmetry and locomotive efficiency
has been demonstrated indirectly: it has been shown
that fluctuating asymmetry (slight, random deviations
from bilateral symmetry) can have an aerodynamic cost
in bird species (Balmford et al., 1993, Thomas, 1993,
Evans et al., 1994). In a study of the harpacticoid cope-
pod T. californicus, which exhibits bilateral variation, it
was found that genetic factors which influence relative
limb size, in turn affecting locomotion, are expressed on
both sides of the animal equally (Palmer et al., 1993).

In the biological literature, it is interesting to note
that of all the reports of large-scale morphological asym-

metry (Norberg, 1977, Freeman and Lundelius, 1982,
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a)

Figure 1: Morphologies of two evolved agents. a) shows
the morphology of a symmetric agent schematically; b) shows
the morphology of an asymmetric agent.

Govind, 1989, Bock and Marsh, 1991), none of the
asymmetric features investigated directly affect locomo-
tion.

In this paper, we report a positive correlation between
bilateral symmetry and locomotive efficiency for agents
evolved in a physics-based, virtual task environment.
Agents are evolved using two different fitness functions:
one that awards for directed locomotion and bilateral
symmetry, and another that awards for directed loco-
motion and bilateral asymmetry. We compare the loco-
motive efficiencies of the two types of agents.

In the next section, we describe this task environment,
details of the fitness function, the genetic encoding and
parameters of the genetic algorithm. In Sect. 3 we dis-
cuss the quantitative measures used for detecting loco-
motive efficiency. In Sect. 4 we report our results; in
Sect. 5 we discuss the implications of our findings. We
conclude in Sect. 6 with a discussion of the rich potential
of this methodology for future studies into the interde-
pendence of morphology and control in both simulation
and for real-world embedded systems.

2. The Model

All of the agents reported here operate within a vir-
tual, real-time physics-based environment that simu-
lates the dynamics of multiple bodies which are af-
fected by gravity, inertia, torque, and other inter-
nal and external forces. The morphologies of the
evolved agents are treated as directed trees, simi-
lar to the agents reported in (Ventrella, 1994) and
(Komosinski and Ulatowski, 1999). Each agent is com-
posed of a number of spherical units with identical size
and mass. The units are connected to each other with
links of uniform length and no mass. Units can be con-
nected to a maximum of six other units. Connections
between units are constrained to the six cardinal direc-
tions up, down, north, south, east and west. Fig. 1
shows the morphologies of two agents evolved for bilat-
eral symmetry and bilateral asymmetry, respectively.

Figure 2: A typical embedded, evolved neural network
This network was evolved to control the agent shown in Fig.
1 b): only part of the network is displayed. The darker cir-
cles F1 and F2 indicate the two types of motor neurons. The
lighter circles R, A and C represent range, joint angle and con-
tact sensors. The grey circles represent internal neurons. The
large circles represent morphological units. The dark lines
represent intra-unit synapses. The grey lines represent inter-
unit synapses. The weights of the synapses are not shown for
clarity.

2.1 Control architecture

The control of the agents is achieved through a recurrent
neural network. The network is embedded within the
agent’s morphology. Fig. 2 shows a typical neural net-
work, which evolved in concert with the morphology of
the agent shown in Fig. 1 b). Neural connections can be
constructed between connected units; neural activation
to distant units can be achieved by propagating a neu-
ral signal along the synapses of neighbouring units. The
neurons within the network fall into three classes: sensor
neurons; motor neurons, and internal neurons. During
each time step of the simulation, each neuron sums its
input, applies the sigmoid activation function H—% —0.5
(where a is the summed activation to the neuron), and
places the result on its output synapse(s). These results
are used when the network is updated again at the next

time step.

Three types of sensor neurons are used here. Contact
neurons emit a maximum positive signal when the unit
in which it is contained is in contact with the ground;
otherwise, they emit a maximum negative signal. Pro-
prioceptive neurons emit a signal commensurate with the
current joint angle between two links connecting the par-
ent unit and two child units; if the joint is rigid, or if the
unit housing the neuron does not have two children, the
neuron emits a zero signal. Range sensors emit a value
inversely proportional to the distance between the unit
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Figure 3: The two types of joint actuation Figs. a) and
b) illustrate the different joints created by the two types of
motor neurons.

housing the neuron and the single external target object
in the environment. The target is placed 10 units? in the
direction in which the agent should move. Thus, if the
agent moves towards the target, the distance between
the agent and the target will decrease, and the range
sensors will emit a higher signal. By placing range sen-
sors in different units, an agent can use a combination
of differing range values to orient towards the target.

Two types of motor neurons are available for use by
the agent. The presence of a motor neuron within a
unit converts that unit into the central point of a one-
dimensional hinge joint. The two motor neuron types
correspond to the two kinds of hinge joints, with different
axes of rotation (see Fig. 3).

Since the morphology is treated as a tree structure,
only the first unit cannot contain motor neurons. Each
unit can contain at most one motor neuron. The hinge
joints are actuated using virtual springs; the elasticity
and damping constants are fixed for all the agents and
their constituent joints. Outputs of the motor neurons
dictate changes in the equilibrium position of the virtual
springs. For example, a constant, non-zero motor neu-
ron output exerts a sequence of non-zero torques on the
joint. This leads to smooth motion of the joints, irre-
gardless of whether the motor neurons emit a smooth or
discontinuous signal (Pratt and Williamson, 1995).

The internal neurons can be employed by the genetic
algorithm to create mappings and propagate signals be-
tween the sensor neuron inputs and the motor neuron
outputs.

2.2  Genetic encoding

A variable-length genetic algorithm (Harvey, 1992) was
used for evolving the agents. By using variable-length
genomes, it is possible for selection pressure to evolve
agents with increasing or decreasing morphological size
and control structure by increasing or decreasing genome
length. Initial populations of the GA contain strings of
800 bits. Selection pressure can increase this length up

2A unit in our simulation is equal to the uniform distance be-
tween any two morphological units; all other distance measures in
the simulation are relative to this unit.

to a maximum of 2400 bits. Tournament selection is
used, with a tournament size of three. Mutation rate is
proportional to the bit string length, and performs, on
average, one bit flip for each new genome generated in
the population. Elitism is employed by carrying the top
50 per cent of the population into the next generation. In
contrast to a developmental encoding scheme, we use a
completely explicit encoding, in which each unit, connec-
tion, neuron, synapse and synapse weight directly maps
onto a unique set of bits. By using a recursive rule set to
grow structure, symmetric forms are more prevalent than
asymmetric forms. This can be observed in the agents
reported in (Sims, 1994) and (Ventrella, 1994), the sym-
metric neural networks grown using cellular encoding
(Gruau, 1992), and the symmetric structures generated
by L-systems (Rozenberg and Salomaa, 1992). Another
type of developmental process, which does not contain
recursive rule sets, also tends to produce symmetric
structures, due to the uniform spatial distribution of
transcription factors (Eggenberger, 1997).

The genome is treated as a string representation of an
n-ary tree; this tree becomes the morphological frame of
the agent as the read head traverses the genome. Each
subset of the bit string then codes for a unit in the agent’s
morphology. Within this subset is contained the infor-
mation necessary for constructing the local network ar-
chitecture within that unit, such as the number and type
of the neurons, their interconnecting synapses, and the
weights of the synapses. This region also includes infor-
mation for creating outgoing synapses that connect to
neurons in neighbouring units. Each of the above pa-
rameters is encoded in the genome by a four-bit binary
value. Fig. 4 demonstrates this mapping in more detail.

The agent’s phenotype is constructed from its geno-
type as a read head moves linearly along the genome.
Mutation or crossover sometimes adds additional bits
to the end of the original genome which are insufficient
for creating a new morphological unit. In such cases, the
non-expressed bits are retained, in case subsequent mod-
ification reactivates this part of the genome. If genome
truncation occurs instead, when the read head reaches
the end of the genome, default values are supplied for
the missing parameters. For example, if the last few
four-bit sections of the genome are truncated, then the
weights of the last few synapses in the most recently cre-
ated morphological unit are not available. In this case,
the weights of these synapses are set to the default value
for that parameter, which is zero.

2.3 The fitness functions

Two fitness functions are used in this report: the first
awards for directed movement and bilateral symmetry;
the other awards for directed movement and bilateral
asymmetry. The agent operates in the task environment
for a specified number of simulation time steps; at the
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Figure 4: The genotype to phenotype mapping. The
lefthand column shows the growth of the agent’s phenotype
derived from the parsing of the genotype shown in the right-
hand column. Figs a) to ¢) show the mapping from the orig-
inal bit string to a decimal, base ten representation. Fig. d)
shows the placement of genetic markers for the current unit’s
neighbours: the first number after the start-of-unit marker
indicates how many units will connect to the current unit.
Fig. e) shows the creation of internal neural structure for a
unit. Fig. f) shows the attachment of a neighbouring unit to
a parent unit. Figs. g), h) and i) show the detailed construc-
tion of neural structure. Fig. j) shows the final phenotype of
the agent reached at the end of parsing.

end of the simulation, the northern distance from the
origin of the agent’s southernmost unit is returned as
the agent’s directed movement away from the origin®.

2.4  Measuring bilateral symmetry

The bilateral symmetry of an agent is determined using
the following algorithm: the vertical plane which inter-
sects the unit whose horizontal position is closest to the
average horizontal positions of all the units, is consid-
ered the plane of symmetry. The symmetry measure is
then given by

4pl
2n—1)—p-—1

where n is the total number of units comprising the
agent; 2n — 1 is the total number of units and links
comprising the agent; p is the number of pairs of units
lying outside the plane of symmetry, and are symmetric
about that plane; and [ is the number of pairs of links
not contained in the plane of symmetry, and are sym-

3The southernmost unit of the agent is found by searching
for the unit with a position vector containing the minimum z-
component; the value of this z-component then indicates how far
north the agent was able to move its trailing body part. This
method for awarding directed movement eliminates the evolution
of linear, passive agents, as was found in (Sims, 1994).

metric about that plane. It follows from this that agents
composed of pairs of units and links which are all sym-
metric about the plane of symmetry attain a symmetry
value of one; agents with decreasing pairs of symmet-
ric units and links attain decreasing symmetry values;
the minimum possible value is zero. Agents composed
of morphological units which all fall within the plane of
symmetry are given a symmetry value of zero, to avoid
the evolution of two-dimensional agents: it was found
that such agents produce unrealistic movement, such as
tumbling motions completely within the vertical plane
centred at the origin.

Thus, the two fitness functions used to evolve the
agents reported here are given by ds, and d(1 — s): the
first awards for directed movement and bilateral sym-
metry; the second awards for directed movement and
bilateral asymmetry.

3. Efficiency of Transport Measures

In order to compare the efficiency of transport between
the symmetric and asymmetric populations, efficiency
measures are used which compare the populations along
axes representing different aspects of efficient locomo-
tion.

The abstract idea of locomotive economy can be con-
ceptualized with respect to several different criteria. In
biology there is a standard nomenclature for categoriz-
ing ideas related to economy based on what variables are
used (Blake, 1991). Efficiency is defined as performance
with respect to an ideal, independent of the purpose of
a task. For example, in the context of mechanics it is
defined as the ratio of work or energy input to output.
The other is the term effectiveness or competency in per-
formance (Full, 1991). These definitions focus on the
physical nature of a process. Effectiveness is defined as
a qualitative evaluation of how a mechanism is adapted
to its function. It is a study of form, and physical traits.
Perfection is defined as the 100% efficient performance.
Optimality represents the best performance that can be
achieved given a set of limiting circumstances.

For the comparison of efficiency of transport we use
three different measures related to these ideas, which
together give us a robust basis for drawing qualitative
conclusions about locomotive differences.

3.1 Path Efficiency

In general terms, efficiency characterizes the perfor-
mance of a system relative to an ideal, applied to a single
process at a time. In our simulation, every agent takes
a certain path between point A, its starting point, and
point B, its location at the end of the simulation. The
most efficient way for the agent to travel this path is to
follow the straight line between A and B. A more con-
voluted path between these two points indicates that the



agent’s locomotion is less efficient. The path efficiency,
as we define it, quantitatively represents this efficiency
measure. It is the ratio of the minimum distance be-
tween points A and B with respect to the length of the
agent’s actual path between these points:

D, .
PE = B here (1)
Dreal(A_B)

If the agent’s actual path lies exactly on the straight
line from the starting point to end point, P.E. is 1, which
indicates that it is 100% efficient. The further its actual
path diverges from this straight line, P.E. decreases and
approaches 0.

In our simulations, each agent acts for a finite time
period, which is constant across simulations. However,
some agents have a stochastic path with no finite peri-
odicity, so the calculation of the absolute path efficiency
is only attainable as the simulation time approaches in-
finity.

PE* = lim Dmin(A-5) (3)
T Dreal(A_B)

Our P.E. measure calculated in equation 1 is thus an
approximation to this absolute efficiency and we assume
that our simulation time is large enough that P.E. is
asymptotically approaching the value P.E.*. Tt has been
empirically observed that our simulation time is large
enough to see large stable differences between agents’
locomotor trajectories, which supports our assumption.

3.2 Locomotive Effectiveness

Effectiveness is defined as a qualitative evaluation of how
a mechanism is adapted to its purpose or function. In our
simulation the agents are evolved to make the greatest
possible progress in the heading direction of the target,
arbitrarily defined as North. Given that the most effec-
tive way to move towards the target is to travel exactly
on the straight line between the starting point and the
target location 7', the Locomotive Effectiveness quanti-
fies the relationship between the agent’s actual path and
distance moved in the target direction, as the ratio be-
tween these values.

L.E. = _DnNortn (4)
Dreal(A_B)
Dyortn = A-B : A-j—‘ (5)

If the agent’s actual path lies exactly on the straight line
from the starting point to the target, i.e. along vector
AT, then

Dreal(A_B) = DnNortn (6)

and the L.E. is 1, which indicates maximum effective-
ness. The more its actual path diverges from this
straight line, the more its L.E. value drops off.

3.8  Metabolic Efficiency

In robotics the integral over all the actuator forces is rep-
resentative of the internal metabolic energy input into
the system. In our model, each of the joints is actu-
ated by a virtual damped torsional spring with spring
equation:

F =ko—df (7)

where £ is the spring constant, d the damping constant,
and 6 the angular displacement of the spring from its
equilibrium position.

The position of a joint is controlled by the motor neu-
rons which change the equilibrium position of the joint.
Thus at each time step the force applied on the arm is
a function of the angular displacement between the nat-
ural angle value #,,; of the joints and its actual angle,
gact-

The Total Metabolic Energy (T.M.E) is a measure of
the internal metabolic energy used by the agent to pro-
duce its entire sequence of motions. This can be calcu-
lated here as the integral over all the forces used by each
joint:

T.M.E. = k( / Buct — Onat) — d(6 — o) (8)

Since we will only be using the T.M.E as a relative mea-
sure we choose k = 1 for convenience sake.

In robotics, optimality of locomotion can be measured
as simply the T.M.E as defined above or as the T.M.E.
value divided by the cycle period (given a periodic gait),
or step length (for legged locomotion). Since our gaits
may be aperiodic and without clearly identifiable steps,
we use the measure of the T.M.E. value divided by the
distance travelled in the target direction, Dnorth-

_ T.M.E

M.E. =
DNorth

(9)

This gives us an efficiency measure in terms of energy
used per unit distance and enables us to concretely com-
pare the energy usage of agents with equal fitness.

4. Results

A total of 10 runs were performed, for 300 generations
each, and using a population size of 300. After an agent
is constructed from a bit string, it was allowed to act
within the physics-based environment for 20,000 time
steps. Five of the runs used the fitness function ds, and
the other five used d(1 — s), where d and s are described
in section 2. At the end of each run, the five most fit,
unique agents were extracted from each run, and aspects
of their locomotive efficiency were measured.



Figure 5: The motion of a symmetric agent

It was found that for the first fitness function, which
awarded for movement and symmetry, the genetic algo-
rithm rapidly converges to almost completely bilaterally
symmetric (s approaches 1.0) agents. In a similar fash-
ion, the genetic algorithm employing the fitness func-
tion awarding for movement and asymmetry rapidly con-
verges to almost completely asymmetric (s approaches
0.0) agents. For this reason, it was possible to classify
the extracted agents into two distinct classes, a symmet-
ric and an asymmetric class.

Fig. 5 shows the behaviour of one completely bilat-
erally symmetric agent that was evolved. Fig. 6 shows
the behaviour of an asymmetric agent. Both agents had
similar fitness values. The morphologies for these agents
are shown in Figs. 1 a) and b), respectively. For each
evolved agent, the trajectory of its centre of mass was
recorded. The trajectories of the agents shown in Figs.
5 and 6 are plotted in Fig. 7.

For each agent in the symmetric and asymmetric
classes, we measured the distance travelled in the di-
rection of the target. These distances are plotted in Fig.
8. Apart from the few symmetric agents which travel
much farther than agents from either class, there is no
significant difference in distance travelled.

The path efficiency of each agent, P.E. (see Eqn. 1),
was calculated. Differences between the path efficien-
cies of the symmetric and asymmetric agents are plotted
against fitness in Fig. 9.

For each of the two classes, the agents were grouped
according to fitness, and D)., was computed for each
agent, using the starting point of the agent’s centre of

Figure 6: The motion of an asymmetric agent

Figure 7: Trajectories for a symmetric and an asym-
metric agent. Trajectories are measured as changes in the
agent’s centre of mass over the length of the simulation. The
actual trajectories are shown using a thick line; the corre-
sponding distance from A to B are drawn with a thin line.
Note that both agents move a similar distance north, imply-
ing similar fitness values.

18 18

18 18

14 14

Maorthern distance travelled
Maorthern distance travelled

) 10 15
Symmetric agents

5 10 15
Asymmetric agents

Figure 8: Distances travelled by symmetric and asym-
metric agents
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Figure 10: Differences in average, actual distance
(D;eqr) travelled by agents with similar D, values,

indicating differences in L.E.

mass as point A, and the final point of its centre of mass
as point B. The actual distance the agent travels be-
tween A and B is then calculated by summing the dis-
tance travelled by its centre of mass during each time
step of the simulation. The D,..,; values were then aver-
aged within each group of similarly fit agents, for both
the symmetric and asymmetric agent classes. The re-
sulting averages are shown in Fig. 10. Since L.E. is
defined as I?:if::lh , Fig. 10 reports differences in L.E. be-
tween symmetric and asymmetric agents. In each fitness
group, a lower average D,., value indicates that that
class has a higher L.E. than the other class.

The metabolic efficiency of each agent was calculated,
using Eqn. 9. Agents were then grouped according to
symmetry, and similar values for M.E. The numbers of
agents falling within these groups are shown in Fig. 11.

Syrnmetric
Asymmetric |-

Murnber of agents

555 1812 3070 4327 5585 BE42

Figure 11: Differences in metabolic efficiency between
symmetric and asymmetric agents. Note that the z-
axis uses ﬁ, so that agents near the y-axis have higher
metabolic efficiency than agents grouped further from the y-
axis.

5. Discussion

5.1 Symmetry and Efficiency

By observing the behaviours of many bilaterally sym-
metric and asymmetric agents, it becomes clear that the
movement, of asymmetric agents is almost always more
erratic for asymmetric agents. The trajectories of two
agents one completely bilaterally symmetric, the other
completely bilaterally asymmetric—are shown in Fig. 7.
The morphologies of the two agents are shown in Fig.
1. The relative eccentricity of the asymmetric agent’s
trajectory is evident from its greater deviation from the
corresponding D,,;, vector.

A general trend towards greater path eccentricity for
asymmetric as opposed to symmetric agents is shown by
Fig. 10. For agents that travel a similar distance in
the direction of the target, asymmetric agents tend to
travel a further distance to reach the target than the
corresponding symmetric agents. Fig. 9 shows a simi-
lar result, where the distance travelled in the direction
of the target is replaced by the line-of-flight vector from
the agent’s starting point to its ending point. Again, it
was found that for agents with similar distances between
their starting and ending points, asymmetric agents tend
to travel further to achieve this distance than the corre-
sponding symmetric agents.

In addition to lower locomotive effectiveness and path
efficiency, asymmetric agents were found to be more
metabolically inefficient than symmetric agents, as is
shown in Fig. 11. For agents which move similar dis-
tances in the direction of the target, asymmetric agents
tend to apply more total force to their actuators than
corresponding symmetric agents.



5.2 Implications for Biology and Robotics

Bilateral symmetry in biological organisms is be-
lieved to have evolved only once, and has become
a permanent feature of most higher animal species.
However, why bilateral symmetry evolved initially is
not well understood (Palmer, 1996). Also, although
the prevalence of sexual selection for symmetry is
widely documented (Brookes and Pomiankowski, 1994,
Enquist and Arak, 1994), the origins of sexual selection
for symmetry are not well explained. Our results suggest
that natural selection for efficiency may be a common
cause underlying both the evolution of bilateral symme-
try and the origin of sexual selection for symmetry.

Initial, random variations in bilateral symmetry may
have given slightly more symmetric males an evolution-
ary advantage due to increased locomotive or metabolic
efficiency. Coupled with an initial, slight variation in
female preference for symmetry, the offspring would be
symmetric, and the female offspring would be both sym-
metric and have a higher mating preference for symme-
try. Again, because symmetry implies efficiency, these
symmetric females would have a selective advantage over
less symmetric females and would mate more. This leads
to sexual selection for symmetry: positive feedback over
subsequent generations causes morphological symmetry
and sexual preference for symmetry to saturate the pop-
ulation. In addition, due to the mechanics of sexual se-
lection, both the preference for symmetry, and symmetry
itself would become more exaggerated.

Apart from the biological implications, this work
also contributes to design principles for building mobile
robots. These findings support the intuition that in or-
der to achieve directional fidelity a robot must have a
near symmetric morphology. In addition, they also illu-
minate the less intuitive, latent correlation between sym-
metric morphologies and energy efficient locomotion. By
making this correlation explicit, this work contributes to
the central issues of efficiency in robotics research.

5.8  Morphology and Control Tradeoff

There are several ways in which physics can be exploited
to achieve simplified control in agents.

An agent may exploit the physical characteristics of its
morphology, such as damped springs, to create motions
which do not need to be explicitly specified by the con-
trol architecture. For example, observations of several
of the evolved agents’ locomotion patterns have revealed
that some agents exploit the physics for movement more
than others. Many agents were observed to be stati-
cally unstable. These agents begin their movement by
building on the momentum generated by falling forward.
The behaviours are reminiscent of the techniques collec-
tively referred to as passive dynamic control in robotics
(McGeer, 1990).

Also, control can exploit the environment as a means
of communicating between different parts of its morphol-
ogy, reducing the need for internal communication in the
control structure (Cruse et al., 1996). This second type
of tradeoff is illustrated by agents which were observed
to accelerate a passive joint in a forward direction by
actuating a distant joint.

Evolution is able to achieve these exploitations by tun-
ing the agent’s morphology to the task. For a majority of
the evolved agents with rich locomotive behaviours, the
motor neurons were observed to only emit a constant
signal over the length of the simulation. Although the
motor neuron output is constant, the real-time interac-
tion between the agent’s control and physical dynamics
produces complex behaviour. This is a clear example
of how morphological adaptations can lead to reduced
control complexity.

These examples illustrate that there is no positive cor-
relation between path efficiency and metabolic efficiency.
An agent with high path efficiency may be metabolically
inefficient because it actuates all of its limbs over the
length of the simulation. In contrast, another agent with
low path efficiency may only actuate its limbs for a small
fraction of the trajectory, leaving the rest to physics.

Because no positive correlation can be drawn between
path efficiency and metabolic efficiency, it shows that
there is no causal link between them and that they are
independent measures. As it was shown that symmet-
ric agents had both higher path efficiency and metabolic
efficiency than asymmetric agents, it follows that the
presence of symmetry is the cause of both kinds of effi-
ciency.

5.4 Virtual Embodied Evolution

By evolving agents in a physics-based environment, it is
possible to generate agents which are more situated and
embodied than agents evolved in more abstract environ-
ments. Also, because of the increased fidelity of the sim-
ulation wvis a wvis the real world, it is easier to transport
evolved designs to the real world while retaining the ob-
served behaviour (Funes and Pollack, 1999). Therefore,
it remains possible to generate and test a large num-
ber of differing body plans and related control structure
completely in simulation. We refer to this methodology
as Virtual Embodied Evolution.

Although some studies have reported the evolution of
complete, functioning agents in a physics-based environ-
ment (Sims, 1994, Ventrella, 1994), these studies have
served more as proof-of-concept investigations: several
assumptions and ‘tweaks’ were built into the neural cir-
cuitry, genotype/phenotype mapping or morphological
form in order to reduce the computational requirements,
or to evolve more ‘realistic’ agents.

However, with the advent of commercially available
physics-based simulation tools, and the continued ad-



vances in personal computer power and speed, it is now
possible to use Virtual Embodied Evolution to further
the maturation of concepts related to embodiment in
adaptive behaviour research. This paper has investi-
gated one such concept, namely the relationship be-
tween morphological symmetry and locomotive efficiency
in evolved agents.

6. Future Research Directions

This work has focussed primarily on only one aspect of
locomotion; namely, efficiency of motion in a forward
direction. However, symmetry may lead to other types
of locomotive economy, such as maneouverability. For
example, it may be that a symmetric organism is bet-
ter able to change direction. It seems intuitive that
an asymmetric organism would exhibit unequal abili-
ties to turn in different directions, leading to handicaps
related to fleeing from predators or pursuing prey. In
(Ijspeert and Kodjabachian, 1999), control architectures
for swimming behaviour in simulated lampreys were in-
vestigated, and a fitness function was used which re-
warded both speed and direction of motion. It is inter-
esting to note in that work, in which a radially symmetric
body plan was used, efficient locomotion was evolved.

In addition to questions related to the various types of
locomotive economy, there are a host of other research
questions that can be pursued with Virtual Embodied
Evolution: some examples might include whether allow-
ing selection pressure to evolve central pattern genera-
tors leads to more efficient locomotion in the resulting
agents; how sensor placement affects directed locomo-
tion; what task environments favour (or discourage) the
evolution of centralized neural structure; or how the ad-
dition of various developmental mechanisms to an ex-
plicit genotype/phenotype mapping (such as the one pre-
sented here) affect the convergence to fit agents in the
genetic algorithm.

7. Conclusion

Through the use of an explicit genotype/phenotype map-
ping, which does not implicitly favour either morpho-
logical or control symmetries, distinct sets of bilaterally
symmetric and asymmetry agents were evolved by using
two fitness functions, one which awards for locomotion
and symmetry, and the other for locomotion and asym-
metry. It was then shown, by comparing a suite of ef-
ficiency measures against morphological symmetry, that
evolved agents with relatively high bilateral symmetry
tend to move more efficiently than highly asymmetric
agents.

The result that bilateral symmetry leads to locomotive
and metabolic efficiency in the evolved agents reported
here suggests that there may be a common cause un-
derlying the evolution of bilateral symmetry and sexual

selection for symmetry. It is hoped that this work will
lead to more biological investigations into these issues.

This work has made explicit the connections between
physics-based simulation, increased computing power,
the maturation of concepts in embodied cognitive sci-
ence, and evolutionary techniques. This confluence of
ideas is referred to as Virtual Embodied Evolution,
which represents a unique methodology for studying
adaptive behaviour.
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