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Abstract—In this paper we introduce a system that
combines ontogenetic development and artificial evolu-
tion to automatically design robots in a physics-based,
virtual environment. Through lesion experiments on the
evolved agents, we demonstrate that the evolved genetic
regulatory networks from successful evolutionary runs
are more modular than those obtained from unsuccess-
ful runs.

I. Literature Review
The recent renaissance of ’evo-devo’[24]—evolutionary de-
velopmental biology—is causing a radical change in our un-
derstanding of how selection pressure shapes the organism’s
underlying genetic regulatory network (GRN).

Several startling discoveries have been made regard-
ing the so-called Hox genes (master control genes that
specify and order the body segments in most metazoan
species[10]), including mounting evidence that these genes
are highly conserved over many species[6][18], diversifi-
cation of Hox gene clusters has led to a diversification in
animal body plans[9][16], and that these genes are arranged
along the chromosome in the same order that they are ex-
pressed along the anterior-posterior axis of the embryo[13].
However, insights into how selection pressure has shaped
the evolution and diversification of such genes is only now
beginning to appear in the literature[5][15].

In parallel to this, both neuroscience researchers and
evolutionary biologists have postulated that modularity
(integration of functionally related structures, and dis-
sociation of unrelated structures) is necessary at both
phenotypic[20][21] and genotypic[22][23] levels in order to
evolve complex structures.

In the field of evolutionary robotics, evolutionary com-
putation is now being used to evolve both the brains and
bodies of virtual[19][1] and real-world robots[14], and fo-
cus is increasingly coming to bear on making the genetic
encoding of these systems as modular and compact as possi-
ble in order to increase evolvability[11][4]. Eggenberger[8]
first incorporated GRNs into an evolutionary simulation to
evolve three-dimensional shapes. In this paper I report
new results obtained from the Artificial Ontogeny system
(AO), which grows virtual agents from GRNs and evalu-
ates them in a physically-realistic, three-dimensional virtual
environment[3].

II. Methods
Artificial Ontogeny extends the genetic algorithm to include
ontogenetic development. In the results presented below,
agents are tested for how fast they can travel over an infinite
horizontal plane during a pre-specified time interval. The
fitness determination is a two-stage process: the agent is

Figure 1: a-e: Images taken from t0, t75, t150, t225 and t300
during the growth phase of an evolved agent. The units are
darkened in proportion to how many neurons and synapses
they contain. f: t0 of the evaluation phase. The grey units
contain motorized joints; the dark grey units are in contact
with the ground plane.

first grown from a GRN (the growth phase), and then eval-
uated in its virtual environment (the evaluation phase) (Fig.
1).

Agents are composed of one or more cylindrical morpho-
logical units and zero or more sensors, motors, neurons and
synapses. At the beginning of the growth phase, the genome
to be tested and a motor neuron are inserted into a single
unit. Two different transcription factors (TFs) are injected
into the anterior and posterior poles of the unit, in order
to allow the GRN to establish major body axes in the de-
veloping agent, if required (this has been shown to be one
of the primary roles of maternal TF diffusion during early
development[2]). The maternal TFs affect the expression
of the zero or more genes lying along the genome embed-
ded in the starting unit, which in turn may begin to emit
TFs throughout the unit. The TFs may directly affect the
phenotype of the developing agent: there are 23 pre-defined
phenotypic transformations that TFs can initiate, such as in-
creasing the length of a unit, causing a unit to split into two
units, or adding, deleting or modifying the properties of the
agent’s neurons or synapses (Fig. 2).

Unlike the recursive parametric encoding schemes men-
tioned above, each genome in the AO system is treated as a
genetic regulatory network[12][8][17], in which genes pro-
duce transcription factors that either have a direct pheno-
typic effect or regulate the expression of other genes.

Each genome to be evaluated is scanned by a parser,
which marks the site of promotor sites. Promotor sites in-
dicate the starting position of a gene along the genome,
and are not hand-coded, but rather the number and posi-
tion of them is under evolutionary control, similar to the



Figure 2: a: A hypothetical agent at the beginning of growth. The anterior direction (the direction the agent must move
in order to gain fitness) is indicated (ANT), as is the posterior direction (POS). A genome, a motor neuron (M) and two
maternal TFs (M1, M2) are injected into the single, beginning morphological unit (U1). The unit contains six TF diffusion
sites (1-6). The genome contains five genes: G1, G3, G4 are structural genes; G2 and G5 (outlined in bold) are regulatory
genes. G3 and G5 are initially switched on, and begin to diffuse TFs into the unit; the other genes are initially switched off
(light grey indicates expression; dark grey indicates repression). b: After several time steps, U1 has split twice, producing
neighbouring daughter units U2 and U3, which are attached to it by one degree-of-freedom damped, torsional joints. The
genome has been copied into U2 and U3, where different combinations of TF concentrations have changed the states of
some of the genes. U1 has been lengthened by TF2, which increases unit length, released by G3 at diffusion site 5. M1
and M2 have diffused throughout the unit. The motor neuron in U1 has differentiated into a local neural circuit through
combined gene action (T=touch sensor, CPG=central pattern generator, N=neuron). c: The fully grown agent from which
all genetic material has been removed, in preparation for agent evaluation. The joint near U2 is active, because it receives
motor commands from the neural circuit in U2. The joint near U3 is passive, and will swing freely during the evaluation
phase because the motor neuron in U3 has been deleted.

method employed in [17]. On average, there are 10 promo-
tor sites, and thus 10 genes, found in any randomly gener-
ated genome.

Fig. 3 shows a magnification of gene G3 from Fig. 2. The
six floating-point values following a gene’s promotor site
supply the parameter values for the gene. The first value
(P1) indicates which of the 20 possible TFs regulates the
gene’s expression. The second value (P2) indicates which
of the 23 possible TFs is produced if this gene is expressed.
The third value (P3) indicates which of the 6 TF diffusion
sites the TF is diffused from if this gene is expressed. The
fourth value (P4) indicates the concentration of the TF that
should be injected into the diffusion site if the gene is ex-
pressed. The fifth and sixth values (P5 and P6) denote the
concentration range of the regulating TF to which the gene
responds.

All 43 TFs (23 TFs that directly affect the phenotype, and
20 regulatory TFs) share the same fixed, constant diffusion
coefficients. For each time step that a gene emits its TF,
the concentration of that TF, at the diffusion site encoded in
the gene, is increased by the amount encoded in the gene
(which ranges between 0.0 and 1.0), divided by 100. All
TF concentrations, at all diffusion sites, decay by 0.005 at
each time step. TFs diffuse between neighbouring diffusion
sites within a unit at one-half this rate. TFs diffuse between
neighbouring units at one-eighth the rate of intra-unit diffu-
sion.

The agent’s behaviour is dependent on the real-time prop-
agation of sensory information through its neural network to
motor neurons, which actuate the agent’s joints.

There are two types of sensors that artificial evolution
may embed within the units of the agent: touch sensors and



Figure 3: A sample gene. This gene (G3 in Fig. 2) emits
TF 2 from diffusion site 5 (DS5) if it is expressed (the con-
centration of TF 2 is increased by 0.03 at DS5 during each
time step of the growth phase that G3 is expressed). If the
average concentration of TF 37 in the current unit is be-
tween 0.23 and 0.93 the gene is expressed; otherwise, it is
repressed. The gene is flanked by non-coding values (Nc).

proprioceptive sensors. Touch sensor neurons return a max-
imal positive signal if the unit in which they are embedded
is in contact with either the target object or the ground, or a
maximal negative signal otherwise. Proprioceptive sensors
return a signal commensurate with the angle described by
the two rigid connectors forming the rotational joint within
that unit. The agent can also contain central pattern genera-
tor (CPG) neurons. These neurons emit a sinusoidal output
signal: their frequency is modulated by the strength of the
incoming signal (large positive input produces a high fre-
quency, and large negative input produces a low frequency),
and their phase is set relative to the time step (during the
growth phase) when they are formed. Internal neurons can
also be incorporated by evolution into an agent’s neural net-
work, in order to propagate signals from sensor to motor
neurons. Finally, bias neurons emit a constant, maximum
positive value.

The agent achieves motion by actuating its joints. This is
accomplished by averaging the activations of all the motor
neurons within each unit, and scaling the value between− π

2
and π

2 (these minimum and maximum joint angles may be
reduced by the presence of one of the TFs that affects mor-
phogenesis). Torque is then applied to the rotational joints
such that the angle between the two rigid connectors form-
ing the joint matches this value. The desired angle may not
be achieved if: there is an external obstruction; the units
attached to the rigid connectors experience opposing inter-
nal or external forces; or the values emitted by the motor
neurons change over time. Note that failure to achieve the
desired angle may be exploited by evolution, and may be a
necessary dynamic of the agent’s actions. If a unit contains
no motor neurons, the rotational joint in that unit is passive.

II. Results
The agents reported in this section were evaluated in a three-
dimensional, physically-realistic simulation package1. Dur-
ing each time step of the evaluation, sensor readings are
taken, the neural network is updated, and the motor com-
mands are translated into torques. The torques are passed
to the simulator, which updates the positions, velocities and
orientations of each of the agent’s units. The updates are
also affected by simulated external forces such as gravity,
inertia, friction and collision or contact with the ground
plane2.

1Critical Mass Labs, www.cm-labs.com.
2By evaluating the agent in a physically realistic simulation, agents can

evolve to take advantage of their environment, such as using gravity and
momentum to move non-actuated joints in a useful manner. Also, it may
be easier to translate evolved solutions into real-world robots.

Sixty independent evolutionary runs of 300 generations
each were conducted, using a population size of 300. The
initial population was composed of 300 strings of 200
floating-point values, rounded to two decimal places and
ranging between 0.00 and 1.00. Genomes were evolved to
maximize the fitness function

f = s + (pz(t500) − pz(t250))
500∑
t=1

utot∑
i=1

|ji(t)|, (1)

s = n + m + sy + synz + onz, (2)

n =
{

utot : utot ≤ 3
3 : utot > 3 (3)

m =
{

1 : stot > 0 and mtot > 0
0 : otherwise (4)

where utot is the number of units comprising the agent;
ji(t) is the desired angle command sent to joint j in unit
i at time step t; and pz(t500) and pz(t250) are the z-
components of the anterior-most unit’s position at the end
of, and halfway through the evaluation period, respec-
tively3. s is a shaping function: it awards agents that
have not yet achieved any locomotion for particular phe-
notypes that favour the discovery of locomotion. n awards
for agents that are composed of at least three units, and m
awards for creatures that contain at least one sensor and one
motor (stot and mtot denote the total number of sensors and
motor neurons in the agent, respectively). sy = 1, synz = 1
and onz = 1 if the agent contains at least one synapse,
one synapse with non-zero weight, or one non-zero motor
neuron output, respectively, and are set to zero otherwise.
The shaping function allows evolution to rapidly produce
an agent that exhibits some active behaviour. An alternative
approach would have been to seed evolution with minimally
behaving agents, and omit the shaping function.

Strong elitism was employed; the best 150 genomes at
each generation were retained. The mutation rate was set
to produce, on average, random replacement of a single
value for each new genome. Also, new genomes had a
10% chance of having a substring of their values excised
(the length of the excised substring was chosen between 1
and l − 1 with a uniform distribution, where l is the length
of the genome), and a 10% chance of two non-overlapping
substrings (chosen between 1 and l

2 − 1 with uniform dis-
tribution) from being swapped within the genome. Unequal
crossover was employed, which allowed for gene duplica-
tion and deletion. Tournament selection, with a tourna-
ment size of 3, was used to select genomes to participate
in crossover.

Fig. 1f shows the morphology of the most fit agent taken
from one of the evolutionary runs; Figs. 4a and 5b show the
morphologies of the most fit agents from two other runs.

In several of the runs, forward locomotion did not evolve;
agents either exhibited random actuation, or discovered a
way to fall over just after t250. In other runs, small agents
composed of no more than 6 units, and only 1 or 2 active
joints, discovered forward locomotion. However in two
runs, large agents (Figs. 1f and 4a) with several actuated
joints achieved forward locomotion. The GRN of one of

3By ignoring any locomotion before t250 , agents that passively fall
over receive low fitness values.



Figure 4: Results from a lesion experiment. a, The mor-
phology of the most successful agent from one evolution-
ary run (wild-type). b, The underlying GRN specifying
the agent’s growth. c, The agent regrown with regulatory
genes 10, 34, 35, 60 and 63 repressed in all units (loss-of-
function). d, The agent regrown with the targetted genes
expressed in all units (gain-of-function). e, Differences in
gene expression between the first units of the wild-type and
loss-of-function agents. Black bars indicate the targetted
regulatory genes; dark grey bars indicate structural genes
that influence neural growth; grey bars indicate structural
genes that influence morphological growth; light grey bars
indicate other regulatory genes. f, Differences in gene ex-
pression between the first units of the wild-type and gain-
of-function agents.

these agents is shown in Fig. 4b. This genome contained
66 active genes—genes that were expressed for at least one
time step, in at least one of the agent’s units. Regulatory
genes are depicted as boxes with bold edges; the other genes
are structural genes. The black genes indicate the regulatory
genes targetted for the lesion experiments shown in Fig.
4. The dark grey structural genes denote those genes that
participate in neurogenesis: they guide the growth of the
agent’s neural structure. The grey structural genes partici-
pate in morphogenesis: they direct the growth of the agent’s
body. The numbers inside the gene indicate which TF is
emitted by that gene. The numbers outside the genes indi-
cate their relative position along the gene: gene 1 is the first
active gene in the genome; gene 2 is the second, and so on.
Arrows indicate gene regulation: for example, genes 45 and
46 are regulated by regulatory TF 13, which is emitted by
genes 49 and 59. Genes 7, 11 and 62 are regulated directly
by the anterior maternal TF. Genes 13 and 23 have evolved
to emit the posterior maternal TF.

The set of genes that directly regulate the most neuroge-
nesis genes (for this agent, genes 10, 34, 35, 60 and 63)
were selected for mutation. The agent was regrown with
these genes suppressed in all units: Fig. 4c shows the mor-
phology of this loss-of-function mutant. The agent was then
regrown again, with these genes expressed in all units: Fig.
4d shows the morphology of this gain-of-function mutant.
The expression pattern differences of the 66 active genes
between the first unit of the original (wild-type) agent 4 and
the loss-of-function mutant are shown in Fig. 4e. The ex-
pression pattern differences of the 66 active genes between
the first unit of the original agent and the gain-of-function
mutant are shown in Fig. 4f.

III. Analysis
As can be seen from Figs. 4e and 4f, the supression or
enhancement of the five targetted regulatory genes has a
larger effect on the structural neurogenesis genes than that
on the morphogenesis genes. Similarly, the morphologies
of the loss-of-function and gain-of-function mutants (Figs.
4c and 4d) are quite similar to that of the wild-type agent.
However, in both agents, the neural disruption was severe
enough such that none of the joints were actuated. This in-
dicates that there is high pleitropy (co-regulation) between
the neurogenesis genes, and lower pleitropy between neu-
rogenesis and morphogenesis genes. In other words, a dis-
sociation between regulation of neurogenesis and morpho-
genesis has occurred: that is, evolution can experiment with
different body plans and not disrupt neurogenesis, and can
experiment with different neural components on the same
body plan.

A measure has been formulated to quantify this genetic
modularity, using the weighted sums

NL
W =

∑utot

u=1 t(u)
∑300

t=1

∑gn

i=1 |gW
i (t) − gL

i (t)|∑utot

u=1 t(u)
(5)

ML
W =

∑utot

u=1 t(u)
∑300

t=1

∑gm

i=1 |gW
i (t) − gL

i (t)|∑utot

u=1 t(u)
(6)

NG
W =

∑utot

u=1 t(u)
∑300

t=1

∑gn

i=1 |gW
i (t) − gG

i (t)|∑utot

u=1 t(u)
(7)

MG
W =

∑utot

u=1 t(u)
∑300

t=1

∑gm

i=1 |gW
i (t) − gG

i (t)|∑utot

u=1 t(u)
(8)

where NL
W and NG

W indicate the expression differences be-
tween the neurogenesis genes in the wild-type agent and
loss-of-function mutant, and the wild-type agent and gain-
of-function mutant, respectively. A value of zero indicates
there were no expression differences between any of the
neurogenesis genes; a value of one indicates that when-
ever a neurogenesis gene—at any time step in any unit of
the wild-type agent—is expressed (or suppressed), it is sup-
pressed (or expressed) during that time step, in that unit,
of the mutant. Similarly, M L

W and MG
W indicate the ex-

pression differences between the morphogenesis genes in
the wild-type agent and loss-of-function mutant, and the
wild-type agent and gain-of-function mutant, respectively.

4The term ‘wild-type’ refers to the fact that the agent was grown from
a genome taken directly from a completed evolutionary run, and no addi-
tional modifications have yet been made to it.



utot here indicates the total number of units comprising the
wild-type, loss-of-function or gain-of-function agent with
the minimum number of units. gn and gm indicate the num-
ber of active neurogenesis and morphogenesis genes in the
wild-type agent, respectively. gW

i (t) > 0, gL
i (t) > 0 and

gG
i (t) > 0 if gene i in the wild-type, loss-of-function or

gain-of-function agent is expressed at time step t; and are
set to zero otherwise. t(u) indicates the number of time
steps for which unit u is present during the growth phase:
t(1) = 300, and units appearing later during the growth
phase have lower values.

In some agents, suppressing or enhancing the targetted
regulatory genes disrupts the morphology such that the sec-
ond and subsequent units in the loss-of-function or gain-
of-function mutants appear earlier or later than they do in
the wild-type agent. Thus, in order to compare the expres-
sion patterns of genes between these units, the expression
patterns are expanded from binary strings with lengths less
than 300 to floating-point strings of length 300 with values
in [0, 1] using bilinear scaling[7].

Now, the pairs [NL
W , ML

W ] and [NG
W , MG

W ] indicate the
relative neurological and morphological effects caused by
artificially suppressing or enhancing the expression of tar-
getted regulatory genes. This measure was applied to the
most fit agent from each of the 60 runs; the targetted gene
set was chosen by selecting those regulatory genes that di-
rectly co-regulated the maximum number of neurogenesis
genes. In some agents, the loss-of-function mutation had
a greater effect than the gain-of-function mutation, and in
other agents, the reverse case was true, depending on how
the targetted genes are expressed in the wild-type agent.
In order to compare mutational effect, if N L

W > NG
W in

an agent, then [N L
W , ML

W ] was retained and [N G
W , MG

W ]
was discarded; otherwise, [N G

W , MG
W ] was retained and

[NL
W , ML

W ] was discarded. Fig. 5a plots these 60 remaining
value pairs: it shows the relative neurological versus mor-
phological effects of the lesion experiment on each agent.

As can be seen, the two runs that produced the large, lo-
comoting agents produced more highly modular GRNs that
the GRNs evolved in the other evolutionary runs: lesion-
ing of the targetted genes in these agents had quite a drastic
neurological effect, but a relatively mild morphological ef-
fect. Moreover, the agent with the most modular GRN had
the maximum number of actuated joints, indicating a rela-
tively sophisticated neural architecture (see Fig. 5, inset),
even though it did not exhibit much forward locomotion. In
addition, the evolutionary history of these three runs was
searched, and the agent in which the targetted genes ap-
peared were located. These three agents were then lesioned
as well, and it was found that in all three runs, the targetted
gene had no morphological effect at all. This suggests that
part of the reason for the evolutionary success of these pop-
ulations is due to the early appearance of highly modular
GRNs.

IV. Conclusions
In this paper we have outlined the workings of the Artificial
Ontogeny system (AO), which incorporated ontogenetic de-
velopment into the artificial evolution of behaving agents.
It has been demonstrated that this system can be used to

Figure 5: Plot of neurological versus morphological ef-
fect from 60 lesion experiments. The filled triangle,
square and circle correspond to the agents shown in Figs.
1f, 4a and (inset). The open triangle, square and circle
correspond to the first agents appearing in these three evo-
lutionary runs that contained the targetted regulatory gene.
(inset): The evolved agent with the most actuated joints.

evolve locomoting agents with a high part count. Finally, it
was shown that part of the reason for the evolutionary suc-
cess of these populations was due to the early evolution of
modular genetic regulatory networks: the genomes exhib-
ited high pleitropy between the genes responsible for neu-
ral growth, and low pleitropy between the genes responsible
for neural and morphological growth.

Because this system acts as an abstract model of both
evolution and development, it is extremely general. It
can be used to test several hypothesis about how adaptive
changes to the developmental programme of an evolving
population is affected by behavioural selection pressure.
To the best of our knowledge, this paper has provided for
the first time quantitative data on how behavioural selec-
tion pressure shapes genetic regulatory networks. More-
over, the large neurological effects exhibited by the regula-
tory genes in the successful evolutionary runs indicates that
these genes are acting like master control genes. This in-
dicates that the AO system may be very useful for testing
hypotheses about how Hox genes have evolved in nature.

Future studies are planned for directly comparing the
phenotypes of wild-type agents and lesioned mutants, in or-
der to clarify how phenotypic and genotype modularity are
related. Also, experiments are planned with the AO system
for investigating how and why some regulatory genes come
to adopt a master control role during development.
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