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Abstract 

 
Co-evolution of system models and system tests can 

be used for exploratory system identification of physi-
cal platforms. Here we demonstrate how the amount of 
physical testing can be reduced by managing the diffi-
culty that a population of tests poses to a population of 
candidate models. If test difficulty is not managed, then 
disengagement between the two populations occurs: 
The difficulty of the evolved test data supplied to the 
model population may grow faster than the ability of 
the models to explain them. Here we use variance of 
model outputs for a given test as a predictor of the 
tests’ difficulty. Proper engagement of the co-evolving 
populations is achieved by evolving tests that induce a 
particular amount of variance. We demonstrate this 
claim by identifying nonlinear dynamical systems us-
ing nonlinear models and linear approximation mod-
els.  
 
1. Introduction 
 

A wide range of control engineering applications 
require good knowledge of the controlled plant’s inter-
nal structure and parameters. Traditionally such mod-
els are created manually using domain specific knowl-
edge, but the use of automated system identification is 
of growing interest [1]. Manual modeling is becoming 
increasingly difficult as the complexity of modern 
plants is increasing. Automated system identification is 
particularly desirable in variable or remote systems, 
where the systems or its environment may undergo 
some unanticipated or rapid change, and therefore its 
internal model must also be updated autonomously in 
situ. A particular assumption we make here is that the 
system identification process needs to occur with 
minimal experimentation on the target system, as ex-

perimentation may be costly, slow, or detrimental to 
the target system.  

Koza [2] used Genetic Programming (GP) to infer 
the internal structure of a target object in symbolic 
form by approximating the impulse response function 
for a linear time-invariant system. Gray reported the 
application of GP for nonlinear model structure identi-
fication based on experimental data from a coupled 
water tank and helicopter engine [3, 4]. Short-term 
chaotic time series prediction using GP was reported 
by Koza [5] for the logistic map in 1992, by Mulloy 
[6] in 1996. 

In our previous work [7, 8], we presented the Esti-
mation-Exploration Algorithm (EEA), a general co-
evolutionary algorithm for the automated analysis of 
and synthesis for nonlinear physical systems. When the 
EEA is applied to a class of complex nonlinear physi-
cal systems – such as the mechanical double pendulum 
reported in Section 3 – the method was found to fail 
because the evolution of the test population occurred at 
a higher rate than that of the model population. This 
typically resulted in dominance of one population over 
the other: the fitness gradient in the model population 
is lost because all models fail equally badly against a 
set of difficult to explain results produced by the target 
system when provided with these difficult tests. Disen-
gagement has been identified as one of several patho-
logies that can plague artificial co-evolutionary sys-
tems [9, 10].  

We demonstrate the existence of correlation be-
tween the amount of model disagreement induced by a 
test and its effectiveness for the further evolution of 
the candidate models. Using this correlation, we pre-
sent two approaches that allowed us to reduce the rate 
of development of the test population in a controlled 
manner so that the co-evolutionary engagement be-
tween the two populations is maintained. 



2. Managing Test Complexity in EEA for 
System Identification 
 

In its original implementation, the exploration phase 
of the EEA always supplies the most difficult tests to 
the estimation phase [7, 8], which may result in the 
failure of the estimation phase to find a model explain-
ing the resulting complex behavior of the target sys-
tem.  

In Figure 1, we demonstrate the results of an origi-
nal EEA run aimed at finding a system of linear differ-
ential equations approximating the output time series 
of a complex unknown target system. 10 EEA runs 
shown in Figure 1 used the same parameters as speci-
fied in section 4.1, but the population of tests was co-
evolved with the unchanging goal of inducing maxi-
mum disagreement among the most successful evolved 
models. This caused very difficult tests to emerge early 
in the EEA run, and the models evolved by that time 
could not explain them well (they obtained a high sub-
jective error) – they did not evolve an inner structure 
that could satisfactorily explain the behavior of the 
target system recorded after testing it with the difficult 
tests. 

Alternatively, in order to allow the models to evolve 
gradually and be able to explain the tests in order of 
increasing complexity, we can monitor the process of 
model evolution and look for the signs of co-
evolutionary disengagement. In our case, disengage-
ment is signaled by an increase in the model popula-
tions’ error as new tests are added to the set used to 
measure the accuracy of the models. 

If this undesirable growth in error is detected during 
a particular EEA cycle, the algorithm should return to 
the point before disengagement occurred. For this, the 
algorithm has to withdraw the difficult test and the 
corresponding outputs obtained from the target system 
from the pool of inputs and outputs used by the EEA to 
evolve the new models, because the EEA has just 
failed to properly “digest” the most recent test: inclu-
sion of this difficult test in the test pool used to train 
models caused the models’ errors to increase too much. 
Once this model is withdrawn and the state of the algo-
rithm rolled back, a new test of a lower complexity 
should be found by the exploration phase. 

An easier test can either be taken from the bank of 
tests that have already been set aside as too difficult 
during earlier EEA cycles, or the algorithm can try to 
find a new, less difficult test.  

Here we introduce the EEA Roll-Back procedure. It 
allows us to avoid disengagement between models and 
tests by undoing the effects of any model evolution 
that inflates error too much. The roll-back procedure 
provides us with means of engineering the tests of the 
required reduced difficulty that can be used to replace 
difficult tests that have been temporarily set aside by 
the algorithm.  
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Figure 1. Disengagement during the EEA run: 
the subjective error in identifying a complex 
plant explodes while objectively EEA perform-
ance does not change. Dotted line shows er-
ror averages. 
 

Roll-Back Outline 
In each EEA cycle, a pass through the estimation 

phase is considered successful if: 
• It results in a better fitness than the previous cycle; 
• Its fitness falls into the target fitness margin; or 
• It is the first EEA cycle – this allows the consecutive 

EEA cycles to improve on the initial results. 
If the preceding estimation phase was not successful: 
• The resulting model and test populations are dis-

carded and replaced by the populations saved after 
the last successful pass through the estimation phase, 

• The difficult test that resulted in this unsuccessful 
EEA cycle is saved in the bank of the complex tests; 
and 

• Half the variance of this difficult test is used as a 
target variance for selecting the next test from the 
bank or evolving one. 

If the preceding estimation phase pass was successful: 
• The resulting models and tests populations are saved 

as successful for possible future roll-back; 
• If the bank of difficult tests is empty, a new test is 

evolved with no variance limitation; or 
• If the bank is not empty, the least difficult test is 

withdrawn for use in the next pass through the esti-
mation phase. 



3. Approach I: Symbolic Identification 
 

In this section we describe the identification of a 
nonlinear target system in which it is assumed that 
neither the parameters nor the structure of the target 
system are known, but that the number of state vari-
ables is known, which for this target system is two. 
Each candidate model is therefore represented by a 
pair of differential equations, and a test is represented 
as a pair of real values, indicating the initial values of 
the two state variables. 

The target system identified in this approach is a 
nonlinear dynamical system—the two-eyed monster 
system— described in [11], and given as 
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Given some initial conditions IC = [x0; y0], the tar-
get system is integrated using the Runge-Kutta 
method, using a step size of h = 0.01, from t0 = 0 s to 
tend = 2 s. 

To initiate the EEA, a random initial condition for 
each variable is chosen from [–10; 10], and supplied to 
the target system. The resulting time series of x and y 
are returned to the estimation phase. 

3.1. Estimation Phase 
In the estimation phase, each genome encodes a set 

of differential equations that, when labeled with the 
five known parameters, produces a candidate model. 
Each genome is encoded as a forest in which there is 
one parse tree for each state variable, and each parse 
tree encodes the differential equation for that variable. 
Nonterminal nodes are labeled from the set [sin; cos; 
+; –; *; %; pow], where % is protected division, and 
terminal nodes are labeled from the set [v; p; t], where 
v indicates a state variable, p indicates a parameter, and 
t represents the current time in seconds. Terminal 
nodes also have an associated real value that is 
rounded to an integer in [0; 1] when the terminal node 
has label v or p, and is discarded for label t. The inte-
ger is treated as an index when paired with the terminal 
label: for example v(0) = x, v(1) = y; and p(0) = –1 and 
p(1) = 1, the two constants provided to the algorithm 
for identifying the parameters of the target system. The 
maximum depth allowed for any tree was set to 9. 

During the first pass through the estimation phase, 
300 random forests are generated. For each node that is 
created in each tree, a label is chosen from the com-
bined set [sin; cos; +; –; *; %; pow; v; p; t] with 
equiprobability if the depth is less than five, and from 
the terminal set [v; p; t] with equiprobability otherwise. 
A random real number is also selected for the node. If 

the arity of the labeled node is one or more, a left sub-
tree is created; if the arity is two, a right subtree is also 
created.  

Each forest is evaluated as follows. For each test the 
current state variable values, the parameter values and t 
are supplied to the forest, and x' and y' are calculated. 
These values are used by Runge-Kutta integration to 
produce new x and y values. The model is evaluated 
for the same time period as the target system (2 s). The 
subjective error of the current genome is then calcu-
lated using 
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where v = 2 is the number of state variables in the sys-
tem; t is the number of tests currently in the test suite; 
( )k
ijt is the value of variable i, at time interval k, pro-

duced by the target system using test j; and ( )k
ijm  is the 

value of variable i, at time interval k, produced by the 
candidate model using test j. The max term ensures 
that the system will first generate models that mimic 
major transients in the target system, such as narrow 
and tall spikes in the time series, because such tran-
sients produce large differences over short time peri-
ods. 

Once all of the genomes have been evaluated, de-
terministic crowding is used to produce a new genera-
tion of genomes [13]. This method provides sustained 
diversity maintenance throughout the generations of 
the evolutionary process. All genomes are grouped into 
pairs at random, and are then crossed using one-point 
crossover, and then mutated. Mutation is as follows. 
For each tree, a node is selected at random. If the node 
is a terminal, then the associated real value may be 
replaced with a new random value in [0; 1] (p = 0.5), 
or the node may be mutated (p= 0.5). If the selected 
node is non-terminal, it is always mutated. Node muta-
tion involves the selection of a new label from the 
combined set if the depth is less than five or from the 
terminal set if the depth is equal to five. If the new 
label has an arity different from the original node label, 
then new subtrees may have to be created (using the 
process of node creation described above) or deleted. 
Crossover is also used, in which one node from each of 
the parent forests may be selected, and subtree cross-
over carried out (node selection is not restricted to the 
same state variable tree in both parent forests). The 
child forests are then evaluated, and those with lower 
subjective errors than their associated parents replace 
them. 

Evolution continues until a forest is discovered with 
( )10.se =≤∈ , or until the best model has not been 



replaced for 40 generations. If at the termination of the  
pass the best model has se > 0.1, then the most recent 
test is stored in the test bank; otherwise the test is 
added to the test suite. If there is a test in the bank that, 
when added to the test suite induces an error of se < 
0.2, it is withdrawn and added to the test suite, and the 
next pass in the estimation phase commences. Other-
wise, the exploration phase commences using the 10 
best models output by the current pass through the 
estimation phase. On the second and subsequent passes 
through the estimation phase, the 10 best models from 
the previous pass seed the initial random population. 

3.2. Exploration Phase 
If a test is not withdrawn from the test bank, then a 

new one must be created. This is accomplished in the 
exploration phase. Each pass through the exploration 
phase begins with an initial random population of 300 
genomes (tests from previous passes are not used to 
seed the initial random population). Each genome is 
composed of v real values (in this case v = 2), where 
each value indicates the initial value of the correspond-
ing variable. Each genome is evaluated as follows. The 
encoded initial condition is supplied to each of the 10 
models output by the estimation phase, and the result-
ing behaviors are recorded. The fitness of a test is then 
given as 
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where  is the final value of the ith variable from 

model j, and 
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final signals across all 10 models.  
When all of the tests have been evaluated, a new 

generation of genomes is produced using deterministic 
crowding as explained in the previous sub-section. In 
this case however, child genomes that induce higher 
model variance than their assigned parent genome re-
place it. The exploration phase is then continued for a 
set number of generations; when the phase terminates, 
the test that induces the most model variance is output 
to the target system.  

Termination occurs when the algorithm has passed 
through the estimation phase 40 times. 

After each pass through the estimation phase, the 
best model was saved and its objective error was cal-
culated using 
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where 1000 random, unseen sets of initial conditions 
are generated as test data. 

 
Figure 2. The behavior of the best evolved 
model against two different tests. The left col-
umn shows the response of the two state vari-
ables to the first test, and the right column 
shows the response to the second test. The 
thick line shows the behavior of the target sys-
tem (the two-eyed monster) to the same two 
tests. The vertical lines show the time period for 
which the models were originally evolved. 

3.3. Results 
Three variations of the above algorithm were per-

formed. In the first variation which serves as the con-
trol, the exploration phase was not used: rather than 
evolving a test that induces model variation, a random 
test was generated and output to the target system. In 
the second variation, the exploration phase was con-
ducted for 30 generations during each pass through it. 
In the third variation, the amount of effort dedicated to 
finding a difficult test was dynamically changed. Dur-
ing the first pass through the exploration phase, the 
best test from a population of 300 random tests is out-
put to the target system; i.e. only one generation is 
evaluated. In subsequent passes through the explora-
tion phase, the search for difficult tests is intensified if 
the previous test was successfully explained, and re-
laxed if the previous test was not successfully ex-
plained: if the best model in the most recent pass 
through the estimation phase achieved se > 0.1, then 
the number of generations performed in the explora-
tion phase is doubled; otherwise, the number of gen-
erations performed in the exploration phase is halved. 
If the new number of generations to be performed is 
less than one then it is set to one; if the number is 
greater than 32 it is set to 32; if the new number of 
generations is not an integer, it is rounded down to the 
nearest integer. 

For each of these three algorithm variants, 30 inde-
pendent runs were performed. Figure 2 reports the be-
havior of the best evolved model found using the sec-
ond algorithm variant. This model, when simplified,  



a  

b  

Figure 3. Mean Performance of the Three Al-
gorithm Variants. a: Mean objective errors of 
the best models. b: Mean number of target 
trials performed after each pass through the 
estimation phase. 

 
gives: 

x' = – 0.1585y + ty + y2 + t sin(sin(t / cos(cos(t))))  
y' = – cos(sin(cos(sin(x)))) + 0.8415y +  

+ sin(t2/0.5402) – x – t – y cos(sin(cos(sin(x)))) + 
+ 0.8415y2 + y sin(t2/0.5402) – xy – ty  

As can be seen, the algorithm has discovered four 
of the governing terms, including a close approxima-
tion to the 6/5 y2 term, which required the evolution of a 
real-valued constant. 

Figure 3b shows that, although the differences be-
tween the three variants in this case are slight, the fact 
that both variant two and three consistently require 
fewer target trials than variant one (random testing) 
suggests that intelligent testing does indeed reduce the 
amount of required target trials. 

Finally, we have gathered direct evidence that there 
is a positive correlation between the ability of a test to 
induce model disagreement and its difficulty. This 

 
Figure 4. Mean subjective error of the best 
model output by the estimation phase for each 
of the three algorithm variants. 

 
Figure 5. Correlation between the ability of a 
test to induce model variance and its diffi-
culty. 

 
correlation is reported in Figure 5. First, a population 
of 300 models was trained using a single test, as ex-
plained in section 3.1. Then, a set of 500 random tests 
were generated. The amount of disagreement induced 
in the 10 best models for each of these tests was then 
calculated using Eqn. 4 and recorded. Each test was 
then used to further evolve the models: the original 
evolved model population was evolved further using 
the original test and the one of the 500 random tests as 
described in section 3.1. When the population stag-
nated, the objective error of the new best model was 
recorded. The model population was then rolled back 
to its original state, and the next random test was sup-
plied to the model population. 

Figure 5 reports the original model variance versus 
the objective error of the new best model for each test. 
As can be seen, model variance is a good indicator of 
test difficulty. 
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Figure 6. Mechanical double pendulum. 
 
4. Approach II: Linear Approximation 
 

In this section, we evolve a linear system that can 
approximate the output time series of a complex 
nonlinear system over a limited period of time. In our 
search, we assume that neither the parameters, nor the 
structure, nor the number of state variables of the tar-
get system are known. Each candidate model here is 
represented by a system of linear differential equations 
for which only the maximum number of state variables 
is limited. An intelligent test is represented as a pair of 
real values, indicating the initial values of the two state 
variables. 

A simulated mechanical double pendulum was used 
as the hidden target system. This target system for both 
its chaotic behavior and well known mathematical de-
scription [11,12], thereby allowing for easy numeric 
simulation. Physical parameters of the simulated dou-
ble pendulum are specified according to Figure 6.  

At the initialization stage, a set of random initial 
models of the system are generated. Models are repre-
sented as fully-connected systems of linear ordinary 
differential equations: 
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where y1 .. yn are linear system variables, τ1 .. τn are the 
time constants, w11 .. wnn are the weights determining 
the extent to which internal linear system variables 
influence one another, and n is the maximum order of 
complexity selected for the evolving linear systems. 

Any i-th differential equation of the linear system  
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can be thought of as an i-th node of a linear continu-
ous-time network connected to all inputs and outputs 
of all other nodes with the synaptic weights wi1, wi2 .. 
win.  

For the estimation phase of the EEA, each candidate 
linear system was described by a genome listing all its 
respective parameters: 

[ ...w...wwww...www nn 2232221211312111 ττ  
]nn3n2n1nn w...www...τ  (8) 

Each genome is represented by a string of double 
precision floating point values of length [n · (n + 1)]. 
All time constants are initialized randomly with the 
values in the range [4h, 1 + 4h] – where h is the time 
constant of the Runge-Kutta method used for the linear 
model simulation. Weights are initialized randomly 
with the values in the range [–1, 1]. 

4.1. Estimation Phase 
During the first pass through the estimation phase, 

40 random models based on the template given in Eqn. 
(6) are generated. The GA of the estimation phase is 
aimed at minimizing the amount of deviation of the 
time-series y1(t) and y2(t) generated by a candidate 
model from the original time series of the double pen-
dulum angles Θ1(t) and Θ2(t) over a finite period of 
time T given some initial conditions y1(0) = Θ1(0) and 
y2(0) = Θ2(0) with all other variables of the candidate 
linear model initialized with zero values y3(0) = 0, 
y4(0) = 0 … yn(0) = 0.  

The subjective error se (visible to the EEA) is meas-
ured as the average of K maximum absolute disagree-
ments between the original Θi(t) and jth approximated 
output time series yij(t) and Θi(t) over the period T: 
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Deterministic crowding (DC) was used to select 
parent chromosomes of candidate linear systems. The 
estimation phase uses the operators of crossover and 
mutation. Due to the use of DC, crossover is imple-
mented for all pairs of parents by randomly choosing a 
locus in the two parent linear system chromosomes and 
swapping the terms to the right of the locus between 
the copied parents. Mutation is implemented with the 
probability of 0.04 per gene in one of the following 
equiprobable ways: by either multiplying the gene 
value by , or by . If 
the gene represents a weight w11 .. wnn, then its sign 
can also be inverted with probability 0.04. If the gene 
represents a time constant τ1 .. τn, then it is protected 
from being reduced by mutation below 4 integration 
time steps. Evolution continues until the best model 
has not been replaced for 50 generations.  

]....[rande 5050− [ ]0400980 ...rand. +



Roll-Back was implemented according to the out-
line in section 2. The desired error margin has been set 
to 0.02 rad. This equals approximately 2% of the over-
all maximum travel of the simulated double pendulum 
during 0.2 s given various initial conditions, which is 
conventionally considered acceptable precision in con-
trol engineering.  The target variance is set to 0.01 of 
the target variance specified for the previous cycle in 
case of its failure.  

4.2. Exploration Phase 
At this phase, the intelligent tests are evolved to in-

duce the desired variance among the best evolved 
models so far. Each test genome has to fully specify v 
inputs to the target system (in this case v = 2) – both 
initial angles Θ1(0) and Θ2(0) of the double pendulum. 
Therefore, every test chromosome consists of v genes, 
each gene being represented by a real value in the 
range [0, 2π].  

Variance V of every IC genome is evaluated by 
evaluating the N = 5 best evolved models with this test 
and measuring the resulting disagreement among all 
resulting [N · (N – 1) / 2] pairs of the time-series output 
by the models 
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where ikij mm −  is the maximum absolute difference 

between the output time series generated by models j 
and k for variable i over the simulation time T. 

After variance estimation, the difference of the re-
sulting variance from the target variance of the current 
exploration run was estimated for each  ith test as  

Tii VV −=∆ . (11) 

The smaller is ∆i, the higher the fitness of the ith 
test. 

Deterministic Crowding (DC) was used for select-
ing parent chromosomes as described in section 3.1. 
Crossover was used analogously to section 4.1. Per-
gene mutation probability was of set to 0.1, mutation 
was implemented equiprobably by either multiplying 
the gene value by , or by replac-
ing the gene value by a new random value in the range 
[0, 2π].  Every population consists of 40 individual 
models. Evolution continues until the best test has not 
been replaced for 50 generations.  

[ 0400980 ...rand. + ]

The algorithm iterates through the estimation and 
exploration phases until either the desired subjective 
error level has been achieved, or the maximum allowed 
number of cycles has been reached. 
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Figure 9. Subjective and objective system 
identification error of the best evolved linear 
models approximating the behavior of a dou-
ble pendulum over 0.2 s. The number of the 
intelligent test used for the estimation phase 
at every cycle is denoted above the data 
points. 
 

In order to obtain unbiased algorithm performance 
assessment, the error of the current best model was 
also measured objectively at each EEA cycle. Objec-
tive error measurement was implemented by defining a 
fixed set of tests. To create a fixed set of initial condi-
tions, the 2-dimensional space (Θ1, Θ2) was meshed 
into a 2D rectangular grid: [25] points equally spaced 
within the square defined by [0, 0] to [2π, 2π] were 
used to calculate objective error. 

4.3. Results 
Figure 9 reports the results of running the EEA for 

16 cycles. Subjective error increase accompanied by 
the objective error drop reflects the shift in the goal of 
the algorithm from finding a solution to one specific 
problem to generalizing over the two sets of input-
output pairs: the first and the current test.  

The subjective error dynamics follow a convex pat-
tern which is common during a successful run of the 



EEA. Initially, the models only have to generalize over 
a small amount of the input-output data obtained by 
experimentation on a target system, which is relatively 
easy. In the middle of the run, with the increase in the 
amount of data that has to be explained by the models, 
the subjective error grows, reflecting that the algorithm 
is struggling to achieve good results. Eventually, when 
the general structure of the target system has been cap-
tured by the candidate models, the new pairs of input 
and output signals only serve to confirm the knowl-
edge of the model about the hidden system; subjective 
error goes down. 
 
5. Discussion and Future Research 
 

System identification is particularly important for 
evolvable hardware applications such as remote robot-
ics, in which the mechanical as well as the electronic 
state of the system may change unpredictably, and new 
models of the system must be generated automatically. 
Here we have demonstrated two methods for managing 
test difficulty during co-evolutionary system identifica-
tion. We have shown that both methods improve the 
ability of the algorithm to infer the structure of nonlin-
ear systems. 

In future work, we plan to improve the inference 
process to better predict the behavior of a target system 
over longer periods of time and with higher precision. 
Another important research objective is finding more 
new ways of reducing the amount of physical experi-
mentation on a target system while maintaining and 
improving the identification capabilities. 

We also plan to apply the algorithm to several 
physical systems, including a quadrupedal robot and 
the lac operon gene system in E. coli bacteria. 
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