
Automated Robot Function Recovery after Unanticipated Failure or
Environmental Change using a Minimum of Hardware Trials

Josh C. Bongard Hod Lipson
Sibley School of Mechanical and Aerospace Engineering

Cornell University, Ithaca, New York 14850
Email: [JB382|HL274]@cornell.edu Phone: (607) 255-0396

Abstract

Recovering functionality after unanticipated damage or
environmental change, using a minimum amount of hard-
ware testing, is a desirable and under-explored topic in evo-
lutionary hardware and evolutionary robotics. In a previous
paper we introduced a two-stage evolutionary algorithm,
which we call the estimation-exploration algorithm, that
evolves a robot simulator to accurately describe what dam-
age a ‘physical’1 robot has undergone, and then evolves a
compensatory neural network in the evolved simulator that,
when downloaded to the ‘physical’ robot, restores function-
ality. Here we introduce a new fitness metric that allows
the algorithm to correctly describe not only complete but
also partial failures, and also allows the algorithm to dis-
ambiguate between internal damage and external environ-
mental change, based solely on sensory feedback. In most
cases only four hardware evaluations are necessary in or-
der to restore complete functionality to the ‘physical’ robot.

1 Introduction

For a robot to function for long periods of time in a hos-
tile, unknown or remote environment, it must be able to deal
autonomously with uncertainty: specifically, unanticipated
internal damage or external environmental change. The re-
cent difficulties with JPL’s two Mars rovers provide a dra-
matic example: both robots suffered different, unanticipated
partial failures [19]. Automatic recovery is most acute in
such instances where human operators cannot manually re-
pair or provide compensation for failure. In this work we are
concerned with catastrophic, highly nonlinear robot faults
that require recovery controllers qualitatively different from
the original controller.

Some work has been done on employing evolutionary
algorithms to restore functionality after some unanticipated
damage has occurred, but all of this work relies on mas-
sive numbers of hardware trials: robot recovery has been
demonstrated in [18] and [3], and for electronic circuits

1Currently, the ‘physical’ robot is not physical but simulated. The al-
gorithm is currently being applied to a physical robot.

in [7] and [15]. However, repeated generate-and-test algo-
rithms for robotics is not desirable for several reasons: re-
peated trials may exacerbate damage and drain limited en-
ergy; long periods of time are required for repeated hard-
ware trials; damage may require rapid compensation (eg.,
power drain due to coverage of solar panels); and repeated
trials continuously change the state of the robot, making
damage diagnosis difficult.

Several types of plastic neural network controllers have
been proposed that allow for rapid, lifetime adaptation
to external perturbation ([10], [9] and [12]). Further-
more, Keymeulen et al. [14] have formulated an algorithm
that continuously updates an internal model of sensor in-
put/world response data obtained from a wheeled robot, and
uses this model to evolve and download controllers to the
robot during task execution. They have demonstrated that
their algorithm greatly reduces the number of required hard-
ware trials, compared to a similar model-free algorithm.
However none of these approaches generate a hypothesis
describing what particular change the robot or its environ-
ment has experienced. Secondly, the evolved controllers
have not been shown capable of fundamental reorganization
when faced with unanticipated, catastrophic failure (such as
the separation of a limb), as is demonstrated here for our
proposed algorithm.

Here we describe our estimation-exploration algorithm,
which, for the results presented here, requires only four
hardware trials (on average) to restore complete function-
ality. The algorithm automatically evolves two separate
structures: a robot simulator that explains unanticipated in-
ternal damage or external environmental change suffered
by the real robot; and a compensatory neural network con-
troller that restores functionality to the real robot, given the
evolved robot simulator.

Srinivas [22] was one of the first researchers to study
error diagnosis and recovery, but his approach, along with
subsequent approaches ([8, 1, 11, 13, 23]), required online
operation (repeated testing on the physical robot), and could
not handle unanticipated errors. Baydar and Saitou [3] pro-
posed the first offline error diagnostic and recovery system,
which relies on Bayesian inference for error diagnosis, and

1

0 20 40 60 80 100
−5

0

5

10

Generation

F
itn

es
s

(m
et

er
s)

Figure 1. Evolutionary progress for robot
damage recovery. Each dot represents a sim-
ulated robot evaluation. Each square repre-
sents a ‘hardware’ evaluation.

Genetic Programming [16] for error recovery. However
their algorithm also only handles pre-specified error types.

Mahdavi and Bentley [18] recently demonstrated an on-
line evolutionary algorithm that automatically recovers be-
havior for a physical robot. However after damage the phys-
ical robot required 400 hardware trials and nearly seven
hours to recover 72% of its original functionality. Figure
1 shows the progress of a similar evolutionary algorithm
applied to a simulated quadrupedal robot (see Figure 3) in
which the first part of evolution is performed in a robot
simulator; the best controller is downloaded to a ‘physi-
cal’ robot (another simulated robot); the lower part of one
of the robot’s legs is broken off; and compensatory neural
controllers are then evolved on the cripped ‘physical’ robot.
This run required a total of 3550 ‘hardware’ trials and pro-
vided only 80% recovery (details regarding the robot and
algorithm are provided in later sections).

Due to the recent advances in simulation it has become
possible to automatically evolve both the controller and
morphology of simulated robots [21, 17, 2, 4]. Here we also
use evolutionary algorithms to co-evolve bodies and brains,
but employ an inverse process: in addition to an exploration
phase that evolves a robot controller given a fixed robot sim-
ulator, an estimation phase evolves a robot simulator (in-
cluding the simulated robot’s morphology and its simulated
environment) based on feedback from the real robot, after it
has used the evolved controller.

In a previous paper [6] we have shown that such a co-
evolutionary algorithm can successfully diagnose several
types of discrete failures, such as the separation of a body
part or the complete failure of a sensor or motor (or a combi-
nation of such failures) using at most four ‘hardware’ eval-
uations. This stands in contrast to all other approaches to
automated recovery so far, which can only compensate for
one or a few pre-specified failure types, and do not provide
a diagnosis of the failure: our approach provides an evolved
robot simulator that explains the failure.

In this paper we describe a new metric that quantita-
tively compares behaviors between robots that have differ-

ing morphologies and/or exist in differing environments.
This metric then serves as a fitness measure when compar-
ing the behavior of the ‘physical’ robot against simulated
robots during the estimation phase: robot simulators that
better approximate the behavior of the real robot better ex-
plain the real robot’s failure or novel environment. We show
here how this metric allows for functionality recovery after
complete or partial failure, or unanticipated environmental
change.

The algorithm and the new metric are described in the
next section. Section 3 presents results from the appli-
cation of the algorithm to a simulated quadrupedal robot.
Section 4 provides an explanation for why the new fitness
metric allows for successful functionality recovery over a
wider range of unanticipated situations, and the final sec-
tion provides some concluding remarks and avenues of fur-
ther study.

2 Methods

2.1 Algorithm Overview

The algorithm for automated recovery has two phases:
controller evolution (the exploration phase) and simulator
evolution (the estimation phase). The exploration phase
evolves a controller for the ‘physical’ robot using a robot
simulator. The estimation phase evolves a robot simulator,
given sensor data generated by the ‘physical’ robot using
the controller evolved in the previous phase.

Initially, the exploration phase is run, given an approx-
imate simulation of the robot and its environment. When
the estimation phase terminates, the best evolved controller
is downloaded to the ‘physical’ robot. The robot then be-
haves, and the resulting sensor data is then supplied, along
with the evolved controller, to the estimation phase. The es-
timation phase evolves the simulator so that the simulated
robot, given the previously evolved controller, produces the
same sensor data as the real robot. The new, better simu-
lator is passed to the exploration phase, and the cycle re-
peats until functionality is restored to the real robot and an
accurate simulator describing the real robot and its environ-
ment is produced. After each hardware trial, the estimation
phase has a new data pair (controller/sensor data) to use for
evolving the simulator; the more data the estimation phase
obtains from the real robot, the better it is at evolving an
accurate simulation.

Figure 2 outlines the flow of the algorithm, as well as
a general outline of the algorithm applied to any hidden
nonlinear system. In general, the exploration phase evolves
some experiment to perform on the hidden target system,
given a description of that system; the data returned by the
hidden system is used to further refine that description. The
cycle repeats until either a desirable behavior is achieved
on the target system, or a sufficiently accurate description
of the system is evolved. In this work, the controller serves

a b

Figure 2. a: Automated function recovery
for a damaged robot using the estimation-
exploration algorithm. b: Automated infer-
ence of a hidden nonlinear system using the
same algorithm.

as the experiment driving the target system, and the robot
simulator serves as the description of the system.

2.2 Experimental Setup

The Robot. In this work a quadrupedal robot was sim-
ulated and used to test the algorithm. The simulator runs
onboard a ‘physical’ robot, which in this case is also simu-
lated. The robot simulator is based on Open Dynamics En-
gine, an open-source 3D dynamics simulation package [20].
The simulated robot is composed of nine three-dimensional
objects, connected with eight one-degree of freedom ro-
tational joints. The joints are motorized, and can rotate
through [−π/4, π/4] radians. The robot is shown in Fig-
ure 3. The robot also has four binary touch sensors (1 if the
lower leg is in contact with the ground plane, and -1 other-
wise), and four proprioceptive sensors that return values in
[−1, 1] commensurate with the angle of the joint to which
they are attached.

While using the evolved controller produced by the first
pass through the exploration phase, the ‘physical’ robot suf-
fers some unanticipated failure or enters a novel environ-
ment. The robot is then stopped, and the resultant sensor
logs are transferred back to the estimation phase. During
subsequent ‘hardware’ trials, the damaged robot attempts to
move using the compensatory controllers evolved by subse-
quent passes through the exploration phase.

The Controllers. The robots are controlled by a neural
network, which receives sensor data from the robot at the
beginning of each time step of the simulation into its input
layer, propagates those signals to a hidden layer containing
three hidden neurons, and finally propagates the signals to
an output layer. The neural network architecture is shown in
Figure 4. Two types of sensors are used: touch sensors and
angle sensors: the touch sensors are binary, and indicate
whether the object containing them is in contact with the
ground plane or not; the angle sensors return a value com-
mensurate with the flex or extension of the joint to which
they are attached. Neuron values and synaptic weights are
scaled or lie in the range [−1.00, 1.00]. A thresholding ac-
tivation function is applied at the neurons.

Figure 3. The quadrupedal robot. Ti indicates
touch sensors; Ai indicates angle sensors;
Mi indicates motorized joints.

There is one output neuron for each of the motors actu-
ating the robot: the values arriving at the output neurons are
scaled to desired angles for the joint corresponding to that
motor. For both robots here, joints can flex or extend to π

4
away from their default starting orientation. The angles are
translated into torques using a PID controller, and the sim-
ulated motors then apply the resultant torque. The physical
simulator then updates the positions, orientations and veloc-
ities of the robot’s body parts by adding these torques to the
external forces (gravity, friction, momentum and collision
with the ground plane) acting on the objects. The resulting
motions cause the robot to move, and the cycle is repeated
for a set number of time steps.

The Exploration Phase. The genomes of the explo-
ration phase’s evolutionary algorithm are strings of floating-
point values, which encode the synaptic weights of the neu-
ral network controller. There are a total of 68 synapses,
giving a genome length of 68 values. The encoded synaptic
weights are represented to two decimal places, and lie in the
range [-1.00,1.00].

At the beginning of each run a random population of 200
genomes is generated. If there are any stored controllers
evolved by previous passes through the exploration phase,
these are downloaded into the population. The robot is then
evaluated in the simulator for 1000 time steps, and the fit-
ness of that controller is computed. The fitness of a con-
troller is how far, in meters, it causes the robot to move
forward during this time period. Once all of the genomes
in the population have been evaluated, they are sorted in or-
der of decreasing fitness, and the 100 least fit genomes are
deleted from the population. One hundred new genomes
are selected to replace them from the remaining 100, using
tournament selection, with a tournament size of 3. Each
floating-point value of a copied genome has a 1 per cent
chance of undergoing a point mutation (replacement of the
evolved value with a new random value). Of the 100 copied
and mutated genomes, 24 pairs are randomly selected and
undergo one-point crossover.

The Estimation Phase. The estimation phase evolves
a robot simulator that describes the failure incurred by the

T1 T2 B1

B2

M 5M 4M 3M 2M 1

HIDDEN
LAYER

INPUT LAYER
T3 T4 A1 A2 A3 A4

MMM 6 7 8
OUTPUT LAYER

Figure 4. The neural network used to con-
trol the robot shown in Figure 3. Ti indi-
cates touch sensor neurons; Ai indicates an-
gle sensor neurons; Bi indicates bias neu-
rons; and Mi indicates motor neurons.

‘physical’ robot, or a description of its new environment.
Using only sensory data arriving from the ‘physical’ robot,
this phase can distinguish between these two possibilities
automatically, as shown in the next section.

For each genome in the estimation phase, the simulated
robot is broken or the simulated environment is modified
according to the genome’s encoded instructions. The robot
is then evaluated using each of the best controllers evolved
by the previous passes through the exploration phase. Dur-
ing the first pass through the estimation phase, there is only
a single controller available.

In a previous version of the algorithm ([6]), the func-
tion for determining the fitness of the simulator described
by genome gj was set to

f(gj) =

∑c
i=1 |fphy(i) − fsim(i)|

c
, (1)

where c is the number of controllers evolved so far by the
exploration phase, fphy(i) is the forward distance trav-
eled by the ‘physical’ robot using evolved controller i, and
fsim(i) is the forward distance traveled by the simulated
robot using evolved controller i after the robot simulator
has been modified by the instructions encoded in gj . The
fitness function was therefore an attempt to minimize the
difference between the simulated and ‘physical’ robots’ fit-
ness values.

However the observation was made that in many cases
the simulated robot would exhibit wildly different behav-
iors even when it very closely approximated the damaged
‘physical’ robot. This result is not surprising due to the fact
that the robot is a highly coupled, non-linear system: thus
similar initial conditions (two identical robots with identi-
cal controllers but only similar damages) are expected to
rapidly diverge in behavior over time.

This point is illustrated by Figure 5a, which reports the
values returned by sensor A1 during three separate evalua-

a 0 50 100 150 200 250 300 350 400 450 500
−0.5

0

0.5

1

b

Figure 5. a: Each line represents the val-
ues of sensor A1 when the simulated robot
shown in Figure 3 undergoes three separate
failures. The thick line indicates the sensor
values when the one of the robot’s motors
weakens by 10%; the line with circle markers
when the same motor has been weakened by
20%; and the line with triangle markers when
one of the touch sensors has failed by 50%.
Each of the three robots is evaluated using
the same evolved controller. Only the first
500 time steps of the 1000 time step evalu-
ation period are shown. b: Outline of the
rolling mean fitness metric.

tions of the simulated robot: in each evaluation the simu-
lated robot uses the same controller, but each robot suffers
three different failures. As can be seen, the time series of
the two related failures stay correlated for a long period of
time (divergence occurs around t = 250), while the un-
related damaged robot diverges from the first two related
robots earlier (t = 50). Later, all three of the time series
become uncorrelated due to the coupled non-linear nature
of the system. Based on this observation a new fitness met-
ric for the estimation phase was formulated, in which the
fitness of genome p is given by:

f(gp) =

∑c
i=1

∑n
j=1

∑h−w/2
k=w/2 d(i, j, k, p)

cn(h − w)
, (2)

d(i, j, k, p) =

∑t=k+w/2
t=k−w/2 |s(i,j)

phy(t) − s
(i,j,p)

sim (t)|
w

. (3)

In this formulation i is the number of controllers evolved for
the ‘physical’ robot so far; j is the number of sensors con-
tained in the robot (here j = 8); h is some header length,
which indicates how much of the initial time series data to
use (for the experiments reported here, h = 20; and w in-
dicates the width of a time window within this time header
(here w = 10). d(i, j, k, p) represents the average differ-
ence between the sensor values of the ‘physical’ robot and
the sensor values of the simulated robot when the simulator
is modified by the instructions encoded in genome p, over

a short time period [k − w/2, k + w/2]. s
(i,j)

phy(t) indicates

the activation of the jth sensor at time t obtained from the
‘physical’ robot when it is using controller i, and s

(i,j,p)

sim (t)
indicates the activation of the jth sensor at time t from the
simulated robot using controller i in the simulation modified
by genome p. We refer to this metric as the rolling mean
metric, as it aims to compare sets of average sensor activa-
tions over a short initial time period. Figure 5b depicts this
metric graphically. During subsequent passes through this
stage, there are additional pairs of evolved controllers and
sets of sensor data returned by the ‘physical’ robot when
using those controllers, respectively (i > 1).

The genomes of the estimation phase, like the explo-
ration phase, are strings of floating-point values. Each
genome in the estimation phase is composed of a set of four
genes: each gene represents a modification to be made to
the robot simulator. There are six different possible mod-
ifications: a body part breaks off (the joint separates); a
body part increases in mass by some amount (from 100%
to 200%); a motor weakens by some percentage (0% to
100%); a sensor fails by some percentage (0% to 100%);
a joint jams by some percentage (0% to 100%); or the floor
is canted horizontally (−30 to 30 degrees).

Each of the four genes encoded in a genome is comprised
of four floating-point values, giving a total genome length
of 16. Like the repair EA, each of the values is represented
to two decimal places, and lies in [−1.00, 1.00].

The first floating-point value of a gene is rounded to an
integer in [0, 1] and denotes whether the gene is dormant or
active: ie., whether the situation encoded by that genome is
applied to the robot model or not. If the gene is active, the
second floating-point value is rounded to an integer in [0, 5],
and indicates which of the six situations should be applied
to the simulation. Depending on which situation is encoded
by the second value, the third value is scaled to: [0, j − 1] if
the damage applies to a joint; [0,m − 1] if the damage ap-
plies to a motor; [0, s− 1] if the damage applies to a sensor;
[0, b − 1] if the damage applies to a body part; or is dis-
regarded if the situation implies an environmental change.
The fourth value is then: treated as a percentage if the situa-
tion is a partial failure; disregarded if the failure is complete
(joint separation); or scaled to a value in [−30.0, 30.0] if the
situation is a horizontally canted floor. This encoding gives
a search space of 20016 = 6.5 × 1036 different genomes.
As the values are discretized as explained above, there are
at most 4 genes × 2 active/inactive gene × 6 situations ×
9 body parts × 200 percentages = 86400 sets of simulator
modifications, although some of these are not unique be-
cause ordering is irrelevant, and modifications encoded by
inactive genes are not applied.

At the termination of the estimation phase the best
evolved simulator modification is passed to the exploration
phase, and the cycle continues. This modification, along
with modifications evolved in previous passes through the
estimation phase, are used to seed the initial random popu-

Table 1. Unanticipated Situations Tested

Case Explanation
1 One motor weakens by 50%.
2 One body part increases in mass by 200%.
3 One the entire legs breaks off.
4 One of the entire legs breaks off, and

a sensor fails by 50%.
5 An angle sensor fails by 50%.
6 One of the joints jams by 50%.
7 One of the entire legs breaks off, and

one of the joints jams by 50%.
8 One of the entire legs breaks off,

one of the joints jams by 50%, and
one of the sensors breaks by 50%.

9 Nothing breaks.
10 The robot stands on a 30 degree horizontal slope.
11 One of the hidden neurons fails by 50%.
12 Two motor neurons output the same value.
13 A body part decreases in mass by 50%.

lation of genomes during the next pass through the estima-
tion phase.

3 Results

The robot was exposed to 13 different unanticipated situ-
ations, which are listed in Table 1. The algorithm described
above was run 10 times on each situation. The estimation
phase attempts to evolve a simulator modification that will
describe this situation: for each of the 13 situations, there
are about 5 or 6 different genomes that will describe it per-
fectly, out of the 86400 possible situations.

For each run of the algorithm described, the exploration
phase was run once to generate the initial evolved controller,
and then the ‘physical’ robot was exposed to one of the 13
unanticipated situations listed in Table 1. Sensor data is
then returned from the ‘physical’ robot to the algorithm.
The loop shown in Figure 2a is then traversed four times,
giving a total of five passes through the exploration phase,
four hardware trials and four passes through the estima-
tion phase. Each phase is run for 40 generations, using a
population size of 200 genomes (this produces a total of
40 × 9 = 360 generations for the algorithm). A total of
130 independent runs of the algorithm were performed (10
independent runs for each of the 13 situations). Each run
requires about 4 hours of computation on a 1GHz PC.

An additional 130 independent runs were performed as
a control: the control algorithm is identical to the proposed
algorithm, but rather than using the rolling mean metric de-
scribed in Equation 3 to evaluate the fitness of a simulator
modification, the original metric described by Equation 1
was used. Figure 6a shows a typical run of the control al-
gorithm when one of the angle sensors fails (situation 5).
Figure 6b shows a typical run using the proposed algorithm

a
4

6

8

10

12

14

16

18

1

2
3

4

Time

F
itn

es
s

(m
et

er
s)

Sensor 2 breaks
by 50% (actual)

Motor 1
weakened
by 49.5%

Sensor 1 breaks by 44%;
Joint 3 jams by 16%;
Motor 1 weakened by 83.5%

Joint 3 jams by 75.5%;
Joint 3 jams by 18%

Sensor 1 breaks by 66%;
Mass of Object 1
increased by 25%

e
5

10

15

20

1

2 3 4

Time

F
itn

es
s

(m
et

er
s)

Sensor 2
breaks
by 50%
(actual)

Sensor 2 breaks by 78%;
Joint 1 jams by 77%

Sensor 2 breaks by 50%

b f

c g

d h

Figure 6. a: The evolutionary progress of the control algorithm on situation 5: one of the angle
sensors breaks by 50%. The dotted lines indicate the progress of the five passes of the exploration
phase. The captions indicate the best simulator modifications evolved by the four passes through
the estimation phase. The triangle shows the original fitness (distance traveled in meters) of the
‘physical’ robot. The circle indicates distance traveled after suffering the failure. The squares
indicate the distance traveled by the damaged ‘physical’ robot during each of the four hardware
trials. b-d: Trajectories of the ‘physical’ robot’s motion: before the unanticipated situation (b); after
encountering the unanticipated situation (c); and during the fourth hardware trial. e-h: The same
data for a typical run of the proposed algorithm for the same situation, but using the rolling mean
metric.

for the same situation. Figure 7 compares the average per-
formance of the control and proposed algorithms for all 13
unanticipated situations.

4 Discussion

Figure 6 shows that the control algorithm, in that in-
stance, was unable to discover the correct simulator mod-
ification that would explain the unanticipated situation the
‘physical’ robot had encountered. The proposed algorithm,
on the other hand, closely approximated the actual situation
during the first pass through the estimation phase: it guessed
correctly which sensor had failed, but was off in terms
of the magnitude of failure (78% compared to 50%), and
also incorrectly surmised that a joint had become severely
jammed. The second pass through the estimation phase,
however, aided by the second set of sensor data returned by
the ‘physical’ robot, was able to generate the correct mod-
ification. The two final passes retained the correct modifi-
cation, allowing the exploration phase to evolve a controller
which actually outperformed the original controller.

Figure 7 makes clear that the proposed algorithm signif-

icantly outperforms the control algorithm. Specifically, the
control algorithm was unable to recover functionality for
unanticipated situations 1, 2, 4, 5 and 6, as evidenced by the
statistical insignificance between the average distance trav-
eled by the ‘physical’ robot after encountering the situation,
and during the fourth hardware trial. However the proposed
algorithm was able to restore functionality for these five sit-
uations successfully. It is notable that these situations in-
volve a partial failure; in other words the failure is described
by a percentage.

This seems to suggest that when the search space of the
estimation phase is small (one of eight possible joint break-
ages is correct), such as the situation when a leg breaks
off, the estimation phase can find the correct modification
through random search. In order to confirm this explana-
tion, all 130 evolutionary histories generated by the first
pass through the estimation for the control algorithm are
plotted in Figure 8a, and the 130 evolutionary histories of
the first pass through the estimation phase for the proposed
algorithm are plotted in 8b.

In order to quantify evolutionary activity in each of these

a 2 4 6 8 10 12
−5

0

5

10

15

20

25

Unanticipated SituationD
is

ta
nc

e
T

ra
ve

le
d

(m
et

er
s)

b 2 4 6 8 10 12
−5

0

5

10

15

20

25

Unanticipated SituationD
is

ta
nc

e
T

ra
ve

le
d

(m
et

er
s)

Figure 7. a: The average performance of the
control algorithm for all unanticipated situa-
tions. b: The average performance of the ac-
tual algorithm for all unanticipated situations.
The white bars indicate the average distance
traveled by the ‘physical’ robot before en-
countering the unanticipated situation; the
light gray bars after it has encountered the
situation; and the dark gray bars indicate the
distance traveled by the ‘physical’ robot dur-
ing the fourth hardware trial.

passes, each generation was checked to see whether a domi-
nant had appeared in the population. A dominantis defined
as a new genome that has a higher fitness than all of the
genomes from the previous generation. Because our fitness
evaluation is free of noise, this implies that the appearance
of a dominant in the population indicates the discovery of a
new best solution to the problem, and a subsequent move-
ment of the population to a higher region of the fitness land-
scape. A population that produces many dominants over
time indicates the population is traversing a landscape with
more gradients than one that produces fewer dominants.

Figure 8 makes clear that the estimation phase of the pro-
posed algorithm produces many dominants, indicating that
there is much evolutionary activity: several passes through
the estimation phase produce 19 dominants (Figure 8b).
Conversely the estimation phase of the control algorithm
displays little evolutionary activity: the best passes only
produce four dominants. Because the only difference be-
tween the estimation phases in the two algorithms is the fit-
ness function, we can conclude that the new fitness metric
introduces many gradients into the fitness landscape, allow-
ing the proposed algorithm to discover the correct explana-
tion of the unanticipated situation more often.

In the ninth unanticipated situation, no damage or envi-
ronmental change occurred: in this case the algorithm usu-
ally guesses correctly that nothing has changed. This has
the effect of continuing to evolve the performance of the
controller originally evolved by the first pass through the

a 0 10 20 30 40
0

5

10

15

20 Generation

D
om

in
an

ts

b 0 10 20 30 40
0

5

10

15

20 Generation

D
om

in
an

ts

Figure 8. Evolutionary activity in the control
and proposed algorithms. Each trajectory
corresponds to a single pass through the es-
timation phase of either the control (a) or the
proposed (b) algorithm. There are a total of
4 × 10 × 13 = 520 overlapping trajectories for
each algorithm.

exploration phase: this explains the performance increase
observed in the fourth hardware trial, compared to original
performance of the ‘physical’ robot.

Note that both algorithms were able to successfully
recover when faced with an unanticipated environmental
change: the horizontal canting of the ground plane (situa-
tion 10 in Table 1). This was probably due to the drastic
effect on all sensors induced by this change. It is important
to note that the proposed algorithm can distinguish between
internal damage and external environmental change based
solely on indirect information: distance traveled (in the con-
trol algorithm) or sensory data (in the actual algorithm).

Finally, the last three unanticipated situations are truly
unanticipated: the estimation phase can only modify the
simulate to approximate the state of the ‘physical’ robot
and its environment. Not surprisingly, both the control and
proposed algorithm have difficulty evolving a compensatory
controller for these situations. However, the proposed algo-
rithm does seem to do better at recovering from the 11th
and 12th situations, although the average recovery is not
statistically significant. Further study is required in order
to understand how truly unanticipated situations can best be
approximated by a set of simulator modifications.

5 Conclusions

In order for robots—and hardware systems in general—
to survive for long periods of time in remote and uncertain
environments, they must carry algorithms that allow them
to autonomously adapt to a wide range of unanticipated sit-
uations, without requiring extensive hardware testing. In
this paper we have described a two-stage algorithm that can
automatically diagnose and recover from a wide range of
unanticipated internal damage or environmental change us-
ing only four hardware trials. This stands in sharp contrast
to all other past attempts at evolving robustness or error re-
covery for evolutionary robotics and evolvable hardware,
which require many evaluations to be performed on the ac-
tual system, and/or do not produce a diagnosis of the unan-
ticipated change.

Here we have introduced a new fitness metric which

better allows the proposed algorithm to evolve a simula-
tor that describes the unanticipated situation encountered by
the robot. This metric has been shown to allow the algo-
rithm to autonomously distinguish between internal dam-
age, environmental change, or no change, based solely on
data returned by the robot’s sensors: in other words, no ad-
ditional sensors are required for error diagnosis.

The true power of this algorithm, however, lies in its gen-
erality: we hold that our algorithm can be applied to most
coupled, non-linear systems, and have so far have also ap-
plied the algorithm, with little modification, to the prob-
lem of gene network inference [5]. Future avenues of study
will include: replacing the simulated ‘physical’ robot with
an actual physical robot; investigating how best to describe
an unanticipated situation that cannot be explained per-
fectly with any automated combination of simulator mod-
ifications; and generalizing the algorithm to more coupled,
non-linear systems.

Acknowledgements

This research was conducted using the resources of the
Cornell Theory Center, which receives funding from Cor-
nell University, New York State, federal agencies, foun-
dations, and corporate partners. This work was sup-
ported by the U.S. Department of Energy, grant DE-FG02-
01ER45902.

References

[1] M.G. Abu-Hamdan and A.S. El-Gizawy. Computer
aided monitoring system for flexible assembly opera-
tions. Computers in Industry, 34:1–10, 1997.

[2] A. Adamatzky, M. Komosinski and S. Ulatowski, S.
Software review: Framsticks. In Kybernetes: The Inter-
national Journal of Systems & Cybernetics, 29:1344–
1351, 2000.

[3] C.M. Baydar and K. Saitou. Off-line error prediction,
diagnosis and recovery using virtual assembly systems.
In IEEE Intl. Conf. on Robotics and Automation, pp.
818–823, 2001.

[4] J.C. Bongard. Evolving modular genetic regulatory net-
works. In Proceedings of The IEEE 2002 Congress
on Evolutionary Computation (CEC2002), pp. 1872–
1877, 2002.

[5] J.C. Bongard and H. Lipson. Automating genetic net-
work inference with minimal physical experimentation
using coevolution. To appear in Proceedings of the
2004 Genetic and Evolutionary Computation Confer-
ence (GECCO), Seattle, WA.

[6] J.C. Bongard and H. Lipson. Automated damage diag-
nosis and recovery for remote robotics. In IEEE Intl.
Conf. on Robotics and Automation (ICRA), 2004.

[7] D.W. Bradley and A.M. Tyrrell. Immunotronics: novel
finite-state-machine architectures with built-in self-
test Using self-nonself differentiation. In IEEE Trans-

actions on Evolutionary Computation, 6(3):227–38,
2002.

[8] S. Brnyjolfsson and A. Arnstrom. Error detection and
recovery in flexible assembly systems. In Intl. Journal
of Advanced Mfg. Technology, 5:112–125, 1997.

[9] E.A. Di Paolo. Homeostatic adaptation to inversion of
the visual field and other sensorimotor disruptions. In
From Animals to Animats 6, pp. 440–449, MIT Press,
Cambridge, MA, 2000.

[10] P. Eggenberger, A. Ishiguro, S. Tokura, T. Kondo and
Y. Uchikawa. Toward seamless transfer from simulated
to real worlds: A dynamically-rearranging neural net-
work approach. In European Workshop on Learning
Robots (EWLR 8), pp. 44–60, Springer, Berlin, 1999.

[11] E.Z. Evans and S.G. Lee. Automatic generation of
error recovery knowledge through learned activity. In
IEEE Intl. Conf. on Robotics and Automation, 4:2915–
2920, 1994.

[12] D. Floreano and J. Urzelai. Evolution of plastic con-
trol networks. In Autonomous Robots, 11(3):311–317,
2001.

[13] J.F. Kao. Optimal recovery strategies for manufactur-
ing systems. In European Journal of Operations Re-
search, 80:252–263, 1995.

[14] D. Keymeulen, M. Iwata, Y. Kuniyoshi and
T. Higuchi. Online evolution for a self-adapting
robotics navigation system using evolvable hardware.
In Artificial Life, 4:359–393, 1998.

[15] D. Keymeulen, A. Stoica and R. Zebulum. Fault-
tolerant evolvable hardware using field programmable
transistor arrays. In IEEE Transactions on Reliabil-
ity, Special Issue on Fault-Tolerant VLSI Systems
3(49):305–316, 2000.

[16] J.R. Koza. Genetic Programming: On the Program-
ming of Computers by Natural Selection, MIT Press.
Cambridge, MA, 1992.

[17] H. Lipson and J.B. Pollack. Automatic design and
manufacture of artificial lifeforms. In Nature, 406:974–
978, 2000.

[18] S.H. Mahdavi and P.J. Bentley. An evolutionary ap-
proach to damage recovery of robot motion with mus-
cles. In Seventh European Conference on Artificial Life
(ECAL03), pp. 248-255, Springer, Berlin, 2003.

[19] JPL Mars Exploration Rovers (2004) http://www
.jpl.nasa.gov/mer2004/.

[20] opende.sourceforge.net
[21] K. Sims. Evolving 3D morphology and behaviour by

competition. In Artificial Life IV, pp. 28–39, 1994.
[22] S. Srinivas. Error Recovery in Robot Systems. Ph.D.

thesis, California Institute of Technology, 1977.
[23] M.L. Visinsky, J.R. Cavallaro and I.D. Walker. Expert

system framework for fault detection and fault toler-
ance in robotics. In Computers in Electrical Engineer-
ing, (20)5:421–435, 1994.

