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hAbstra
t. In this paper, lo
omotion of a biped robot operating in aphysi
s-based virtual environment is evolved using a geneti
 algorithm,in whi
h some of the morphologi
al and 
ontrol parameters of the systemare under evolutionary 
ontrol. It is shown that stable walking is a
hievedthrough 
oupled optimization of both the 
ontroller and the mass ratiosand mass distributions of the biped. It was found that although the sizeof the sear
h spa
e is larger in the 
ase of 
oupled evolution of morphol-ogy and 
ontrol, these evolutionary runs outperform other runs in whi
honly the biped 
ontroller is evolved. We argue that this performan
e in-
rease is attributable to extradimensional bypasses: adaptive ridges inthe �tness lands
ape, 
reated by the evolutionary 
ontrol over morphol-ogy, that 
onne
t otherwise separated, sub-optimal adaptive peaks. In asimilar study, a di�erent set of morphologi
al parameters are in
ludedin the evolutionary pro
ess. In this 
ase, no signi�
ant improvement isgained by 
oupled evolution. These results show that the in
lusion ofthe 
orre
t set of morphologi
al parameters improves the evolution ofadaptive behaviour in simulated agents.1 Introdu
tionIn the �eld of roboti
s, mu
h work has been done on optimizing 
ontrollersfor biped robots [1, 11, 21℄. Similarly, geneti
 programming [8℄ and geneti
 al-gorithms [7℄ have been used to evolve 
ontrollers for hexapod robots. Geneti
algorithms have also been used to evolve re
urrent neural networks for bipedallo
omotion: Fukuda et al [6℄ employed a dynami
 simulator; Reil and Husbands[18℄ employed a three-dimensional physi
s-based simulator. However, in all ofthese approa
hes, little or no 
onsideration was paid to the me
hani
al 
on-stru
tion of the agent or robot.Alternatively, Brooks and Stein [3℄ and Pfeifer and S
heier [17℄ have pointedto the strong interdependen
e between the morphology and 
ontrol of an em-bodied agent: design de
isions regarding either aspe
t of an agent strongly biasthe resulting behaviour. One impli
ation of this interdependen
e is that often, agood 
hoi
e of morphology 
an lead to a redu
tion in the size or 
omplexity ofthe 
ontroller. For example, Li
htensteiger and Eggenberger [12℄ demonstratedthat an evolutionary algorithm 
an optimize the sensor distribution of a mobile



robot for 
ertain tasks, while the 
ontroller remains �xed. As an extreme 
ase,the study of passive dynami
s has made 
lear that a 
areful 
hoi
e of morphology
an lead to lo
omotion without any a
tuation or 
ontroller at all [16℄.Examples now abound that demonstrate the evolution of both the morphol-ogy and 
ontrol of simulated agents [19, 20, 10, 4, 15℄, as well as real-world robots[14, 9, 13℄ is possible. However, we argue in [2℄ that the 
oupled evolution ofboth morphology and 
ontrol of adaptive agents is not as interesting in and ofitself, but rather the impli
ations of su
h studies open up a host of resear
hquestions regarding the evolution of adaptive behaviour that are not amenableto study solely through the optimization of 
ontrol. Virtual Embodied Evolu-tion (VEE) was introdu
ed as a systemati
 methodology for investigating theimpli
ations of evolving both the morphology and 
ontrol of embodied agents.In this paper we show not only that 
oupled evolution of both morphologi
aland 
ontrol parameters of a bipedal agent 
an fa
ilitate the dis
overy of stablelo
omotion|despite the in
reased size of the sear
h spa
e ne
essitated by thein
lusion of the additional morphologi
al parameters|but also that only 
ertainsets of morphologi
al parameters fa
ilitate evolutionary sear
h.The following se
tion introdu
es the me
hani
al 
onstru
tion and neural 
on-troller of the biped agent, as well as the geneti
 algorithm used to evolve lo
o-motion. Se
tion 3 presents the results obtained from evolving only the neuralnetworks for a bipedal agent, as well as evolutionary runs in whi
h morphologi-
al parameters were in
luded in the genome. Se
tion 4 provides some dis
ussionand analysis as to why 
oupled evolution of morphology and 
ontrol 
an outper-form the evolution of 
ontrol. In the �nal se
tion we 
on
lude by stressing theimportan
e of in
orporating morphologi
al 
onsiderations into the evolutionaryinvestigation of adaptive behaviour.2 The ModelFor all of the evolutionary runs reported in this paper, the agents a
t withina physi
ally-realisti
, three-dimensional virtual environment1. The agent is asimulation of a �ve-link biped robot with six degrees of freedom. The agent hasa waist, and two upper and lower leg links as shown in Fig. 1 a. Ea
h kneejoint, 
onne
ting the upper and lower leg links, has one degree of freedom inthe sagittal plane. Ea
h hip joint, 
onne
ting the upper leg to the waist, hastwo degrees of freedom: one in the sagittal plane and one in the frontal plane.These 
orrespond to the roll and pit
h motions. In the se
ond set of experimentsreported in se
tion 3, a se
ond type of biped is used, in whi
h �ve mass blo
ksare atta
hed to the lower legs, upper legs and waist as shown in Fig. 1 b.The joints are limited in their motion using joint stops, with ranges of motion
losely resembling those of human walking. The hip roll joint on ea
h side has arange of motion between ��7 and �7 radians with respe
t to the verti
al. The hip1 The environment and biped agents were 
onstru
ted and evaluated using the real-time physi
s-based simulation pa
kage produ
ed by MathEngine PLC, Oxford, UK,www.mathengine.
om.
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Fig. 1. Agent 
onstru
tion and neural network topology. a) shows the bipedagent without the atta
hed masses. b) shows the agent with the atta
hed masses.
) gives a pi
torial representation the neural network used to 
ontrol both types ofagents. T1 and T2 
orrespond to the two tou
h sensors, P1 through P6 indi
ate thesix proprio
eptive sensors, and M1 through M6 indi
ate the six torsional motors of thebiped. B1 and B2 indi
ate the two bias neurons in
luded in the network.pit
h joint has a range of motion between � �10 and �10 , also with respe
t to theverti
al. The knee joint has a range of motion between ��2 and 0 with respe
tto the axis of the upper leg link to whi
h it is atta
hed. Table 1 summarizes themorphologi
al parameters for both types of bipeds.The agent 
ontains two hapti
 sensors in the feet, and six proprio
eptivesensors and torsional a
tuators atta
hed to the six joints, as outlined in Figs.1 a and b. At ea
h time step of the simulation, agent a
tion is generated bythe propagation of sensory input through a re
urrent neural network; the valuesof the output layer are fed into the a
tuators as desired positions. The inputlayer 
ontains nine neurons, with eight 
orresponding to the sensors, and anadditional bias neuron. All neurons in the network emit a signal between �1and 1: the hapti
 sensors output 1 if the foot is in 
onta
t with the ground, and�1 otherwise; the proprio
eptive sensor values are s
aled to the range [�1; 1℄depending on their 
orresponding joint's range of motion; and bias neurons emita 
onstant signal of 1. The input layer is fully 
onne
ted to a hidden layer
omposed of three neurons. The hidden layer is fully and re
urrently 
onne
ted,plus an additional bias neuron. The hidden and bias neurons are fully 
onne
tedto the eight neurons in the output layer. Neuron a
tivations are s
aled by thethreshold fun
tion 21+e�a �1. The values at the output layer are s
aled to �t therange of their 
orresponding joint's range of motion. Torsion is then applied atea
h joint to attain the desired joint angle.Evolution of bipedal lo
omotion is a
hieved using a 
oating-point, �xed-length geneti
 algorithm. Ea
h genome en
odes weights for the 60 synapses
omposing the neural network, plus any additional morphologi
al parameters.All values in the genome range between �1:00 and 1:00. Ea
h evolutionary runreported in this se
tion is performed using a population size of 300, and is run



Table 1. The default size dimensions, masses and joint limits of the biped.All lengths and masses of the biped are relational: the unit length (ul), and the defaultmass (um), are set to the radii and masses of the knees and hip so
kets, respe
tively.Parameters set in boldfa
e indi
ate those parameters that are modi�ed by evolution inthe experiments reported in se
tion 3. The valid ranges for these parameters are alsogiven.Index Obje
t Dimensions Mass1 Knees r = 1ul 1um ea
h2 Hip so
kets r = 1ul 1um ea
h3 Feet r = 2ul, w = 3ul 1um ea
h4 Lower Legs r = [0.2,0.8℄ ul, h = 8ul 0.25um ea
h5 Upper Legs r = [0.2,0.8℄ ul, h = 8ul 0.25um ea
h6 Waist r = [0.2,0.8℄ ul, w = 8ul 0.25um7 Waist Blo
k l = [0.4,3.6℄ ul, w = h = [0.2,3.0℄ ul 0.103um8 Lower Blo
ks l = [0.4,3.6℄ ul, w = h = [0.2,3.0℄ ul 0.103um ea
h9 Upper Blo
ks l = w = [0.2,3.0℄ ul, h = [0.4,3.6℄ ul 0.103um ea
hIndex Joint Plane of Rotation Range (rads)10 Knee sagittal ��2 ! 011 Hip sagittal ��7 ! �712 Hip frontal � �10 ! �10for 300 generations. Strong elitism is employed in whi
h 150 of the most �tgenotypes are preserved into the next generation. Tournament sele
tion, with atournament size of three, is employed to sele
t genotypes from among this groupfor mutation and 
rossover. 38 pairwise one-point 
rossings produ
e 76 new geno-types. The remaining 74 new genotypes are mutated 
opies of genotypes fromthe previous generation: an average of �ve point mutations are introdu
ed intoea
h of these new genotypes, using random repla
ement.In the set of experiments using the agent shown in Fig. 1 a, three additionalmorphologi
al parameters are in
luded in the genome. These parameters di
tatethe radii of the lower legs, upper legs and waist, respe
tively. The range ofpossible radii for these segments is [0:2; 0:8℄ul. In the se
ond set of experiments,eight morphologi
al parameters are in
luded in the genome. The �rst three valuesdi
tate the widths of the lower mass blo
k pair, upper mass blo
k pair and waistmass blo
k, respe
tively, ea
h of whi
h 
an range between 0:2 and 3:0 ul. Thenext three values indi
ate the lengths of the lower mass blo
k pair, upper massblo
k pair and waist mass blo
k, respe
tively, whi
h range between 0:4 and 3:6ul. The �nal two values indi
ate the verti
al pla
ement of the two blo
k masspairs, whi
h 
an range between 0:8 to 7:2 ul above the 
entre of the foot: thehorizontal position of the waist blo
k mass remains 
entred, and is not 
hanged.In this way, all four blo
ks 
an be atta
hed to the upper or lower pairs of legs. Inthe 
ase of agents without blo
k masses, the morphologi
al parameter settings
an a�e
t the total mass, mass distribution and moment of inertia of the agent.In the 
ase of agents with blo
k masses, the morphologi
al parameter values
an a�e
t only the mass distribution and the moment of inertia, although more



Table 2. Experimental regime summary.Run Morphology Blo
ks Total Genome Number ofSet blo
k mass length independent runs1 Fixed Absent N/A 60 302 Variable Absent N/A 63 303 Fixed Present 0.512um 60 204 Variable Present 0.512um 68 20degrees of freedom of the rotational moment of inertia are subje
ted to sele
tionpressure in this 
ase. For the variable morphology evolutionary runs, the threeor eight morphologi
al parameters are distributed evenly a
ross the length of thegenome in order to maximize re
ombination of these values during 
rossover.The �tness of a genome is determined as follows. The weights en
oded in thegenotype are assigned to the synapses in the neural network, and in the 
ase ofthe variable morphology bipeds without mass blo
ks, the radii of the waist, lowerand upper legs are set based on the additional three values in the genome. Inthe 
ase of the variable morphology bipeds with the mass blo
ks, the dimensionsand positions of the blo
ks are set based on the additional eight parameters.The agent is then evaluated for up to 2000 time steps in the physi
al simulator.Evaluation halts prematurely if both of the feet leave the ground at the sametime (this dis
ourages the evolution of running gaits); the height of the waistpasses below the height of the knees; or the waist twists more than 90 degreesaway from the desired dire
tion of travel. The northern distan
e of the agentat the termination of the evaluation period is then treated as the �tness of thegenome.3 ResultsFour sets of evolutionary runs were 
ondu
ted using the parameters given inTable 2. Fig. 2 summarizes the evolutionary performan
e of the two sets of runsusing agents without mass blo
ks, and Fig. 3 reports the evolutionary perfor-man
e of the two sets of runs using agent populations with mass blo
ks. It 
anbe seen in Figs. 2 a and b that in both �xed and variable morphology agent pop-ulations, there is a roughly uniform distribution of �tness performan
e a
hievedby the most �t agents at the end of the runs. However Fig. 2 b indi
ates thatvariable morphology populations repeatedly a
hieved higher �tness values thanthe �xed morphology populations. Similarly, Figs. 2 
 and d indi
ate that more�xed morphology populations do not realize any �tness improvement over evo-lutionary time, 
ompared with the variable morphology populations.In 
ontrast, Fig. 3 indi
ates that stable lo
omotion is more diÆ
ult for evo-lution to dis
over for agent populations with �xed mass blo
ks, 
ompared toagent populations without mass blo
ks, irrespe
tive of whether or not the sizeand position of the blo
ks is under evolutionary 
ontrol. Only two of the 20populations a
hieve stable lo
omotion in both 
ases; the remaining runs do notrealize any signi�
ant �tness improvements over evolutionary time.



a) b)

) d)Fig. 2. Evolutionary performan
e of �xed and variable morphology agentpopulations without mass blo
ks. a) and b) report the highest �tness values at-tained by agents with �xed and variable morphologies, respe
tively, from 30 indepen-dently evolving populations of ea
h agent type. 
) and d) report the average �tness ofthese populations.Fig. 4 a presents the average evolutionary performan
e of all the evolving�xed and variable morphology agent populations without mass blo
ks. It isshown that, independent of the initial random population, variable morphologypopulations tend to outperform �xed morphology populations. Fig. 4 b indi
atesthat for the 
ase of agent populations with mass blo
ks, on average there is noimprovement in evolutionary sear
h in the variable morphology populations overthe �xed morphology populations.In one evolutionary run from experiment set 2, the most �t agent at genera-tion 170, with a �tness of 15:03, was repla
ed at generation 171 as the most �tagent in the population by its 
hild, whi
h sustained eight point mutations, anda
hieved a �tness of 23:17. The traje
tories of the 
entres of mass of these twoagents are indi
ated in Fig. 5 by the light gray and dark gray lines, respe
tively.Of the eight mutations, one of these was a morphologi
al 
hange that in
reasedthe radii of the 
hild's lower leg pair from 0:578ul to 0:8ul. A third agent wastested, whi
h was genotypi
ally equivalent to the more �t 
hild, ex
ept that themorphologi
al mutation was suppressed. This third agent a
hieved a �tness of20:87, and the traje
tory of its 
entre of mass is indi
ated by the bla
k line inFig. 5.



e) f)
g) h)Fig. 3. Evolutionary performan
e of �xed and variable morphology agentpopulations with mass blo
ks. a) and b) report the highest �tness values attainedby agents with �xed and variable mass blo
ks, taken from 30 independent evolutionaryruns. 
) and d) report the average �tness values of these populations.4 Dis
ussionIt is 
lear from Figs. 2 and 4 a that agent populations with varying leg widthstend to outperform agent populations with �xed leg widths. This stands in 
on-trast to the intuitive notion that in the variable morphology 
ase, the in
reaseddimensionality of the sear
h spa
e|
orresponding to the additional three mor-phologi
al parameters|will degrade sear
h. Furthermore, it is to be noted thatthe magnitude of morphologi
al 
hange possible through modi�
ation of theseparameters is quite small: the minimum verti
al 
entre of mass of an agent,relative to body height, is 0:49; the maximum verti
al 
entre of mass is 0:59.However, as made 
lear in Fig. 5, morphologi
al mutations 
an have dra-mati
 e�e
ts on an agent's performan
e. In that 
ase, the 
ombination of seven
ontrol mutations and one morphologi
al mutation realize a �tness in
rease of23:17�15:03 = 8:14, whereas only the 
ontrol mutations give a �tness in
rease of20:87�15:03 = 5:84, resulting in the morphologi
al mutation providing a �tness
ontribution of 23:17�20:87 = 2:3. As 
an be seen from the traje
tories of theseagents, the 
ontrol 
hanges helped to stabilize the os
illations of the agent's gait,as well as 
orre
t its dire
tion of motion; the morphologi
al mutation helped tofurther 
orre
t the dire
tion of motion.



a) b)Fig. 4. Average evolutionary performan
e of �xed and variable morphologyagents. a) indi
ates the average �tness of the �xed morphology and variable morphol-ogy populations reported in Fig. 2. b) indi
ates the average �tness of the populationsreported in Fig. 3.

Fig. 5. Traje
tories for three agents. The light gray line indi
ates the traje
toryof the 
entre of mass of an agent that a
hieves a �tness of 15:03. This agent wassu

eeded as the most �t agent in the population by its 
hild, whi
h sustained eightpoint mutations: the traje
tory of the 
entre of mass of this agent is indi
ated bythe dark gray line. A third agent was tested, whi
h was genotypi
ally equivalent tothe more �t 
hild, ex
ept that the single morphologi
al mutation was suppressed: thetraje
tory of this agent is indi
ated by the bla
k line.We did not �nd eviden
e that the variable morphology populations tended to
onverge on mass distributions far removed from the �xed setting, nor do they
onsistently 
onverge on the same mass distribution. The verti
al 
entres of massof the most �t agents at the end of ea
h run range between 0.52 and 0.57, andfall within this range with a roughly uniform distribution. This suggests thatfor our parti
ular instantiation of bipedal lo
omotion and 
hoi
e of 
ontroller,no one mass distribution is better than another. In other words, evolution ofvariable morphology agents does not perform better be
ause evolution is ableto dis
over a \good" morphology: rather, the addition of morphologi
al param-eters transforms the topology of the sear
h spa
e through whi
h the evolvingpopulation moves, 
reating 
onne
tions in the higher dimensional spa
e between



Fig. 6. S
hemati
 representation of an extradimensional bypass. In the one-dimensional �tness lands
ape indi
ated by the 
ross-se
tion within the verti
al plane,the adaptive peak A is separated by a wide gulf of low �tness phenotypes from thehigher peak B. In the higher dimensional �tness lands
ape indi
ated by the surfa
e,an extradimensional bypass, represented by the 
urved surfa
e, 
onne
ts peaks A andB.separated adaptive peaks in the lower dimensional spa
e. These 
onne
tions areknown as extradimensional bypasses, and were introdu
ed by Conrad in [5℄.The 
ross-se
tion within the verti
al plane in Fig. 6 indi
ates a one-dimensionallands
ape in whi
h the value of a single phenotypi
 trait P1 di
tates �tness F.This lands
ape 
ontains two separated adaptive peaks, A and B: a population
entred around peak A 
annot easily make the transition to the higher �tnesspeak at B. However, through the addition of a se
ond phenotypi
 parameterP2, the lands
ape is expanded to two dimensions (indi
ated by the surfa
e),and an adaptive ridge|indi
ated by the upward sloping arrow|provides anopportunity for an evolving population to move from peak A to B via this ex-tradimensional bypass.We hypothesize that although the additional morphologi
al parameters in-
rease the dimensionality of the sear
h spa
e, in this 
ase they introdu
e moreadaptive ridges between lo
al adaptive peaks, thereby smoothing the �tnesslands
ape and fa
ilitating evolutionary sear
h. In other words, given a parti
u-lar morphology, any 
ombination of 
ontrol 
hanges does not 
onfer in
reased�tness, but a 
hange in morphology, 
oupled or followed by 
ontrol 
hanges does
onfer in
reased �tness. This is supported by the variable morphology popula-tions, whi
h do not 
onverge on morphologies far removed from the default 
ase.The hypothesis is also supported by the mutational event depi
ted in Fig. 5, inwhi
h higher �tness is a
hieved by modi�
ations to both 
ontrol and morphology.However, the evolving agent populations with aÆxed mass blo
ks, indi
atedin Figs. 3 and Fig. 4 b, present a mu
h di�erent pi
ture. In these populations,the addition of eight morphologi
al parameters does not improve evolutionarysear
h. In the 20 �xed morphology populations and 20 variable morphologypopulations, only two instan
es of stable lo
omotion were dis
overed in ea
h.It is 
lear that bipedal lo
omotion using agents with mass blo
ks, using our



experimental set-up, is a more diÆ
ult task for the geneti
 algorithm, but theappearan
e of stable walking indi
ates it is not impossible for either the �xed orvariable morphology regime to dis
over stable lo
omotion.From our 
urrent experiments it is not 
lear why evolutionary sear
h is notimproved in this 
ase, but it seems likely that there are two fa
tors hinderingimprovement in the variable morphology populations. First, it seems plausiblethat the ruggedness of the lower dimensional �tness lands
ape, in the 
ase ofagents with �xed blo
ks, is greater than in the lands
ape for agents without massblo
ks and �xed leg widths, be
ause of the de
reased evolutionary performan
eshown in Figs. 3 a and 
, 
ompared with the performan
e shown in Figs. 2 a and
. Se
ond, the dimensionality of the sear
h spa
e for agent populations with massblo
ks in
reases from 60 to 68, as 
ompared with an in
rease of only 60 to 63for agent populations without mass blo
ks. Thus in the 
ase of the sear
h spa
efor agent populations with variable mass blo
ks, more smoothing is requiredto 
ompensate for the greatly enlarged spa
e, and the high ruggedness of theoriginal spa
e.5 Con
lusions and Future Resear
h Dire
tionsIn this paper, stable lo
omotion was evolved in embodied, bipedal agents a
tingwithin a three-dimensional, physi
ally-realisti
 virtual environment. It has beendemonstrated that, for the 
ase of lo
omotion in these agents, the subjugationof 
ertain morphologi
al parameters to evolutionary sear
h in
reases the eÆ
a
yof the sear
h pro
ess itself, despite the in
reased size of the sear
h spa
e.Preliminary eviden
e was provided whi
h suggests that arti�
ial evolutiondoes not do better in the 
ase of the variable morphology populations be
auseit is able to dis
over better morphologies than those imposed in the �xed mor-phology populations, but rather be
ause the type of parameters in
luded in thesear
h 
reate adaptive ridges linking previously separate adaptive peaks.However, a 
ontrol set of experiments was provided in whi
h a di�erent setof morphologi
al parameters were in
luded in the genomes of the evolving pop-ulations. In these experiments, there was no performan
e in
rease in the sear
hability of the geneti
 algorithm. This suggests that for the arti�
ial evolutionof adaptive behaviour, the arbitrary in
lusion of morphologi
al parameters doesnot always yield better results.In future studies we plan to investigate in more detail how the in
lusion ofmorphologi
al parameters transforms the �tness lands
ape of the evolving pop-ulations. Moreover, we hope to formulate a systemati
 method for predi
tingwhi
h morphologi
al parameters of embodied agents 
an augment the evolution-ary dis
overy of adaptive behaviour.Referen
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