
Automating Genetic Network Inference with Minimal
Physical Experimentation Using Coevolution

Josh C. Bongard and Hod Lipson

Computational Synthesis Laboratory
Sibley School of Mechanical and Aerospace Engineering

Cornell University, Ithaca, New York 14850
{JB382,HL274}@cornell.edu

Abstract. A major challenge in system biology is the automatic inference of
gene regulation network topology—an instance of reverse engineering—based
on limited local data whose collection is costly and slow. Reverse engineering
implies the reconstruction of a hidden system based only on input and output data
sets generated by the target system. Here we present a generalized evolutionary
algorithm that can reverse engineer a hidden network based solely on input
supplied to the network and the output obtained, using a minimal number of tests
of the physical system. The algorithm has two stages: the first stage evolves a
system hypothesis, and the second stage evolves a new experiment that should
be carried out on the target system in order to extract the most information.
We present the general algorithm, which we call the estimation-exploration
algorithm, and demonstrate it both for the inference of gene regulatory networks
without the need to perform expensive and disruptive knockout studies, and the
inference of morphological properties of a robot without extensive physical testing.

Keywords: Bioinformatics, System Identification, Evolutionary Robotics

1 Introduction

System biology is concerned with the synthesis of large amounts of biological detail
in order to infer the structure of complex structures with many interacting parts. In this
way, system biology can be viewed as an example of reverse engineering.

Figure 1 depicts the basic cycle underlying any attempt to reverse engineer a target
system: obtain output from the target system using some input, update the system hy-
pothesis, generate some new input, and repeat. The cycle continues until enough data
has been obtained from the target system to ensure a sufficiently accurate reconstruc-
tion. This paper presents a new approach to the automation of reverse engineering using
an evolutionary algorithm that is both independent of the applied problem domain and
requires minimal testing of the physical system.

Evolutionary algorithms can be used in two different ways: to evolve a completely
new system, or evolve a system that approximates some target system. Examples of the
former approach involve the evolution of robot morphology/controller pairs [25] [19] [4]
[10] and the use of genetic programming to evolve agent behaviors (eg. [17]). The latter
approach involves the use of evolutionary algorithms for reverse engineering: the system
hypothesis is evolved based on input/output data sets. Examples of the evolution of
reverse engineering include symbolic regression (eg. [17] and [7]), evolution of artificial

K. Deb et al. (Eds.): GECCO 2004, LNCS 3102, pp. 333–345, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

Verwendete Distiller 5.0.x Joboptions
Dieser Report wurde automatisch mit Hilfe der Adobe Acrobat Distiller Erweiterung "Distiller Secrets v1.0.5" der IMPRESSED GmbH erstellt.
Sie koennen diese Startup-Datei für die Distiller Versionen 4.0.5 und 5.0.x kostenlos unter http://www.impressed.de herunterladen.

ALLGEMEIN --
Dateioptionen:
 Kompatibilität: PDF 1.3
 Für schnelle Web-Anzeige optimieren: Nein
 Piktogramme einbetten: Nein
 Seiten automatisch drehen: Nein
 Seiten von: 1
 Seiten bis: Alle Seiten
 Bund: Links
 Auflösung: [2400 2400] dpi
 Papierformat: [595 842] Punkt

KOMPRIMIERUNG --
Farbbilder:
 Downsampling: Ja
 Berechnungsmethode: Bikubische Neuberechnung
 Downsample-Auflösung: 300 dpi
 Downsampling für Bilder über: 450 dpi
 Komprimieren: Ja
 Automatische Bestimmung der Komprimierungsart: Ja
 JPEG-Qualität: Maximal
 Bitanzahl pro Pixel: Wie Original Bit
Graustufenbilder:
 Downsampling: Ja
 Berechnungsmethode: Bikubische Neuberechnung
 Downsample-Auflösung: 300 dpi
 Downsampling für Bilder über: 450 dpi
 Komprimieren: Ja
 Automatische Bestimmung der Komprimierungsart: Ja
 JPEG-Qualität: Maximal
 Bitanzahl pro Pixel: Wie Original Bit
Schwarzweiß-Bilder:
 Downsampling: Ja
 Berechnungsmethode: Bikubische Neuberechnung
 Downsample-Auflösung: 2400 dpi
 Downsampling für Bilder über: 24000 dpi
 Komprimieren: Ja
 Komprimierungsart: CCITT
 CCITT-Gruppe: 4
 Graustufen glätten: Nein

 Text und Vektorgrafiken komprimieren: Ja

SCHRIFTEN --
 Alle Schriften einbetten: Ja
 Untergruppen aller eingebetteten Schriften: Nein
 Wenn Einbetten fehlschlägt: Warnen und weiter
Einbetten:
 Immer einbetten: [/Courier-BoldOblique /Helvetica-BoldOblique /Courier /Helvetica-Bold /Times-Bold /Courier-Bold /Helvetica /Times-BoldItalic /Times-Roman /ZapfDingbats /Times-Italic /Helvetica-Oblique /Courier-Oblique /Symbol]
 Nie einbetten: []

FARBE(N) --
Farbmanagement:
 Farbumrechnungsmethode: Farbe nicht ändern
 Methode: Standard
Geräteabhängige Daten:
 Einstellungen für Überdrucken beibehalten: Ja
 Unterfarbreduktion und Schwarzaufbau beibehalten: Ja
 Transferfunktionen: Anwenden
 Rastereinstellungen beibehalten: Ja

ERWEITERT --
Optionen:
 Prolog/Epilog verwenden: Ja
 PostScript-Datei darf Einstellungen überschreiben: Ja
 Level 2 copypage-Semantik beibehalten: Ja
 Portable Job Ticket in PDF-Datei speichern: Nein
 Illustrator-Überdruckmodus: Ja
 Farbverläufe zu weichen Nuancen konvertieren: Ja
 ASCII-Format: Nein
Document Structuring Conventions (DSC):
 DSC-Kommentare verarbeiten: Ja
 DSC-Warnungen protokollieren: Nein
 Für EPS-Dateien Seitengröße ändern und Grafiken zentrieren: Ja
 EPS-Info von DSC beibehalten: Ja
 OPI-Kommentare beibehalten: Nein
 Dokumentinfo von DSC beibehalten: Ja

ANDERE --
 Distiller-Kern Version: 5000
 ZIP-Komprimierung verwenden: Ja
 Optimierungen deaktivieren: Nein
 Bildspeicher: 524288 Byte
 Farbbilder glätten: Nein
 Graustufenbilder glätten: Nein
 Bilder (< 257 Farben) in indizierten Farbraum konvertieren: Ja
 sRGB ICC-Profil: sRGB IEC61966-2.1

ENDE DES REPORTS --

IMPRESSED GmbH
Bahrenfelder Chaussee 49
22761 Hamburg, Germany
Tel. +49 40 897189-0
Fax +49 40 897189-71
Email: info@impressed.de
Web: www.impressed.de

Adobe Acrobat Distiller 5.0.x Joboption Datei
<<
 /ColorSettingsFile ()
 /AntiAliasMonoImages false
 /CannotEmbedFontPolicy /Warning
 /ParseDSCComments true
 /DoThumbnails false
 /CompressPages true
 /CalRGBProfile (sRGB IEC61966-2.1)
 /MaxSubsetPct 100
 /EncodeColorImages true
 /GrayImageFilter /DCTEncode
 /Optimize false
 /ParseDSCCommentsForDocInfo true
 /EmitDSCWarnings false
 /CalGrayProfile ()
 /NeverEmbed []
 /GrayImageDownsampleThreshold 1.5
 /UsePrologue true
 /GrayImageDict << /QFactor 0.9 /Blend 1 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >>
 /AutoFilterColorImages true
 /sRGBProfile (sRGB IEC61966-2.1)
 /ColorImageDepth -1
 /PreserveOverprintSettings true
 /AutoRotatePages /None
 /UCRandBGInfo /Preserve
 /EmbedAllFonts true
 /CompatibilityLevel 1.3
 /StartPage 1
 /AntiAliasColorImages false
 /CreateJobTicket false
 /ConvertImagesToIndexed true
 /ColorImageDownsampleType /Bicubic
 /ColorImageDownsampleThreshold 1.5
 /MonoImageDownsampleType /Bicubic
 /DetectBlends true
 /GrayImageDownsampleType /Bicubic
 /PreserveEPSInfo true
 /GrayACSImageDict << /VSamples [1 1 1 1] /QFactor 0.15 /Blend 1 /HSamples [1 1 1 1] /ColorTransform 1 >>
 /ColorACSImageDict << /VSamples [1 1 1 1] /QFactor 0.15 /Blend 1 /HSamples [1 1 1 1] /ColorTransform 1 >>
 /PreserveCopyPage true
 /EncodeMonoImages true
 /ColorConversionStrategy /LeaveColorUnchanged
 /PreserveOPIComments false
 /AntiAliasGrayImages false
 /GrayImageDepth -1
 /ColorImageResolution 300
 /EndPage -1
 /AutoPositionEPSFiles true
 /MonoImageDepth -1
 /TransferFunctionInfo /Apply
 /EncodeGrayImages true
 /DownsampleGrayImages true
 /DownsampleMonoImages true
 /DownsampleColorImages true
 /MonoImageDownsampleThreshold 10.0
 /MonoImageDict << /K -1 >>
 /Binding /Left
 /CalCMYKProfile (U.S. Web Coated (SWOP) v2)
 /MonoImageResolution 2400
 /AutoFilterGrayImages true
 /AlwaysEmbed [/Courier-BoldOblique /Helvetica-BoldOblique /Courier /Helvetica-Bold /Times-Bold /Courier-Bold /Helvetica /Times-BoldItalic /Times-Roman /ZapfDingbats /Times-Italic /Helvetica-Oblique /Courier-Oblique /Symbol]
 /ImageMemory 524288
 /SubsetFonts false
 /DefaultRenderingIntent /Default
 /OPM 1
 /MonoImageFilter /CCITTFaxEncode
 /GrayImageResolution 300
 /ColorImageFilter /DCTEncode
 /PreserveHalftoneInfo true
 /ColorImageDict << /QFactor 0.9 /Blend 1 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >>
 /ASCII85EncodePages false
 /LockDistillerParams false
>> setdistillerparams
<<
 /PageSize [595.276 841.890]
 /HWResolution [2400 2400]
>> setpagedevice

334 J.C. Bongard and H. Lipson

Fig. 1. Flow of a generalized reverse engineering algorithm.

neural networks that reproduce specific input/output vectors (useful for learning) [28],
and electronic [21] [22], metabolic [16] or genetic circuit [11] inference.

The field of gene network inference is a rapidly burgeoning subfield in system biology
[15], and is concerned with inferring genetic regulatory networks based on the results
of a set of tests performed on the network in question. Many different models of the
underlying genetic network have been used, usually classified based on the amount of
biological detail inherent in the model (see [8] and [12] for an overview).

One of the most popular models is the Random Boolean Network (RBN) proposed
by Kauffman [13], which is a discrete system in which a network of n genes, each of
which is discretely regulated (turned on or off) by k other genes. The RBN’s popularity
as a model stems from its simplicity and general nature: it contains the minimum of
biological detail. More detailed gene network models have been used (eg. [2]), as well
as modeling the networks as differential equations [24] [11] or weight matrices [27]. In
many of these models, the underlying gene network topology can be or is represented
as a graph: nodes indicate genes, and directed labeled edges indicate gene regulation. In
this paper we employ a graph-based method for representing gene networks.

In addition to the type of model, several methods have been used to infer genetic
networks, including clustering algorithms (see [8] for an overview), correlation metrics
[1], linear algebra [6], simulated annealing [23] and genetic algorithms [26] [11].

A number of input and output data pairs are required in order to obtain enough
information about the target network to infer its structure correctly. As pointed out in [8],
it is desirable to minimize the number of input/output pairs required, so that a minimum
of experiments have to be conducted. Also, the type of experiment required should be as
cheap as possible in terms of experimental difficulty and accuracy of acquired output data.
Iba & Mimura [11] showed that by using a multi-population evolutionary algorithm to
not only infer the hidden network, but also to propose additional experiments that would
most help to refine the current best evolved network hypothesis. However their model
requires the experimenter to perform costly knockout or lesion experiments in order to
supply the algorithm with an actual subset of the regulatory network.

Knockout studies in genetics (eg. [18]), lesion studies in neuroscience (eg. [29])
and ablation studies in embryology (eg. [9]) are a related set of time-honored tools in
those fields, but they have three major drawbacks: such experiments are often difficult
to perform, they are destructive to the object of study, and often provide misleading
data about the relationships between parts of the system under study. For example, in
higher model organisms such as mice, one or more generations must be raised in order
to accurately measure the phenotypic effect of a disabled gene.

Automating Genetic Network Inference 335

By carefully selecting the input to be processed by a target network, output data
rich enough in information to infer topology can be obtained such that more costly
knockout studies are not required. Here we present a coevolutionary algorithm that not
only evolves the hidden network, but also evolves these desirable input data sets. The
next section describes the algorithm and the model of genetic networks we use; section 3
presents the results of our algorithm; section 4 provides discussion regarding the power
and generality of this algorithm; and the final section offers some concluding remarks.

2 Methods

This paper presents an algorithm for reverse engineering networks. The networks can
be interpreted as either biological or electronic networks, or can be interpreted as a
representative of any coupled, non-linear system that takes inputs and produces outputs.

We first describe a graph-based model for representing genetic networks, and then
describe the application of the estimation-exploration algorithm for inferring hidden
instances of such networks based on sets of input and output gene product concentrations.

2.1 The Network

Many models of genetic regulatory networks employ a graph-based representation, in
which nodes represent genes, and directed labeled edges from gene i to gene j indicate
that gene i somehow influences the expression of gene j. For our purposes we have
chosen to represent regulatory networks of n genes using an n×n matrix R with entries
rij . If rij > 0, gene i contributes to the enhancement of gene j; if rij < 0, gene i
contributes to the inhibition of gene j; if rij = 0, gene i does not directly regulate
gene j. Now let an input data vector of gene product concentrations be represented by
g(t+1) = {g

(t)
1 , g

(t)
2 , ...g

(t)
n }, in which g

(t)
i indicates the gene product concentration at the

beginning of some experiment. We can then calculate new gene product concentrations
after some time period has elapsed using

g
(t+1)
j = min(max(0 , g

(t)
j +

n∑

i=1

rijg
(t)
i) , 1) (1)

Since the gj variables indicate concentration, the min and max functions bound the
value between 0 (for no concentration) and 1 (for concentration saturation). The vector
g(t+1) = {g

(t+1)
1 , g

(t+1)
2 , ...g

(t+1)
n } = [(R+I)g(t)]10 then represents the bounded output

data vector obtained from the hidden regulatory network R, given input g(t). All values
of the input vector g(t) and output vector g(t+1) lie in the range [0, 1]. The values of R
lie in the range [−1, 1].

This discrete map approximates the differential equation model of regulation:

dgi

dt
= fi(g), 1 ≤ i ≤ n (2)

in which the product concentration of gene i changes as a function of the product con-
centrations of the other genes (possibly including gene i). In our formulation, fi is the
thresholded multiplication of row i in R by the column of initial concentrations g(t).

336 J.C. Bongard and H. Lipson

2.2 The Estimation-Exploration Algorithm

In this paper we present a general algorithm that allows for the reverse engineering of a
hidden network based solely on input/output data: in this case, the hidden network is the
connection matrixR. Our algorithm has two stages: the estimation and exploration phase,
each of which has an associated genetic algorithm. The first stage evolves a plausible
connection matrix based on input/output data sets (estimation), and the second stage
evolves a new input vector that should produce an output vector rich in information when
processed by the actual target connection matrix (exploration). In this way the algorithm
performs two functions: it reverse engineers the hidden network, and it proposes useful
experiments that will accelerate the inference process.

In the application of the estimation-exploration algorithm to genetic networks, first a
random input vector is selected, and the corresponding output vector is computed using
the actual target connection matrix. Then the resulting single input/output vector pair is
passed into the algorithm.

The estimation genetic algorithm begins with a population of genomes, each of which
is comprised of an n × n connection matrix R′: the values are generated randomly over
[−1, 1] using a uniform distribution. Each genome is evaluated as follows. Each of the
input vectors applied to the actual target network so far (which during the first iteration
of the estimation phase is only one vector) is used to calculate a corresponding output
vector based on the genome’s connection matrix R′. The subjective error associated
with the genome is set to

errorsubj(R
′) =

∑x
k=1

∑n
i=1 |g(tar)(t+1)

ik − g
(guess)(t+1)
ik |

xn
(3)

where x is the total number of experiments performed on the target network so far,

g
(tar)(t+1)
ik is the resulting concentration of gene i when experiment k is performed

on the target network, and g
(guess)(t+1)
ik is the resulting concentration of gene i when

experiment k is performed on R′.
Subjective error is then an indirect measure of how well R′ approximates the hidden

network R, based how well R′ can reproduce the experimental results produced by R.
The absolute error of the network hypothesis R′ is then defined as

errorabs(R
′) =

∑n
i=1

∑n
j=1 |rij − r′

ij |
n2 , (4)

which is a direct indication of how good the approximation is. Note that this error is
not available to the algorithm, but can be used to measure the efficacy of the algorithm
itself.

Once all of the genomes have been evaluated, pairs of genomes are selected, and
the connection matrix of the genome with higher subjective error is replaced by the
connection matrix of the genome with the lower subjective error. The copied matrix
is then mutated: one randomly selected element of the matrix is replaced either by
a new random value in [−1, 1] (50% probability), or nudged up or down by 0.0001
(50% probability). Crossover is currently not used, but may be implemented in future
improvements to the algorithm. For the work reported here, a population size of 1000 is
used, and a total of 750 replacements are performed after each generation. Note that a
given connection matrix may undergo more than one mutation if it is selected, copied,

Automating Genetic Network Inference 337

mutated and then selected again. Once a set of selections, replacements and mutations
have occurred, all of the new genomes in the population are evaluated. This process is
continued for 30 generations. When the estimation phase terminates at the end of the 30
generations, the R′ with the least subjective error is passed on to the exploration phase.

The exploration phase also begins with a set of randomly-generated genomes, but
the EA for this phase maintains genomes that encode input vectors instead of connection
matrices. The vectors are initialized with random floating-point values in [0, 1] chosen
using a uniform distribution. Each genome is then evaluated as follows. The encoded
input vector is applied to the connection matrix R′ obtained from the estimation phase,
and an output vector is obtained. The information associated with the genome is set to

i = 1.0 − n0 + ns

n
(5)

where n0 is the number of genes in the output vector that have zero concentration, and
ns is the number of genes that have a saturation concentration of 1. The same method of
selection and replacement is then applied as described for the estimation phase: the output
vectors of genomes with higher information replace the output vectors of genomes with
lower information. The new genomes (input vectors) are mutated as follows: a single
gene is chosen at random, and replaced with a new concentration chosen from [0, 1]
with a uniform distribution. This method of selecting genomes based on their expected
information content is an attempt to try to evolve input vectors that, when supplied
to the target network, will produce output vectors that contain high information: gene
concentrations in the output vector that have either zero or saturation concentration levels
indicate less about the state of their regulating genes’concentrations than concentrations
between these extrema.

The exploration phase is also executed for 30 generations. When it terminates, the
best input vector is supplied to the target network R. This input vector is used by R
to compute a new output vector, which is then passed back into the next iteration of
the estimation phase, along with the j − 1 previously-generated input/output vector
pairs. When the estimation phase is run again, the initial random population is seeded
with the best connection matrix found so far in order to accelerate evolution. The entire
process—calculation of the output vector from R, execution of the estimation and then
the exploration phase, and experiment suggestion—iterates for 100 cycles, leading to
100 experiments performed on the target network.

This same algorithm can be applied for the non-destructive inference of other physical
systems. For example we have applied it in the domain of evolutionary robotics. In
that case the algorithm was contained within a robot simulator: the algorithm evolved
controllers for an actual robot (exploration phase), and also evolved hypotheses regarding
possible damage suffered by the actual robot (estimation phase). Based on the sensory
feedback from the actual robot, the simulator could both refine its hypothesis regarding
what damage had occurred, and modify the controller so that the actual robot could
regain as much functionality as possible. Figure 2 compares these algorithms, as well as
providing a general framework for how this co-evolutionary algorithm can be applied
such that a bidirectional dialogue is maintained between the physical nonlinear system
(such as a robot or biological network) and the algorithm.

The next section presents some results generated using this algorithm.

338 J.C. Bongard and H. Lipson

a) b) c)

Fig. 2. Instantiations of the estimation-exploration algorithm. a: In order to reverse engineer
a genetic network, the estimation phase evolves a connection matrix that describes the wiring of
the network. Based on the best evolved connection matrix hypothesis, an input vector is evolved
by the exploration phase that should return an information-rich output vector when applied to the
hidden network. b: A neural network controller is evolved for an actual robot (exploration phase)
that allows it to move. If it suffers damage, the estimation phase evolves a robot simulator that
explains the damage. c: The general framework for applying the algorithm to a nonlinear system.

3 Results

In order to test the algorithm, a set of 40 target networks were generated for various
numbers of genes (n) and number of incoming regulatory connections (k). The first 10
networks contained 5 genes (n = 5) and each gene was regulated by 2 genes (k = 2).
The second 10 networks were generated using n = 5 and k = 5; the third 10 runs using
n = 10 and k = 2; and the final 10 runs using n = 10 and k = 10.

The algorithm was applied to each of the 40 networks, and the cycle described in
the above section was iterated 100 times; thus 100 experiments were performed on the
hidden target network. Each pass through either the estimation or exploration phase
involved the evolution of a population of 1000 genomes for 30 generations.

Two control algorithms were also applied to the same 40 networks as the proposed
algorithm. The first control algorithm was random search: the algorithm performed as
before, but instead of replacing genomes of low fitness with genomes of high fitness
(for both phases), the genome with low fitness was replaced with a randomly generated
genome. In the second control algorithm, the exploration phase is disabled: this phase
simply returns a randomly generated input vector. Both control algorithms were executed
for the same number of iterations (100), the same population size (1000), and the same
number of generations (30) as the proposed algorithm.

Ten independent runs of the algorithm were conducted for each of the 40 hidden
networks, and 10 independent runs of both control algorithms were also conducted for
each network, leading to a total of 3 × 10 × 40 = 1200 independent runs. Figure 3
shows the evolutionary progress of a typical run of both the proposed algorithm and
the second control algorithm (in which the exploration phase is disabled) on a hidden
network with n = 10 and k = 10. Figure 4 reports the resulting output vectors from
the 100 experiments suggested by each of these two runs. Figure 5 shows the average
performance for the proposed algorithm, compared to the two control algorithms, for
the four different types of hidden target networks.

Automating Genetic Network Inference 339

a) 0 10 20 30 40 50 60 70 80 90 100
0

0.4

0.8 Estimation Phase Pass
E

rr
or

b) 0 10 20 30 40 50 60 70 80 90 100
0

0.4

0.8 Estimation Phase Pass

E
rr

or

Fig. 3. Sample evolutionary progress for the second control and proposed algorithm. The
thin line indicates the absolute error (see equation 4) between the actual connection matrix R and
the best connection matrix evolved during that generation of the estimation phase, R′. Note that
this information is not available to the algorithm. The thick line indicates the subjective error of
the best genome in the population at that generation according to equation 3. a: A sample run
of the control algorithm with the exploration phase disabled on one of the hidden networks with
n = 10 and k = 10. b: The progress of the proposed algorithm on the same hidden network. The
evolutionary progress of the passes through the exploration phase for b are not shown.

4 Discussion

As can been seen from Figure 3, the downward-sloping thick curves indicate that during
each pass through the estimation phase, the subjective error of the best genome in the
population decreases. However after a new experiment has been performed on the hidden
target system, the subjective error of the best hypothesis so far (which is used to seed
the first generation of the next pass through the estimation phase) tends to increase: this
is indicated by the successive curves seen during the first 500 generations of the second
control algorithm (Figure 3a) and the first 1000 generations of the proposed algorithm
(Figure 3b). This indicates that the new experiment exposed some previously hidden
information about the target system that the best hypothesis so far did not account for.

Importantly, the proposed algorithm tends to generate such information-rich expe-
riments far beyond the 40th experiment, as compared to the control algorithm, in which
the experiments lose their explanatory value (the curved subjective error trajectories
become flat) before the 20th experiment. Although both algorithms eventually evolve
a hypothesis that explains most of the input/output data pairs (indicated by the equally
low subjective error curves at the end of the two runs), the proposed algorithm explains
more informative input/output data pairs, thus leading to a better approximation of the
hidden network (the absolute error (thin line) eventually becomes lower for the proposed
algorithm, compared to the control algorithm.)

Figure 4 shows why the proposed algorithm is able to outperform the control al-
gorithm. Between the 20th and 40th experiments, the proposed algorithm has enough
informative input/output data pairs to evolve a good approximation of the hidden net-
work. Using this approximation, it can evolve input vectors that produce a greater frac-
tion of informative gene product concentrations: concentrations that fall between the
two extremal concentrations of 0 and 1. This is indicated by the greater density of such
concentrations (the black squares) in the output vectors seen in Figure 4b, compared
to those in the output vectors obtained by the control experiment (Figure 4a). However
given a random network, it is more difficult to obtain intermediate concentrations for
some genes compared to others: both the proposed and control algorithm obtained only

340 J.C. Bongard and H. Lipson

a) 0 10 20 30 40 50 60 70 80 90 100
1
5

10
Experiment

G
en

e

b) 0 10 20 30 40 50 60 70 80 90 100
1
5

10
Experiment

G
en

e

Fig. 4. Sample experimental results derived from the second control and proposed algorithm.
Each column represents an output vector obtained when an input vector suggested by either the
second control algorithm (a) or the proposed algorithm (b) was applied to the hidden target
network. Blank squares indicate gene product concentrations that were either 0 or 1; dark squares
indicate concentrations that fell between these extrema.

sporadic intermediate concentrations for gene 9 for this particular target network. Furt-
her improvements to the algorithm will entail changes in equation 5 in order to maximize
intermediate concentrations for all genes.

Figure 5d indicates that the proposed algorithm consistently outperforms both the
first control algorithm (random search) and the second control algorithm, in which expe-
riments are suggested randomly. This indicates that evolving informative experiments in
step with model hypotheses does improve the discovery of the hidden networks. Not sur-
prisingly, both algorithms consistently outperform random search, for all four network
types. However, interestingly, evolving informative tests is only beneficial for networks
that are comprised of many genes. On further inspection this is not so surprising, because
networks with many genes and high connectivity have a higher likelihood of reaching
either of the extremal concentrations than smaller, less dense networks.

Figure 6 supports this claim: 1000 random networks were generated using values
of n selected from [2, 30] with a uniform distribution, and values of k selected from
[1, n′ − 1], where n′ is an already randomly selected value for n. For each of the 1000
random networks, 10 input vectors were randomly constructed, and the corresponding
10 output vectors were calculated using 1. The average fraction of output concentrations
that were either 0 or 1 were computed for each network, and are plotted in Figure6a as
a function of the number of genes in the network (n), and in Figure6b as a function of
connectivity (k/n). Clearly, the fraction of non-informative output elements increases
both with the number of genes, and with connectivity. Thus it becomes increasingly
valuable not only to evolve hypotheses, but also to evolve informative experiments for
the inference of larger and more complex gene networks.

Most importantly though, unlike the algorithm proposed by Iba [11], the experi-
ments performed here on the target system do not require any internal or disruptive
perturbation such as a knockout study: we simply supply a carefully evolved new set
of initial conditions. Introducing gene product concentrations into a cell or subjecting
the cell to external chemicals, rather than invasive knockout studies, may be a more
attractive option for certain model organisms. However more study is required to deter-
mine how our input/output concentration data may be translated into actual biological
experiments. A second advantage of our algorithm over Iba’s algorithm is that it does
not require direct comparison between proposed regulatory networks: both hypothesis

Automating Genetic Network Inference 341

a) 0 50 100
0

0.2

0.4

0.6

0.8
Experiment

E
rr

or

Random Search
Exploration Disabled
Proposed Algorithm

b) 0 50 100
0

0.2

0.4

0.6

0.8

c) 0 50 100
0

0.2

0.4

0.6

0.8

d) 0 50 100
0

0.2

0.4

0.6

0.8

Fig. 5. Average performance of the three algorithms for the four different target network
types. Comparative performance of the three algorithms, each averaged over 10 different hidden
networks with n = 5 and k = 2 (a). Comparative performance for 10 different networks with
n = 5 and k = 5 (b); for 10 networks with n = 10 and k = 2 (c); and for 10 networks with
n = 10 and k = 10 (d).

and experiment quality is determined based on experimental output data, rather than on
the internal topology of a given network hypothesis.

Human experimenters usually prefer to modify some initial set of conditions only
slightly, and then measure the effect on the system in order to infer something about the
internal structure of the system. However since the experiment is proposed automatically
by the exploration phase, and the results of the experiment are analyzed automatically by
the estimation phase, the algorithm is free to suggest input vectors that are very different
from those tested on the network before. It is believed that this will greatly speed the
inference of the actual system, but remains to be tested rigorously.

4.1 Multiple and Diverse Applications

This mutual dialogue was found to hold in the application of the estimation-exploration
algorithm to a completely different problem domain: evolutionary robotics. Instead of
evolving networks (estimation) and experiments (exploration) as the algorithm does
here, the evolutionary robotics application evolved neural network-based controllers for
an actual robot (the exploration phase). When the actual robot suffered some unknown
damage and returned sensory data, the estimation phase attempts to evolve a robot
simulator that describes the damage. Using this hypothesis the exploration phase then
tries to re-evolve a compensatory controller that allows the robot to regain functionality
despite its handicap. Figure 7 shows a sample run. For more details, refer to [3].

Just like the gene network inference application shown here, data returned by the
physical system (the robot) enhances the estimation phase’s ability to predict the state of

342 J.C. Bongard and H. Lipson

a) 0 10 20 30
0

0.2

0.4

0.6

0.8

1

nF
ra

ct
io

n
of

 E
xt

re
m

al
 C

on
ce

nt
ra

tio
ns

b) 0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

k/nF
ra

ct
io

n
of

 E
xt

re
m

al
 C

on
ce

nt
ra

tio
ns

Fig. 6. Sample experimental results derived from the second control and proposed algorithm.
Each column represents an output vector obtained when an input vector suggested by either the
second control algorithm (a) or the proposed algorithm (b) was applied to the hidden target
network. Blank squares indicate gene product concentrations that were either 0 or 1; blank squares
indicate concentrations that fell between these extrema.

the system. The model of the system output by the estimation phase (for the robot
application, a hypothesis about the damage suffered) aids the exploration phase by
increasing its ability to evolve a controller for the damaged robot.

Also, the application of the estimation-exploration algorithm to robotics allows for
recovery after minimal physical testing. Previously, evolutionary algorithms have been
used to repair (but not diagnose) damaged physical systems, but they rely on extensive
hardware testing (on the order of thousands of evaluations), which is prohibitive for most
physical systems [5] [20].

5 Conclusions

In this paper we have presented a co-evolutionary algorithm composed of two phases
that automates the process of reverse engineering: the estimation phase evolves a model
of the hidden system under study (in this case a genetic network), and the exploration
phase evolves an experiment to be performed on the hidden system to gain more infor-
mation about it. Moreover, as the estimation phase refines its description of the physical
system, the exploration phase is able to propose more valuable experiments because its
internal model of the physical system is more accurate. In this way the algorithm ser-
ves two functions: it infers the internal structure of some hidden system, and proposes
increasingly useful experiments to be performed on it. Indeed the idea of automating
scientific inquiry has received a lot of interest as of late [14].

Our model has three benefits for gene network inference. First, it does not require
invasive, expensive, slow and disruptive experiments such as knockout or lesion studies.
Rather, the exploration phase carefully evolves a low-cost experiment (a change in the
initial gene product concentrations) that yields a large amount of information about the
physical system. Second, the number of experiments performed on the hidden system is
minimized, because each proposed experiment is carefully chosen. Finally, the careful
selection of experiments becomes increasingly valuable as the hidden networks become
larger and more densely interconnected, because large, dense networks often produce
information-poor output data. These three points suggest that our algorithm may prove
very useful for genetic network inference in particular, and for system biology research
in general.

Automating Genetic Network Inference 343

a)
0

2

4

6

8

10

12

14

1

2 3

Time

F
itn

es
s

(m
et

er
s)

One of the touch sensor fails.
(Actual Damage)

One of the touch
sensor fails.
(Correct Damage
Hypothesis)

e)
−5

0

5

10

15

20

25

1

2
3

Time

F
itn

es
s

(m
et

er
s)

Entire leg breaks off;
upper−leg joint jams;
angle sensor fails.

Back lower leg breaks off;
back upper leg breaks off.
(Incorrect Damage Hypothesis)

b) f)

c) g)

d) h)

Fig. 7. Two typical robot damage recoveries. a: The evolutionary progress of four passes through
the exploratory phase for a quadrupedal robot when it undergoes a failure of one of its touch
sensors. The hypotheses generated by the three passes through the estimation phase (all of which
are correct) are included. The small circles indicate the fitness (maximum forward locomotion)
of the best controller after each generation of the estimation phase. The triangle shows the fitness
of the first evolved controller on the physical robot (the behavior of the ‘physical’ robot (which
is also simulated for now) with this controller is shown in b); the large circle shows the fitness of
the robot after the failure occurs (the behavior is shown in c); the squares indicate the fitness of
the physical robot for each of the three hardware trials (the behavior of the ‘physical’ robot during
the third trial is shown in d). e-h The recovery of a hexapedal robot when it experiences severe,
compound damage. The trajectories in b-d and f-h show the change in the robot’s center of mass
over time (the trajectories are displaced upwards for the sake of clarity).

We have also shown how general this approach is by describing and showing how
it can be applied to a completely different nonlinear physical system: a robot. Future
prospects for this work will include improving the selection of experiments so that even
more information is extracted from the system, generalizing the model still further by
applying it to various other nonlinear physical systems, and formulating a rigorous set
of guidelines for how to apply the algorithm to a large class of physical systems.

Acknowledgment. This work was supported by the National Academies Keck Futures
Grant for interdisciplinary research, number NAKFI/SIG07.

References

1. Arkin, A., Shen, P., Ross, J.: A test case for correlation metric construction of a reaction
pathway from measurements. In: Science 277: 1275–1279 (1997)

344 J.C. Bongard and H. Lipson

2. Arkin, A., Ross, J., McAdams, H.H.: Stochastic kinetic analysis of developmental pathway
bifurcation in phage lambda-infected Escherichia coli cells. In: Genetics 149: 1633–1648
(1998)

3. Bongard, J.C., Lipson, H.: Automated damage diagnosis and recovery for remote robotics.
To appear in: Proceedings of the 2004 International Conference on Robotics and Automation
(ICRA), New Orleans, USA (2004)

4. Bongard, J.C., Pfeifer, R.: Repeated structure and dissociation of genotypic and phenotypic
complexity in Artificial Ontogeny. In: Spector, L., Goodman, E.D. (eds.): Proceedings of The
Genetic and Evolutionary Computation Conference: 829–836 (2001)

5. Bradley, D.W. and Tyrrell, A.M.: Immunotronics: novel finite-state-machine architectures
with built-in self-test Using self-nonself differentiation. In IEEE Transactions on Evolutionary
Computation, 6(3): 227–38 (2002)

6. Chen, T., He, H.L., Church, G.M.: Modeling gene expression with differential equations. In:
Pacific Symposium on Biocomputing 4: 29–40 (1999)

7. Davidson, J.W., Savic, D.A., Walters, G.A.: Symbolic and numerical regression: Experiments
and applications. In: Information Sciences 150(1-2): 95–117 (2003)

8. D’haeseleer, P., Liang, S., Somogyi, R.: Genetic network inference: From co-expression
clustering to reverse engineering. In: Bioinformatics 16(8): 707–726 (2000)

9. Hill, R.J., Sternberg, P.W.: Cell fate patterning during C. elegans vulval development. In:
Development suppl. 9–18 (1993)

10. Hornby, G.S., Pollack, J.B.: Creating high-level components with a generative representation
for body-brain evolution. In: Artificial Life 8(3): 223–246 (2002)

11. Iba, H., Mimura, A.: Inference of a gene regulatory network by means of interactive evolu-
tionary computing. In: Information Sciences 145: 225–236 (2002)

12. de Jong, H.: Modeling and simulation of genetic regulatory systems: A literature review. In:
J. Comput. Biol. 9(1): 69–105 (2002)

13. Kauffman, S.A.: The Origins of Order, Oxford University Press. Oxford, UK. (1993)
14. King, R. D., Whelan, K. E., Jones, F. M., Reiser, P. G. K., Bryant, C. H., Muggleton, S. H.,

Kell, D. B., Oliver, S. G.: Functional genomic hypothesis generation and experimentation by
a robot scientist. In: Nature 427: 247–252 (2004)

15. Kitano, H.: Foundations of Systems Biology, MIT Press. Cambridge, MA. (2001)
16. Koza, J.R., Mydlowec, W., Lanza, G., Yu, J., Keane, M.A.: Reverse engineering of metabolic

pathways from observed data using genetic programming. In: Altman, R. B. et al (eds.):
Pacific Symposium on Biocomputing: 434–445 (2001)

17. Koza, J.R.: Genetic Programming: On the Programming of Computers by Natural Selection,
MIT Press. Cambridge, MA. (1992)

18. Lewis, E.B.: Clusters of master control genes regulate the development of higher organisms.
In: Journal of the American Medical Association 267: 1524–1531 (1992)

19. Lipson, H. and Pollack, J.B.: Automatic design and manufacture of artificial lifeforms. In
Nature, 406: 974–978 (2000)

20. Mahdavi, S.H. and Bentley, P.J.: An evolutionary approach to damage recovery of robot
motion with muscles. In Seventh European Conference on Artificial Life (ECAL03): 248—-
255 (2003)

21. Miller, J.F., Job, D.,Vassilev,V.K.: Principles in the evolutionary design of digital circuits–Part
I. In: Journal of Genetic Programming and Evolvable Machines 1(1): 8–35 (2000)

22. Miller, J.F., Job, D.,Vassilev,V.K.: Principles in the evolutionary design of digital circuits–Part
II. In: Journal of Genetic Programming and Evolvable Machines 3(2): 259–288 (2000)

23. Mjolsness, E., Sharp, D.H., Reinitz, J.: A connectionist model of development. In: J. Theor.
Biol. 152: 429–454 (1991)

24. Sakamoto, E., Iba, H.: Identifying gene regulatory network as differential equation by genetic
programming. In: Genome Informatics: 281–283 (2000)

25. Sims, K.: Evolving 3D morphology and behaviour by competition. In: Artificial Life IV: 28–39
(1994)

Automating Genetic Network Inference 345

26. Tominaga, D., Okamoto, M., Kami, Y., Watanabe, S., Eguchi, Y.: Nonlinear numeri-
cal optimization technique based on a genetic algorithm. http://www.bioinfo.de/isb/gcb99
/talks/tominaga

27. Weaver, D. C.: Modeling regulatory networks with weight matrices. In: Proc. Pacific Symp.
Bioinformatics 5: 251–258 (2000)

28. Yao, X.: Evolving artificial neural networks. In: Proceedings of the IEEE 87(9): 1423–1447
(1999)

29. Young, R.M.: Mind, Brain and Adaptation in the Nineteenth Century. Cerebral Localization
and its Biological Context from Gall to Ferrier, Clarendon Press. Oxford, UK. (1970)

	Introduction
	Methods
	The Network
	The Estimation-Exploration Algorithm

	Results
	Discussion
	Multiple and Diverse Applications

	Conclusions

