
Co-evolutionary Variance Can Guide Physical Testing
in Evolutionary System Identification

 Viktor Zykov Josh Bongard Hod Lipson
Computational Synthesis Laboratory

Sibley School of Mechanical and Aerospace Engineering
Cornell University, Ithaca, NY 14853

[viktor.zykov | josh.bongard | hod.lipson]@cornell.edu

Abstract

Co-evolution of system models and system tests can

be used for exploratory system identification of physi-
cal platforms. Here we demonstrate how the amount of
physical testing can be reduced by managing the diffi-
culty that a population of tests poses to a population of
candidate models. If test difficulty is not managed, then
disengagement between the two populations occurs:
The difficulty of the evolved test data supplied to the
model population may grow faster than the ability of
the models to explain them. Here we use variance of
model outputs for a given test as a predictor of the
tests’ difficulty. Proper engagement of the co-evolving
populations is achieved by evolving tests that induce a
particular amount of variance. We demonstrate this
claim by identifying nonlinear dynamical systems us-
ing nonlinear models and linear approximation mod-
els.

1. Introduction

A wide range of control engineering applications
require good knowledge of the controlled plant’s inter-
nal structure and parameters. Traditionally such mod-
els are created manually using domain specific knowl-
edge, but the use of automated system identification is
of growing interest [1]. Manual modeling is becoming
increasingly difficult as the complexity of modern
plants is increasing. Automated system identification is
particularly desirable in variable or remote systems,
where the systems or its environment may undergo
some unanticipated or rapid change, and therefore its
internal model must also be updated autonomously in
situ. A particular assumption we make here is that the
system identification process needs to occur with
minimal experimentation on the target system, as ex-

perimentation may be costly, slow, or detrimental to
the target system.

Koza [2] used Genetic Programming (GP) to infer
the internal structure of a target object in symbolic
form by approximating the impulse response function
for a linear time-invariant system. Gray reported the
application of GP for nonlinear model structure identi-
fication based on experimental data from a coupled
water tank and helicopter engine [3, 4]. Short-term
chaotic time series prediction using GP was reported
by Koza [5] for the logistic map in 1992, by Mulloy
[6] in 1996.

In our previous work [7, 8], we presented the Esti-
mation-Exploration Algorithm (EEA), a general co-
evolutionary algorithm for the automated analysis of
and synthesis for nonlinear physical systems. When the
EEA is applied to a class of complex nonlinear physi-
cal systems – such as the mechanical double pendulum
reported in Section 3 – the method was found to fail
because the evolution of the test population occurred at
a higher rate than that of the model population. This
typically resulted in dominance of one population over
the other: the fitness gradient in the model population
is lost because all models fail equally badly against a
set of difficult to explain results produced by the target
system when provided with these difficult tests. Disen-
gagement has been identified as one of several patho-
logies that can plague artificial co-evolutionary sys-
tems [9, 10].

We demonstrate the existence of correlation be-
tween the amount of model disagreement induced by a
test and its effectiveness for the further evolution of
the candidate models. Using this correlation, we pre-
sent two approaches that allowed us to reduce the rate
of development of the test population in a controlled
manner so that the co-evolutionary engagement be-
tween the two populations is maintained.

2. Managing Test Complexity in EEA for
System Identification

In its original implementation, the exploration phase
of the EEA always supplies the most difficult tests to
the estimation phase [7, 8], which may result in the
failure of the estimation phase to find a model explain-
ing the resulting complex behavior of the target sys-
tem.

In Figure 1, we demonstrate the results of an origi-
nal EEA run aimed at finding a system of linear differ-
ential equations approximating the output time series
of a complex unknown target system. 10 EEA runs
shown in Figure 1 used the same parameters as speci-
fied in section 4.1, but the population of tests was co-
evolved with the unchanging goal of inducing maxi-
mum disagreement among the most successful evolved
models. This caused very difficult tests to emerge early
in the EEA run, and the models evolved by that time
could not explain them well (they obtained a high sub-
jective error) – they did not evolve an inner structure
that could satisfactorily explain the behavior of the
target system recorded after testing it with the difficult
tests.

Alternatively, in order to allow the models to evolve
gradually and be able to explain the tests in order of
increasing complexity, we can monitor the process of
model evolution and look for the signs of co-
evolutionary disengagement. In our case, disengage-
ment is signaled by an increase in the model popula-
tions’ error as new tests are added to the set used to
measure the accuracy of the models.

If this undesirable growth in error is detected during
a particular EEA cycle, the algorithm should return to
the point before disengagement occurred. For this, the
algorithm has to withdraw the difficult test and the
corresponding outputs obtained from the target system
from the pool of inputs and outputs used by the EEA to
evolve the new models, because the EEA has just
failed to properly “digest” the most recent test: inclu-
sion of this difficult test in the test pool used to train
models caused the models’ errors to increase too much.
Once this model is withdrawn and the state of the algo-
rithm rolled back, a new test of a lower complexity
should be found by the exploration phase.

An easier test can either be taken from the bank of
tests that have already been set aside as too difficult
during earlier EEA cycles, or the algorithm can try to
find a new, less difficult test.

Here we introduce the EEA Roll-Back procedure. It
allows us to avoid disengagement between models and
tests by undoing the effects of any model evolution
that inflates error too much. The roll-back procedure
provides us with means of engineering the tests of the
required reduced difficulty that can be used to replace
difficult tests that have been temporarily set aside by
the algorithm.

Subjective Identification Error, 10 runs

1.E+00
1.E+01
1.E+02
1.E+03
1.E+04
1.E+05
1.E+06
1.E+07

1 2 3 4 5 6 7 8
EEA cycle

Er
ro

r

Objective Identification Error, 10 runs

3
3.5

4
4.5

5
5.5

6
6.5

7
7.5

1 2 3 4 5 6 7 8
EEA cycle

Er
ro

r

Figure 1. Disengagement during the EEA run:
the subjective error in identifying a complex
plant explodes while objectively EEA perform-
ance does not change. Dotted line shows er-
ror averages.

Roll-Back Outline
In each EEA cycle, a pass through the estimation

phase is considered successful if:
• It results in a better fitness than the previous cycle;
• Its fitness falls into the target fitness margin; or
• It is the first EEA cycle – this allows the consecutive

EEA cycles to improve on the initial results.
If the preceding estimation phase was not successful:
• The resulting model and test populations are dis-

carded and replaced by the populations saved after
the last successful pass through the estimation phase,

• The difficult test that resulted in this unsuccessful
EEA cycle is saved in the bank of the complex tests;
and

• Half the variance of this difficult test is used as a
target variance for selecting the next test from the
bank or evolving one.

If the preceding estimation phase pass was successful:
• The resulting models and tests populations are saved

as successful for possible future roll-back;
• If the bank of difficult tests is empty, a new test is

evolved with no variance limitation; or
• If the bank is not empty, the least difficult test is

withdrawn for use in the next pass through the esti-
mation phase.

3. Approach I: Symbolic Identification

In this section we describe the identification of a
nonlinear target system in which it is assumed that
neither the parameters nor the structure of the target
system are known, but that the number of state vari-
ables is known, which for this target system is two.
Each candidate model is therefore represented by a
pair of differential equations, and a test is represented
as a pair of real values, indicating the initial values of
the two state variables.

The target system identified in this approach is a
nonlinear dynamical system—the two-eyed monster
system— described in [11], and given as

2yyx +=′ (1)

2

6
5

6
1 yxyyxy +−+−=′ . (2)

Given some initial conditions IC = [x0; y0], the tar-
get system is integrated using the Runge-Kutta
method, using a step size of h = 0.01, from t0 = 0 s to
tend = 2 s.

To initiate the EEA, a random initial condition for
each variable is chosen from [–10; 10], and supplied to
the target system. The resulting time series of x and y
are returned to the estimation phase.

3.1. Estimation Phase
In the estimation phase, each genome encodes a set

of differential equations that, when labeled with the
five known parameters, produces a candidate model.
Each genome is encoded as a forest in which there is
one parse tree for each state variable, and each parse
tree encodes the differential equation for that variable.
Nonterminal nodes are labeled from the set [sin; cos;
+; –; *; %; pow], where % is protected division, and
terminal nodes are labeled from the set [v; p; t], where
v indicates a state variable, p indicates a parameter, and
t represents the current time in seconds. Terminal
nodes also have an associated real value that is
rounded to an integer in [0; 1] when the terminal node
has label v or p, and is discarded for label t. The inte-
ger is treated as an index when paired with the terminal
label: for example v(0) = x, v(1) = y; and p(0) = –1 and
p(1) = 1, the two constants provided to the algorithm
for identifying the parameters of the target system. The
maximum depth allowed for any tree was set to 9.

During the first pass through the estimation phase,
300 random forests are generated. For each node that is
created in each tree, a label is chosen from the com-
bined set [sin; cos; +; –; *; %; pow; v; p; t] with
equiprobability if the depth is less than five, and from
the terminal set [v; p; t] with equiprobability otherwise.
A random real number is also selected for the node. If

the arity of the labeled node is one or more, a left sub-
tree is created; if the arity is two, a right subtree is also
created.

Each forest is evaluated as follows. For each test the
current state variable values, the parameter values and t
are supplied to the forest, and x' and y' are calculated.
These values are used by Runge-Kutta integration to
produce new x and y values. The model is evaluated
for the same time period as the target system (2 s). The
subjective error of the current genome is then calcu-
lated using

() () () ()()
vt

mtmtmax
s

v

i j

n
ij

n
ijijij

e

∑∑
= =

−+−
= 1

1000

1

11

, (3)

where v = 2 is the number of state variables in the sys-
tem; t is the number of tests currently in the test suite;
()k
ijt is the value of variable i, at time interval k, pro-

duced by the target system using test j; and ()k
ijm is the

value of variable i, at time interval k, produced by the
candidate model using test j. The max term ensures
that the system will first generate models that mimic
major transients in the target system, such as narrow
and tall spikes in the time series, because such tran-
sients produce large differences over short time peri-
ods.

Once all of the genomes have been evaluated, de-
terministic crowding is used to produce a new genera-
tion of genomes [13]. This method provides sustained
diversity maintenance throughout the generations of
the evolutionary process. All genomes are grouped into
pairs at random, and are then crossed using one-point
crossover, and then mutated. Mutation is as follows.
For each tree, a node is selected at random. If the node
is a terminal, then the associated real value may be
replaced with a new random value in [0; 1] (p = 0.5),
or the node may be mutated (p= 0.5). If the selected
node is non-terminal, it is always mutated. Node muta-
tion involves the selection of a new label from the
combined set if the depth is less than five or from the
terminal set if the depth is equal to five. If the new
label has an arity different from the original node label,
then new subtrees may have to be created (using the
process of node creation described above) or deleted.
Crossover is also used, in which one node from each of
the parent forests may be selected, and subtree cross-
over carried out (node selection is not restricted to the
same state variable tree in both parent forests). The
child forests are then evaluated, and those with lower
subjective errors than their associated parents replace
them.

Evolution continues until a forest is discovered with
()10.se =≤∈ , or until the best model has not been

replaced for 40 generations. If at the termination of the
pass the best model has se > 0.1, then the most recent
test is stored in the test bank; otherwise the test is
added to the test suite. If there is a test in the bank that,
when added to the test suite induces an error of se <
0.2, it is withdrawn and added to the test suite, and the
next pass in the estimation phase commences. Other-
wise, the exploration phase commences using the 10
best models output by the current pass through the
estimation phase. On the second and subsequent passes
through the estimation phase, the 10 best models from
the previous pass seed the initial random population.

3.2. Exploration Phase
If a test is not withdrawn from the test bank, then a

new one must be created. This is accomplished in the
exploration phase. Each pass through the exploration
phase begins with an initial random population of 300
genomes (tests from previous passes are not used to
seed the initial random population). Each genome is
composed of v real values (in this case v = 2), where
each value indicates the initial value of the correspond-
ing variable. Each genome is evaluated as follows. The
encoded initial condition is supplied to each of the 10
models output by the estimation phase, and the result-
ing behaviors are recorded. The fitness of a test is then
given as

() ()()
v

mt
t

v

i

n
i

n
i

f

∑
=

−σ
= 1

101

, (4)

where is the final value of the ith variable from

model j, and

()n
ijm

() ()()n
i

n
i mt 101 −σ gives the variance of these

final signals across all 10 models.
When all of the tests have been evaluated, a new

generation of genomes is produced using deterministic
crowding as explained in the previous sub-section. In
this case however, child genomes that induce higher
model variance than their assigned parent genome re-
place it. The exploration phase is then continued for a
set number of generations; when the phase terminates,
the test that induces the most model variance is output
to the target system.

Termination occurs when the algorithm has passed
through the estimation phase 40 times.

After each pass through the estimation phase, the
best model was saved and its objective error was cal-
culated using

() () () ()()
vt

mtmtmax
o

v

i j

n
ij

n
ijijij

e

∑∑
= =

−+−
= 1

1000

1

11

, (5)

where 1000 random, unseen sets of initial conditions
are generated as test data.

Figure 2. The behavior of the best evolved
model against two different tests. The left col-
umn shows the response of the two state vari-
ables to the first test, and the right column
shows the response to the second test. The
thick line shows the behavior of the target sys-
tem (the two-eyed monster) to the same two
tests. The vertical lines show the time period for
which the models were originally evolved.

3.3. Results
Three variations of the above algorithm were per-

formed. In the first variation which serves as the con-
trol, the exploration phase was not used: rather than
evolving a test that induces model variation, a random
test was generated and output to the target system. In
the second variation, the exploration phase was con-
ducted for 30 generations during each pass through it.
In the third variation, the amount of effort dedicated to
finding a difficult test was dynamically changed. Dur-
ing the first pass through the exploration phase, the
best test from a population of 300 random tests is out-
put to the target system; i.e. only one generation is
evaluated. In subsequent passes through the explora-
tion phase, the search for difficult tests is intensified if
the previous test was successfully explained, and re-
laxed if the previous test was not successfully ex-
plained: if the best model in the most recent pass
through the estimation phase achieved se > 0.1, then
the number of generations performed in the explora-
tion phase is doubled; otherwise, the number of gen-
erations performed in the exploration phase is halved.
If the new number of generations to be performed is
less than one then it is set to one; if the number is
greater than 32 it is set to 32; if the new number of
generations is not an integer, it is rounded down to the
nearest integer.

For each of these three algorithm variants, 30 inde-
pendent runs were performed. Figure 2 reports the be-
havior of the best evolved model found using the sec-
ond algorithm variant. This model, when simplified,

a

b

Figure 3. Mean Performance of the Three Al-
gorithm Variants. a: Mean objective errors of
the best models. b: Mean number of target
trials performed after each pass through the
estimation phase.

gives:

x' = – 0.1585y + ty + y2 + t sin(sin(t / cos(cos(t))))
y' = – cos(sin(cos(sin(x)))) + 0.8415y +

+ sin(t2/0.5402) – x – t – y cos(sin(cos(sin(x)))) +
+ 0.8415y2 + y sin(t2/0.5402) – xy – ty

As can be seen, the algorithm has discovered four
of the governing terms, including a close approxima-
tion to the 6/5 y2 term, which required the evolution of a
real-valued constant.

Figure 3b shows that, although the differences be-
tween the three variants in this case are slight, the fact
that both variant two and three consistently require
fewer target trials than variant one (random testing)
suggests that intelligent testing does indeed reduce the
amount of required target trials.

Finally, we have gathered direct evidence that there
is a positive correlation between the ability of a test to
induce model disagreement and its difficulty. This

Figure 4. Mean subjective error of the best
model output by the estimation phase for each
of the three algorithm variants.

Figure 5. Correlation between the ability of a
test to induce model variance and its diffi-
culty.

correlation is reported in Figure 5. First, a population
of 300 models was trained using a single test, as ex-
plained in section 3.1. Then, a set of 500 random tests
were generated. The amount of disagreement induced
in the 10 best models for each of these tests was then
calculated using Eqn. 4 and recorded. Each test was
then used to further evolve the models: the original
evolved model population was evolved further using
the original test and the one of the 500 random tests as
described in section 3.1. When the population stag-
nated, the objective error of the new best model was
recorded. The model population was then rolled back
to its original state, and the next random test was sup-
plied to the model population.

Figure 5 reports the original model variance versus
the objective error of the new best model for each test.
As can be seen, model variance is a good indicator of
test difficulty.

1θ

2θ

m9.0l1 =

m1.1l2 =

kg5.0m2 =

kg5.0m1 =

Figure 6. Mechanical double pendulum.

4. Approach II: Linear Approximation

In this section, we evolve a linear system that can
approximate the output time series of a complex
nonlinear system over a limited period of time. In our
search, we assume that neither the parameters, nor the
structure, nor the number of state variables of the tar-
get system are known. Each candidate model here is
represented by a system of linear differential equations
for which only the maximum number of state variables
is limited. An intelligent test is represented as a pair of
real values, indicating the initial values of the two state
variables.

A simulated mechanical double pendulum was used
as the hidden target system. This target system for both
its chaotic behavior and well known mathematical de-
scription [11,12], thereby allowing for easy numeric
simulation. Physical parameters of the simulated dou-
ble pendulum are specified according to Figure 6.

At the initialization stage, a set of random initial
models of the system are generated. Models are repre-
sented as fully-connected systems of linear ordinary
differential equations:

()

()

(⎪
⎪
⎪

⎩

⎪
⎪
⎪

⎨

⎧

+++
τ

=

+++
τ

=

+++
τ

=

nnnnn
n

n

nn

nn

yw...ywyw
dt

dy

yw...ywyw
dt

dy

yw...ywyw
dt
dy

2211

2222121
2

2

1212111
1

1

1

1

1

M

)

, (6)

where y1 .. yn are linear system variables, τ1 .. τn are the
time constants, w11 .. wnn are the weights determining
the extent to which internal linear system variables
influence one another, and n is the maximum order of
complexity selected for the evolving linear systems.

Any i-th differential equation of the linear system

∑
=

+−=τ
N

j
jjii

i
i ywy

dt
dy

1

 (7)

can be thought of as an i-th node of a linear continu-
ous-time network connected to all inputs and outputs
of all other nodes with the synaptic weights wi1, wi2 ..
win.

For the estimation phase of the EEA, each candidate
linear system was described by a genome listing all its
respective parameters:

[...w...wwww...www nn 2232221211312111 ττ
]nn3n2n1nn w...www...τ (8)

Each genome is represented by a string of double
precision floating point values of length [n · (n + 1)].
All time constants are initialized randomly with the
values in the range [4h, 1 + 4h] – where h is the time
constant of the Runge-Kutta method used for the linear
model simulation. Weights are initialized randomly
with the values in the range [–1, 1].

4.1. Estimation Phase
During the first pass through the estimation phase,

40 random models based on the template given in Eqn.
(6) are generated. The GA of the estimation phase is
aimed at minimizing the amount of deviation of the
time-series y1(t) and y2(t) generated by a candidate
model from the original time series of the double pen-
dulum angles Θ1(t) and Θ2(t) over a finite period of
time T given some initial conditions y1(0) = Θ1(0) and
y2(0) = Θ2(0) with all other variables of the candidate
linear model initialized with zero values y3(0) = 0,
y4(0) = 0 … yn(0) = 0.

The subjective error se (visible to the EEA) is meas-
ured as the average of K maximum absolute disagree-
ments between the original Θi(t) and jth approximated
output time series yij(t) and Θi(t) over the period T:

K

ymax
s

v

1i

K

1j
iji

e

∑∑
= =

−Θ
= . (9)

Deterministic crowding (DC) was used to select
parent chromosomes of candidate linear systems. The
estimation phase uses the operators of crossover and
mutation. Due to the use of DC, crossover is imple-
mented for all pairs of parents by randomly choosing a
locus in the two parent linear system chromosomes and
swapping the terms to the right of the locus between
the copied parents. Mutation is implemented with the
probability of 0.04 per gene in one of the following
equiprobable ways: by either multiplying the gene
value by , or by . If
the gene represents a weight w11 .. wnn, then its sign
can also be inverted with probability 0.04. If the gene
represents a time constant τ1 .. τn, then it is protected
from being reduced by mutation below 4 integration
time steps. Evolution continues until the best model
has not been replaced for 50 generations.

]....[rande 5050− []0400980 ...rand. +

Roll-Back was implemented according to the out-
line in section 2. The desired error margin has been set
to 0.02 rad. This equals approximately 2% of the over-
all maximum travel of the simulated double pendulum
during 0.2 s given various initial conditions, which is
conventionally considered acceptable precision in con-
trol engineering. The target variance is set to 0.01 of
the target variance specified for the previous cycle in
case of its failure.

4.2. Exploration Phase
At this phase, the intelligent tests are evolved to in-

duce the desired variance among the best evolved
models so far. Each test genome has to fully specify v
inputs to the target system (in this case v = 2) – both
initial angles Θ1(0) and Θ2(0) of the double pendulum.
Therefore, every test chromosome consists of v genes,
each gene being represented by a real value in the
range [0, 2π].

Variance V of every IC genome is evaluated by
evaluating the N = 5 best evolved models with this test
and measuring the resulting disagreement among all
resulting [N · (N – 1) / 2] pairs of the time-series output
by the models

() 21
1 1 1

/NN

mmmax
V

v

i

N

j

N

jk
ikij

−

−
=
∑∑ ∑
= = += , (10)

where ikij mm − is the maximum absolute difference

between the output time series generated by models j
and k for variable i over the simulation time T.

After variance estimation, the difference of the re-
sulting variance from the target variance of the current
exploration run was estimated for each ith test as

Tii VV −=∆ . (11)

The smaller is ∆i, the higher the fitness of the ith
test.

Deterministic Crowding (DC) was used for select-
ing parent chromosomes as described in section 3.1.
Crossover was used analogously to section 4.1. Per-
gene mutation probability was of set to 0.1, mutation
was implemented equiprobably by either multiplying
the gene value by , or by replac-
ing the gene value by a new random value in the range
[0, 2π]. Every population consists of 40 individual
models. Evolution continues until the best test has not
been replaced for 50 generations.

[0400980 ...rand. +]

The algorithm iterates through the estimation and
exploration phases until either the desired subjective
error level has been achieved, or the maximum allowed
number of cycles has been reached.

0

0.02

0.04

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Exploration Phase Pass

Su
bj

ec
tiv

e
Er

ro
r,

ra
d

1

2

3
3

4

5

6 7

5
5

5

5 5

8
9 10

0

0.05

0.1

0.15

0.2

0.25

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Exploration Phase Pass

O
bj

ec
tiv

e
E

rro
r,

ra
d

1

2

3

3

4

5
6 7

5

5 5 5 5

8 9
10

Figure 9. Subjective and objective system
identification error of the best evolved linear
models approximating the behavior of a dou-
ble pendulum over 0.2 s. The number of the
intelligent test used for the estimation phase
at every cycle is denoted above the data
points.

In order to obtain unbiased algorithm performance
assessment, the error of the current best model was
also measured objectively at each EEA cycle. Objec-
tive error measurement was implemented by defining a
fixed set of tests. To create a fixed set of initial condi-
tions, the 2-dimensional space (Θ1, Θ2) was meshed
into a 2D rectangular grid: [25] points equally spaced
within the square defined by [0, 0] to [2π, 2π] were
used to calculate objective error.

4.3. Results
Figure 9 reports the results of running the EEA for

16 cycles. Subjective error increase accompanied by
the objective error drop reflects the shift in the goal of
the algorithm from finding a solution to one specific
problem to generalizing over the two sets of input-
output pairs: the first and the current test.

The subjective error dynamics follow a convex pat-
tern which is common during a successful run of the

EEA. Initially, the models only have to generalize over
a small amount of the input-output data obtained by
experimentation on a target system, which is relatively
easy. In the middle of the run, with the increase in the
amount of data that has to be explained by the models,
the subjective error grows, reflecting that the algorithm
is struggling to achieve good results. Eventually, when
the general structure of the target system has been cap-
tured by the candidate models, the new pairs of input
and output signals only serve to confirm the knowl-
edge of the model about the hidden system; subjective
error goes down.

5. Discussion and Future Research

System identification is particularly important for
evolvable hardware applications such as remote robot-
ics, in which the mechanical as well as the electronic
state of the system may change unpredictably, and new
models of the system must be generated automatically.
Here we have demonstrated two methods for managing
test difficulty during co-evolutionary system identifica-
tion. We have shown that both methods improve the
ability of the algorithm to infer the structure of nonlin-
ear systems.

In future work, we plan to improve the inference
process to better predict the behavior of a target system
over longer periods of time and with higher precision.
Another important research objective is finding more
new ways of reducing the amount of physical experi-
mentation on a target system while maintaining and
improving the identification capabilities.

We also plan to apply the algorithm to several
physical systems, including a quadrupedal robot and
the lac operon gene system in E. coli bacteria.

Acknowledgments

This research was supported in part by the NASA

program for Research in Intelligent Systems, Grant
number NNA04CL10A.

References

[1] Ljung L., System Identification: Theory for the User.
Prentice-Hall, Inc. Englewood Cliffs, NJ, 1999.

[2] Koza, John R., Keane, Martin A., and Rice, James P.
1993. Performance improvement of machine learning via
automatic discovery of facilitating functions as applied to a
problem of symbolic system identification. 1993 IEEE Inter-
national Conference on Neural Networks, San Francisco.
Piscataway, NJ: IEEE Press. Volume I. Pages 191-198. 1993

[3] Gray, G. J., Murray-Smith, D. J., Li, Y. and Sharman,
K.C. Nonlinear Model Structure Identification using Genetic
Programming. Late Breaking Papers at the Genetic Pro-
gramming 1996 Conference Stanford University July 28-31,
pp. 32-37, 1996

[4] Gray, Gary J. and Murray-Smith, David J. and Li, Yun
and Sharman, Ken C. and Weinbrenner, Thomas. Nonlinear
model structure identification using genetic programming.
Control Engineering Practice, Volume 6, pp. 1341-1352,
1998

[5] Koza, John R. Genetic Programming: On the Program-
ming of Computers by Means of Natural Selection. MIT
Press, Cambridge, Massachusetts, pp. 507 – 513, 1992.

[6] Mulloy, Brian S., Riolo, Rick L., and Savit, Robert S.
Dynamics of Genetic Programming and Chaotic Time Series
Prediction. in Koza, John R., Goldberg, David E., Fogel,
David B., and Riolo, Rick L. (editors). Genetic Programming
1996: Proceedings of the First Annual Conference, July 28-
31, 1996, Stanford University. Cambridge, MA: The MIT
Press. Pages 166-174, 1996

[7] Bongard, J. C. and H. Lipson. Automated robot function
recovery after unanticipated failure or environmental change
using a minimum of hardware trials. In Proceedings of The
2004 NASA/DoD Conference on Evolvable Hardware, pp.
169–176, Seattle, WA, 2004.

[8] Lipson, Hod and Josh Bongard, An Exploration-
Estimation Algorithm for Synthesis and Analysis of Engi-
neering Systems using Minimal Physical Testing, Proceed-
ings of the ASME Design Automation Conference (DAC04),
Salt Lake City, UT, Sept. 2004.

[9] Bongard, J. C. and H. Lipson Automating Genetic Net-
work Inference with Minimal Physical Experimentation Us-
ing Coevolution, in Proceedings of the 2004 Genetic and
Evolutionary Computation Conference (GECCO), Springer,
pp. 333-345, 2004.

[10] Borrelli, R. and C. Coleman. Differential Equations: A
Modeling Approach, Prentice-Hall, Englewood Cliffs, NJ,
1987.

[11] Arnold, V. I. Problem in Mathematical Methods of
Classical Mechanics, 2nd ed. New York: Springer-Verlag, p.
109, 1989.

[12] Wells, D. A. Theory and Problems of Lagrangian Dy-
namics. New York: McGraw-Hill, pp. 13-14, 24, and 320-
321, 1967.

[13] Mahfoud S. W., Niching methods for Genetic Algo-
rithms, Ph.D. dissertation from the University of Illinois,
Urbana Champaign, IL, USA, 1995.

http://www.mae.cornell.edu/ccsl/papers/DETC04_Lipson.pdf
http://www.mae.cornell.edu/ccsl/papers/DETC04_Lipson.pdf
http://www.mae.cornell.edu/ccsl/papers/DETC04_Lipson.pdf

	1. Introduction
	2. Managing Test Complexity in EEA for System Identification
	3. Approach I: Symbolic Identification
	3.1. Estimation Phase
	3.2. Exploration Phase
	3.3. Results

	4. Approach II: Linear Approximation
	4.1. Estimation Phase
	4.2. Exploration Phase
	4.3. Results

	5. Discussion and Future Research
	Acknowledgments
	References

