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Abstract. In this paper, locomotion of a biped robot operating in a
physics-based virtual environment is evolved using a genetic algorithm,
in which some of the morphological and control parameters of the system
are under evolutionary control. It is shown that stable walking is achieved
through coupled optimization of both the controller and the mass ratios
and mass distributions of the biped. It was found that although the size
of the search space is larger in the case of coupled evolution of morphol-
ogy and control, these evolutionary runs outperform other runs in which
only the biped controller is evolved. We argue that this performance in-
crease is attributable to extradimensional bypasses: adaptive ridges in
the fitness landscape, created by the evolutionary control over morphol-
ogy, that connect otherwise separated, sub-optimal adaptive peaks. In a
similar study, a different set of morphological parameters are included
in the evolutionary process. In this case, no significant improvement is
gained by coupled evolution. These results show that the inclusion of
the correct set of morphological parameters improves the evolution of
adaptive behaviour in simulated agents.

1 Introduction

In the field of robotics, much work has been done on optimizing controllers
for biped robots [1,11,21]. Similarly, genetic programming [8] and genetic al-
gorithms [7] have been used to evolve controllers for hexapod robots. Genetic
algorithms have also been used to evolve recurrent neural networks for bipedal
locomotion: Fukuda et al [6] employed a dynamic simulator; Reil and Husbands
[18] employed a three-dimensional physics-based simulator. However, in all of
these approaches, little or no consideration was paid to the mechanical con-
struction of the agent or robot.

Alternatively, Brooks and Stein [3] and Pfeifer and Scheier [17] have pointed
to the strong interdependence between the morphology and control of an em-
bodied agent: design decisions regarding either aspect of an agent strongly bias
the resulting behaviour. One implication of this interdependence is that often, a
good choice of morphology can lead to a reduction in the size or complexity of
the controller. For example, Lichtensteiger and Eggenberger [12] demonstrated
that an evolutionary algorithm can optimize the sensor distribution of a mobile



robot for certain tasks, while the controller remains fixed. As an extreme case,
the study of passive dynamics has made clear that a careful choice of morphology
can lead to locomotion without any actuation or controller at all [16].

Examples now abound that demonstrate the evolution of both the morphol-
ogy and control of simulated agents [19, 20, 10,4, 15], as well as real-world robots
[14,9,13] is possible. However, we argue in [2] that the coupled evolution of
both morphology and control of adaptive agents is not as interesting in and of
itself, but rather the implications of such studies open up a host of research
questions regarding the evolution of adaptive behaviour that are not amenable
to study solely through the optimization of control. Virtual Embodied Evolu-
tion (VEE) was introduced as a systematic methodology for investigating the
implications of evolving both the morphology and control of embodied agents.
In this paper we show not only that coupled evolution of both morphological
and control parameters of a bipedal agent can facilitate the discovery of stable
locomotion—despite the increased size of the search space necessitated by the
inclusion of the additional morphological parameters—but also that only certain
sets of morphological parameters facilitate evolutionary search.

The following section introduces the mechanical construction and neural con-
troller of the biped agent, as well as the genetic algorithm used to evolve loco-
motion. Section 3 presents the results obtained from evolving only the neural
networks for a bipedal agent, as well as evolutionary runs in which morphologi-
cal parameters were included in the genome. Section 4 provides some discussion
and analysis as to why coupled evolution of morphology and control can outper-
form the evolution of control. In the final section we conclude by stressing the
importance of incorporating morphological considerations into the evolutionary
investigation of adaptive behaviour.

2 The Model

For all of the evolutionary runs reported in this paper, the agents act within
a physically-realistic, three-dimensional virtual environment'. The agent is a
simulation of a five-link biped robot with six degrees of freedom. The agent has
a waist, and two upper and lower leg links as shown in Fig. 1 a. Each knee
joint, connecting the upper and lower leg links, has one degree of freedom in
the sagittal plane. Each hip joint, connecting the upper leg to the waist, has
two degrees of freedom: one in the sagittal plane and one in the frontal plane.
These correspond to the roll and pitch motions. In the second set of experiments
reported in section 3, a second type of biped is used, in which five mass blocks
are attached to the lower legs, upper legs and waist as shown in Fig. 1 b.

The joints are limited in their motion using joint stops, with ranges of motion
closely resembling those of human walking. The hip roll joint on each side has a
range of motion between —% and Z radians with respect to the vertical. The hip

! The environment and biped agents were constructed and evaluated using the real-
time physics-based simulation package produced by MathEngine PLC, Oxford, UK,
www.mathengine.com.



Fig.1. Agent construction and neural network topology. a) shows the biped
agent without the attached masses. b) shows the agent with the attached masses.
c) gives a pictorial representation the neural network used to control both types of
agents. T1 and T2 correspond to the two touch sensors, P1 through P6 indicate the
six proprioceptive sensors, and M1 through M6 indicate the six torsional motors of the
biped. B1 and B2 indicate the two bias neurons included in the network.

pitch joint has a range of motion between —{5 and {5, also with respect to the
vertical. The knee joint has a range of motion between —3 and 0 with respect
to the axis of the upper leg link to which it is attached. Table 1 summarizes the

morphological parameters for both types of bipeds.

The agent contains two haptic sensors in the feet, and six proprioceptive
sensors and torsional actuators attached to the six joints, as outlined in Figs.
1 a and b. At each time step of the simulation, agent action is generated by
the propagation of sensory input through a recurrent neural network; the values
of the output layer are fed into the actuators as desired positions. The input
layer contains nine neurons, with eight corresponding to the sensors, and an
additional bias neuron. All neurons in the network emit a signal between —1
and 1: the haptic sensors output 1 if the foot is in contact with the ground, and
—1 otherwise; the proprioceptive sensor values are scaled to the range [—1,1]
depending on their corresponding joint’s range of motion; and bias neurons emit
a constant signal of 1. The input layer is fully connected to a hidden layer
composed of three neurons. The hidden layer is fully and recurrently connected,
plus an additional bias neuron. The hidden and bias neurons are fully connected
to the eight neurons in the output layer. Neuron activations are scaled by the
threshold function H—% — 1. The values at the output layer are scaled to fit the
range of their corresponding joint’s range of motion. Torsion is then applied at
each joint to attain the desired joint angle.

Evolution of bipedal locomotion is achieved using a floating-point, fixed-
length genetic algorithm. Each genome encodes weights for the 60 synapses
composing the neural network, plus any additional morphological parameters.
All values in the genome range between —1.00 and 1.00. Each evolutionary run
reported in this section is performed using a population size of 300, and is run



Table 1. The default size dimensions, masses and joint limits of the biped.
All lengths and masses of the biped are relational: the unit length (ul), and the default
mass (um), are set to the radii and masses of the knees and hip sockets, respectively.
Parameters set in boldface indicate those parameters that are modified by evolution in
the experiments reported in section 3. The valid ranges for these parameters are also
given.

Index Object Dimensions Mass
1 Knees r = lul lum each
2 Hip sockets r = lul lum each
3 Feet r = 2ul, w = 3ul lum each
4 Lower Legs r = [0.2,0.8] ul, h = 8ul 0.25um each
5 Upper Legs r = [0.2,0.8] ul, h = 8ul 0.25um each
6 Waist r = [0.2,0.8] ul, w = 8ul 0.25um
7 Waist Block 1= [0.4,3.6] ul, w = h = [0.2,3.0] ul 0.103um
8 Lower Blocks 1= [0.4,3.6] ul, w = h = [0.2,3.0] ul 0.103um each
9 Upper Blocks 1 =w = [0.2,3.0] ul, h = [0.4,3.6] ul 0.103um each
Index Joint Plane of Rotation Range (rads)
10 Knee sagittal -5 —0
11 Hip sagittal —T =7
12 Hip frontal 15— 1o

for 300 generations. Strong elitism is employed in which 150 of the most fit
genotypes are preserved into the next generation. Tournament selection, with a
tournament size of three, is employed to select genotypes from among this group
for mutation and crossover. 38 pairwise one-point crossings produce 76 new geno-
types. The remaining 74 new genotypes are mutated copies of genotypes from
the previous generation: an average of five point mutations are introduced into
each of these new genotypes, using random replacement.

In the set of experiments using the agent shown in Fig. 1 a, three additional
morphological parameters are included in the genome. These parameters dictate
the radii of the lower legs, upper legs and waist, respectively. The range of
possible radii for these segments is [0.2,0.8]ul. In the second set of experiments,
eight morphological parameters are included in the genome. The first three values
dictate the widths of the lower mass block pair, upper mass block pair and waist
mass block, respectively, each of which can range between 0.2 and 3.0 ul. The
next three values indicate the lengths of the lower mass block pair, upper mass
block pair and waist mass block, respectively, which range between 0.4 and 3.6
ul. The final two values indicate the vertical placement of the two block mass
pairs, which can range between 0.8 to 7.2 ul above the centre of the foot: the
horizontal position of the waist block mass remains centred, and is not changed.
In this way, all four blocks can be attached to the upper or lower pairs of legs. In
the case of agents without block masses, the morphological parameter settings
can affect the total mass, mass distribution and moment of inertia of the agent.
In the case of agents with block masses, the morphological parameter values
can affect only the mass distribution and the moment of inertia, although more



Table 2. Experimental regime summary.

Run Morphology Blocks Total Genome Number of

Set block mass length  independent runs
1 Fixed Absent N/A 60 30

2 Variable Absent N/A 63 30

3 Fixed Present 0.512um 60 20

4 Variable Present 0.512um 68 20

degrees of freedom of the rotational moment of inertia are subjected to selection
pressure in this case. For the variable morphology evolutionary runs, the three
or eight morphological parameters are distributed evenly across the length of the
genome in order to maximize recombination of these values during crossover.

The fitness of a genome is determined as follows. The weights encoded in the
genotype are assigned to the synapses in the neural network, and in the case of
the variable morphology bipeds without mass blocks, the radii of the waist, lower
and upper legs are set based on the additional three values in the genome. In
the case of the variable morphology bipeds with the mass blocks, the dimensions
and positions of the blocks are set based on the additional eight parameters.
The agent is then evaluated for up to 2000 time steps in the physical simulator.
Evaluation halts prematurely if both of the feet leave the ground at the same
time (this discourages the evolution of running gaits); the height of the waist
passes below the height of the knees; or the waist twists more than 90 degrees
away from the desired direction of travel. The northern distance of the agent
at the termination of the evaluation period is then treated as the fitness of the
genome.

3 Results

Four sets of evolutionary runs were conducted using the parameters given in
Table 2. Fig. 2 summarizes the evolutionary performance of the two sets of runs
using agents without mass blocks, and Fig. 3 reports the evolutionary perfor-
mance of the two sets of runs using agent populations with mass blocks. It can
be seen in Figs. 2 a and b that in both fixed and variable morphology agent pop-
ulations, there is a roughly uniform distribution of fitness performance achieved
by the most fit agents at the end of the runs. However Fig. 2 b indicates that
variable morphology populations repeatedly achieved higher fitness values than
the fixed morphology populations. Similarly, Figs. 2 ¢ and d indicate that more
fixed morphology populations do not realize any fitness improvement over evo-
lutionary time, compared with the variable morphology populations.

In contrast, Fig. 3 indicates that stable locomotion is more difficult for evo-
lution to discover for agent populations with fixed mass blocks, compared to
agent populations without mass blocks, irrespective of whether or not the size
and position of the blocks is under evolutionary control. Only two of the 20
populations achieve stable locomotion in both cases; the remaining runs do not
realize any significant fitness improvements over evolutionary time.
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Fig. 2. Evolutionary performance of fixed and variable morphology agent
populations without mass blocks. a) and b) report the highest fitness values at-
tained by agents with fixed and variable morphologies, respectively, from 30 indepen-
dently evolving populations of each agent type. ¢) and d) report the average fitness of
these populations.

Fig. 4 a presents the average evolutionary performance of all the evolving
fixed and variable morphology agent populations without mass blocks. It is
shown that, independent of the initial random population, variable morphology
populations tend to outperform fixed morphology populations. Fig. 4 b indicates
that for the case of agent populations with mass blocks, on average there is no
improvement in evolutionary search in the variable morphology populations over
the fixed morphology populations.

In one evolutionary run from experiment set 2, the most fit agent at genera-
tion 170, with a fitness of 15.03, was replaced at generation 171 as the most fit
agent in the population by its child, which sustained eight point mutations, and
achieved a fitness of 23.17. The trajectories of the centres of mass of these two
agents are indicated in Fig. 5 by the light gray and dark gray lines, respectively.
Of the eight mutations, one of these was a morphological change that increased
the radii of the child’s lower leg pair from 0.578ul to 0.8ul. A third agent was
tested, which was genotypically equivalent to the more fit child, except that the
morphological mutation was suppressed. This third agent achieved a fitness of
20.87, and the trajectory of its centre of mass is indicated by the black line in
Fig. 5.
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Fig. 3. Evolutionary performance of fixed and variable morphology agent
populations with mass blocks. a) and b) report the highest fitness values attained
by agents with fixed and variable mass blocks, taken from 30 independent evolutionary
runs. ¢) and d) report the average fitness values of these populations.

4 Discussion

It is clear from Figs. 2 and 4 a that agent populations with varying leg widths
tend to outperform agent populations with fixed leg widths. This stands in con-
trast to the intuitive notion that in the variable morphology case, the increased
dimensionality of the search space—corresponding to the additional three mor-
phological parameters—will degrade search. Furthermore, it is to be noted that
the magnitude of morphological change possible through modification of these
parameters is quite small: the minimum vertical centre of mass of an agent,
relative to body height, is 0.49; the maximum vertical centre of mass is 0.59.

However, as made clear in Fig. 5, morphological mutations can have dra-
matic effects on an agent’s performance. In that case, the combination of seven
control mutations and one morphological mutation realize a fitness increase of
23.17—15.03 = 8.14, whereas only the control mutations give a fitness increase of
20.87—15.03 = 5.84, resulting in the morphological mutation providing a fitness
contribution of 23.17 — 20.87 = 2.3. As can be seen from the trajectories of these
agents, the control changes helped to stabilize the oscillations of the agent’s gait,
as well as correct its direction of motion; the morphological mutation helped to
further correct the direction of motion.
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Fig. 4. Average evolutionary performance of fixed and variable morphology
agents. a) indicates the average fitness of the fixed morphology and variable morphol-
ogy populations reported in Fig. 2. b) indicates the average fitness of the populations
reported in Fig. 3.
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Fig. 5. Trajectories for three agents. The light gray line indicates the trajectory
of the centre of mass of an agent that achieves a fitness of 15.03. This agent was
succeeded as the most fit agent in the population by its child, which sustained eight
point mutations: the trajectory of the centre of mass of this agent is indicated by
the dark gray line. A third agent was tested, which was genotypically equivalent to
the more fit child, except that the single morphological mutation was suppressed: the
trajectory of this agent is indicated by the black line.

We did not find evidence that the variable morphology populations tended to
converge on mass distributions far removed from the fixed setting, nor do they
consistently converge on the same mass distribution. The vertical centres of mass
of the most fit agents at the end of each run range between 0.52 and 0.57, and
fall within this range with a roughly uniform distribution. This suggests that
for our particular instantiation of bipedal locomotion and choice of controller,
no one mass distribution is better than another. In other words, evolution of
variable morphology agents does not perform better because evolution is able
to discover a “good” morphology: rather, the addition of morphological param-
eters transforms the topology of the search space through which the evolving
population moves, creating connections in the higher dimensional space between



Fig. 6. Schematic representation of an extradimensional bypass. In the one-
dimensional fitness landscape indicated by the cross-section within the vertical plane,
the adaptive peak A is separated by a wide gulf of low fitness phenotypes from the
higher peak B. In the higher dimensional fitness landscape indicated by the surface,
an extradimensional bypass, represented by the curved surface, connects peaks A and
B.

separated adaptive peaks in the lower dimensional space. These connections are
known as extradimensional bypasses, and were introduced by Conrad in [5].

The cross-section within the vertical plane in Fig. 6 indicates a one-dimensional
landscape in which the value of a single phenotypic trait P1 dictates fitness F.
This landscape contains two separated adaptive peaks, A and B: a population
centred around peak A cannot easily make the transition to the higher fitness
peak at B. However, through the addition of a second phenotypic parameter
P2, the landscape is expanded to two dimensions (indicated by the surface),
and an adaptive ridge—indicated by the upward sloping arrow—provides an
opportunity for an evolving population to move from peak A to B via this ex-
tradimensional bypass.

We hypothesize that although the additional morphological parameters in-
crease the dimensionality of the search space, in this case they introduce more
adaptive ridges between local adaptive peaks, thereby smoothing the fitness
landscape and facilitating evolutionary search. In other words, given a particu-
lar morphology, any combination of control changes does not confer increased
fitness, but a change in morphology, coupled or followed by control changes does
confer increased fitness. This is supported by the variable morphology popula-
tions, which do not converge on morphologies far removed from the default case.
The hypothesis is also supported by the mutational event depicted in Fig. 5, in
which higher fitness is achieved by modifications to both control and morphology.

However, the evolving agent populations with affixed mass blocks, indicated
in Figs. 3 and Fig. 4 b, present a much different picture. In these populations,
the addition of eight morphological parameters does not improve evolutionary
search. In the 20 fixed morphology populations and 20 variable morphology
populations, only two instances of stable locomotion were discovered in each.
It is clear that bipedal locomotion using agents with mass blocks, using our



experimental set-up, is a more difficult task for the genetic algorithm, but the
appearance of stable walking indicates it is not impossible for either the fixed or
variable morphology regime to discover stable locomotion.

From our current experiments it is not clear why evolutionary search is not
improved in this case, but it seems likely that there are two factors hindering
improvement in the variable morphology populations. First, it seems plausible
that the ruggedness of the lower dimensional fitness landscape, in the case of
agents with fixed blocks, is greater than in the landscape for agents without mass
blocks and fixed leg widths, because of the decreased evolutionary performance
shown in Figs. 3 a and ¢, compared with the performance shown in Figs. 2 a and
c. Second, the dimensionality of the search space for agent populations with mass
blocks increases from 60 to 68, as compared with an increase of only 60 to 63
for agent populations without mass blocks. Thus in the case of the search space
for agent populations with variable mass blocks, more smoothing is required
to compensate for the greatly enlarged space, and the high ruggedness of the
original space.

5 Conclusions and Future Research Directions

In this paper, stable locomotion was evolved in embodied, bipedal agents acting
within a three-dimensional, physically-realistic virtual environment. It has been
demonstrated that, for the case of locomotion in these agents, the subjugation
of certain morphological parameters to evolutionary search increases the efficacy
of the search process itself, despite the increased size of the search space.

Preliminary evidence was provided which suggests that artificial evolution
does not do better in the case of the variable morphology populations because
it is able to discover better morphologies than those imposed in the fixed mor-
phology populations, but rather because the type of parameters included in the
search create adaptive ridges linking previously separate adaptive peaks.

However, a control set of experiments was provided in which a different set
of morphological parameters were included in the genomes of the evolving pop-
ulations. In these experiments, there was no performance increase in the search
ability of the genetic algorithm. This suggests that for the artificial evolution
of adaptive behaviour, the arbitrary inclusion of morphological parameters does
not always yield better results.

In future studies we plan to investigate in more detail how the inclusion of
morphological parameters transforms the fitness landscape of the evolving pop-
ulations. Moreover, we hope to formulate a systematic method for predicting
which morphological parameters of embodied agents can augment the evolution-
ary discovery of adaptive behaviour.
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