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Nonlinear System Identification Using
Coevolution of Models and Tests

Josh C. Bongard and Hod Lipson

Abstract—We present a coevolutionary algorithm for inferring
the topology and parameters of a wide range of hidden nonlinear
systems with a minimum of experimentation on the target system.
The algorithm synthesizes an explicit model directly from the
observed data produced by intelligently generated tests. The
algorithm is composed of two coevolving populations. One popu-
lation evolves candidate models that estimate the structure of the
hidden system. The second population evolves informative tests
that either extract new information from the hidden system or
elicit desirable behavior from it. The fitness of candidate models
is their ability to explain behavior of the target system observed in
response to all tests carried out so far; the fitness of candidate tests
is their ability to make the models disagree in their predictions. We
demonstrate the generality of this estimation-exploration algorithm
by applying it to four different problems—grammar induction,
gene network inference, evolutionary robotics, and robot damage
recovery—and discuss how it overcomes several of the pathologies
commonly found in other coevolutionary algorithms. We show
that the algorithm is able to successfully infer and/or manipulate
highly nonlinear hidden systems using very few tests, and that the
benefit of this approach increases as the hidden systems possess
more degrees of freedom, or become more biased or unobservable.
The algorithm provides a systematic method for posing synthesis
or analysis tasks to a coevolutionary system.

Index Terms—Coevolution, evolutionary robotics, gene network
inference, grammar induction, nonlinear topological system iden-
tification.

I. INTRODUCTION

SYSTEM identification is a ubiquitous tool in both science
and engineering. Given some partially hidden system, the

experimenter applies a series of intelligently formulated experi-
ments to the system in order to learn more about it [44] or make
it produce a desired output [27]. The experiment is often de-
scribed as a set of input to the system, and the resulting be-
havior of the system given this input is described by a set of
output values. The result of the system identification process is
a model that describes the salient features of the system itself.

There are two ways to approach the model inference process:
A batch (offline) approach and an iterative (online) approach.
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Fig. 1. Two approaches to system identification. (a) A batch approach: a set of
input data is generated before identification begins; the hidden system generates
output for each input; and the resulting corpus of input/output pairs is used to
construct a model of the hidden system. (b) An iterative approach, in which a
continual model of the hidden system is refined based on each new input/output
data pair.

The batch approach [shown in Fig. 1(a)] involves first gener-
ating a set of input vectors and obtaining the corresponding set
of output vectors, and then generating a model that correctly pre-
dicts the observed outputs for the given inputs. Many data-inten-
sive machine-learning methods operate in this way; it is mostly
suitable when data is freely available or can easily be collected,
but cannot be controlled. Examples include the evolution of
models to explain stock market data, or models of gene coac-
tivation from microarray data.

In many application areas, however, data is critically limited,
expensive, or may be biased in unknown ways. In such cases, it
is worthwhile to intelligently formulate new experiments to de-
liberately collect useful data. In the iterative approach [shown in
Fig. 1(b)], the inference process generates an input vector, ob-
tains the resulting output vector, and uses the input/output vector
pair to improve the original model. This process is iterated until
a sufficiently accurate model is obtained. Importantly, in the it-
erative approach the current model can be used to guide the se-
lection of new input vectors that will extract the most new infor-
mation about the hidden system given what is already known.
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Fig. 2. Applying the algorithm to different problem domains. (a) The general organization of the estimation-exploration algorithm. (b) Applying the algorithm
to the problem of grammar induction. (c) Applying the algorithm to the problem of gene network inference. (d) Applying the algorithm to evolutionary robotics.
(e) Applying the algorithm for automated recovery after unanticipated robot malfunction.

The field of identification for control [27] involves the gener-
ation of a possibly incomplete model solely for the purpose of
control, i.e., the correctness of the model itself is important only
insofar as it enables the derivation of a useful controller. How-
ever, in this field, as in system identification, data is passively
collected from the target system; the model is not used to de-
termine which experiment to perform next. Also, it has been
noted [27] that no methods exist yet for the automated creation
of a controller, given a set of approximate models of the target
system. This paper presents an advance toward such automation.

By intelligently choosing input vectors, the number of exper-
iments that need to be performed on the target system in order
to create a sufficiently accurate model of it can be greatly re-
duced. Similarly, any biases present in batch-generated data can
be actively compensated for by deliberately asking for new tests.
This is important in domains in which it is expensive, risky or
time-consuming to perform experiments, or in which experi-
ments alter the structure of the hidden system, thus complicating
the inference process.

The method described here is a form of active learning. This
machine-learning approach actively seeks out tests that will im-
prove the generalization ability of a classifier or learner [16].
However, in typical active learning methods, the “model” of the
hidden system is simply a mapping that best translates the input
data into the observed output data: It does not mirror the internal
structure of the hidden system. The algorithm presented here
synthesizes an explicit model of the hidden system using intel-
ligently selected tests. This explicit model can then be used to
learn about possible causalities in the hidden system, to localize
some change in the system (such as a broken part), or to use that
localized information to generate desired behavior (such as re-
covery of function by circumventing the broken part).

In this paper, we introduce a coevolutionary algorithm, which
we call the estimation-exploration algorithm, that automates
both model inference and the generation of useful experiments.
We use an iterative (online) approach, and maintain two coe-
volving populations: One that evolves candidate models, and
one that evolves tests. The fitness of candidate models is their
ability to explain the behavior of the target system observed
in response to all tests carried out so far; the fitness of candi-
date tests is their ability to make the models disagree in their
predictions.

The estimation-exploration algorithm can be implemented in
a variety of ways: The two populations can coevolve in parallel
(in steady state) or in a two-phase cycle; models and tests can be
evaluated against current populations or against their histories,

and models and tests can be evolved not just to infer a system
but also to improve its performance. Here, we describe a number
of implementations of the algorithm and its application to four
different problems: inferring finite-state automata; inferring ge-
netic regulatory networks; improving behavior transferal from a
simulated to a target robot; and allowing robots to automatically
diagnose and recover from unanticipated malfunctions.

The next section introduces the estimation-exploration algo-
rithm. The following four sections describe each application in
turn. The last section provides discusses general properties of
the algorithm and avenues for further study.

II. ESTIMATION-EXPLORATION ALGORITHM

The estimation-exploration algorithm is comprised of two
populations: The estimation population, which evolves im-
provements to models of the hidden system, given pairs of
input/output data obtained from the system; and the exploration
population, which evolves intelligent tests to perform on the
hidden target system using the best models so far. A cyclical
implementation of the algorithm comprises two phases: The
estimation phase and the exploration phase. The algorithmic
flow of the algorithm is given in Fig. 3.

The estimation phase begins with an initial population of can-
didate models, which can be random, blank, or seeded with
some prior knowledge about the target system. The exploration
phase evolves tests that will serve one or possibly two functions:
First, tests should extract as much information about the internal
structure of the system as possible, given what is already known
about the system by the candidate models. Second, tests should
elicit some useful behavior from the target system. Once such
a test is evolved, it is applied to the target hidden system and
some output is obtained. Using this new input/output data pair,
plus any additional input/output pairs obtained during previous
tests, the estimation phase evolves a better model that can better
reproduce the observed output data, given the input data. The
new candidate models are then passed to the exploration phase.
The cycle continues until either a sufficiently accurate model of
the hidden system is obtained, or a test eventually elicits some
desirable behavior from the target system. A schematic repre-
sentation of the algorithm is shown in Fig. 2(a).

A. Coevolution

There has been much interest in coevolutionary algorithms
within the evolutionary computation community, as evidenced
by the recent literature (e.g., [12], [33], [49], [52], [54], and
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Fig. 3. Estimation-exploration algorithm outline.

[58]), starting with the seminal work of Hillis [29] on sorting
networks. Contrary to conventional evolutionary systems, co-
evolutionary systems consist of one or more populations, where
individuals may influence the relative ranking of others indi-
viduals [12]. For example, whether individual is inferior or
superior to individual may depend on a third individual
rather than on some external fitness metric that provides an ab-
solute ranking. There are a number of different forms of co-
evolution: Antagonistic coevolution (e.g., predator–prey), coop-
erative coevolution (e.g., symbiosis) or nonsymmetric systems
(e.g., host–parasite or teacher–learner [22]).

In the discussion of coevolutionary systems, it is important to
distinguish between the notion of objective fitness versus sub-
jective fitness. Objective fitness is the well-defined absolute fit-
ness metric used in classical evolutionary algorithms. Subjective
fitness is the fitness as defined by coevolving individuals, which
may be only weakly correlated with the objective fitness and
may sometimes even be misleading. A coevolving individual
only knows its subjective fitness. In the examples presented in
this paper, we show absolute fitness only for benchmarking pur-
poses: the algorithm itself has no access to the absolute fitness,
as in a realistic application, we do not know how close the model
really is to the hidden target system; rather it only has indirect
evidence by comparing input–output sets.

Implementations of coevolution are notoriously difficult, and
have been plagued with a number of pathologies arising from
complex coevolutionary dynamics [34], [62]. Much of the focus
of current research has been to address these drawbacks [15],
[33], [54], [58]. However, hybrid coevolutionary algorithms,
such as the one proposed in this paper, are less affected by
these pathologies due to the anchoring effect of the stable target
system.

Pathology I: The Red Queen Effect: One related set of
pathologies derives from the purely subjective measure of
fitness in pure coevolutionary systems, and is known as the
Red Queen effect: Two populations continuously adapt to each
other and their subjective fitness improves, but they fail to make
any consistent progress along the objective metric. Conversely,
they do make progress along an objective fitness but their
subjective fitness does not reflect this and falsely indicates lack
of progress. Both of these effects may initially occur in our
system: A series of difficult tests may decrease the subjective
fitness of models while in fact they are improving in their
objective fitness. Alternatively, a series of biased tests may give
rise to overspecialized models which seem to be doing well
at explaining the available data (high subjective fitness) but in
fact are departing from the true model (lowering their objective
fitness).

Both of these effects are transient in our method because of
the anchoring provided by the fixed target system. As the true
objective correctness of models improves, they are ultimately
able to describe test data and, therefore, their subjective fit-
ness also increases. Conversely, arbitrary overspecialization is
removed because it is a source of disagreement among models
and is, therefore, challenged by new tests.

Pathology II: Cycling and Transitive Dominance: Because
the subjective fitness criteria is changing over time, individuals
may “forget” previous abilities, and then rediscover them later,
yielding a cycling performance. Similarly, an individual may be
superior to a second individual who is at the same time supe-
rior to it according to a different subjective metric. Cycling and
transitive dominance problems are eliminated by the fixed target
system, because all models need to explain all data so far in ad-
dition to any new data.
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Pathology III: Disengagement: Disengagement occurs when
one population is entirely superior to another population. The
subjective fitnesses of both populations then become constant
and all selection pressure is lost, resulting in drift. In system
identification disengagement may occur when a test may be pre-
sented which is too difficult for the model population to ex-
plain, and all models get an equally low subjective fitness. Al-
though disengagement was not observed in the four applica-
tions presented here, it has occurred in more recent experiments.
We have recently [6], [63] proposed several mechanisms that
successfully prevent disengagement from occurring in the esti-
mation-exploration algorithm. The first mechanism is the “test
bank” [6] in which difficult tests are withdrawn from the test
suite and are only reintroduced when models become accurate
enough to explain them. The second mechanism [63] involves
searching explicitly for lower difficulty tests by looking for tests
which create a less disagreement among models, and reducing
the disagreement until the population reengage. Although both
these methods have been shown to be empirically useful, Ficici
[64] presents a useful theoretical framework for determining
under which conditions monotonically increasing performance
can be ensured in any coevolutionary system which attains a
monotonically increasing knowledge of the search space.

In our algorithm, the evolution of a better model in the esti-
mation phase allows the exploration phase to evolve a better test.
In other words, if little is known about the target system, tests
must be suggested at random. However, if something is known
about the system, tests can be evolved that cause the system to
exhibit some behavior it has not shown before, generating more
information about the system. Conversely, the best previously
evolved model may fail to replicate a new input/output data pair
obtained from the system, thus causing new selection pressure
to produce a new model that explains all previous input/output
data pairs, as well as the new one.

The power of our algorithm is threefold. First, by evolving
intelligent tests, it is possible to reduce the amount of testing
required on the target system. Second, the algorithm is problem
domain independent: the outline of the algorithm given above
does not presuppose any particularities about the hidden system
or the type of experiment to be performed on it. Third, the
algorithm produces an explicit model of the hidden system.
Fig. 2(b)–(e) sketches the application of the algorithm to the
four problems described in the next four sections.

B. Algorithm Outline

Six steps must be followed to apply the algorithm to a given
problem, given in Fig. 3.

1) Characterization of the Target System: This involves
defining the target system itself, specifying what aspects of the
target system are known and which aspects must be inferred,
and establishing representations for the space of models, inputs,
and outputs. Variation operators need to be defined to search
the space of models and space of inputs (tests). A similarity
metric comparing two models needs to be established to as-
sess convergence. A similarity metric comparing output also
needs to be defined in order to quantify disagreement in model
predictions.

Defining representations for inputs and outputs is usually a
simple matter, as they are typically vectors or matrices which
indicate the values of variables to be fed into the system or ob-
tained as output. Similarity metrics for outputs are often some
form of normalized error function, but occasionally more so-
phisticated metrics may be required as shown in some of our ap-
plications described later. The choices of representation, varia-
tion and comparison of systems usually involve domain-specific
considerations.

2) Initialization: Initial populations of models and tests need
to be created. In the absence of any prior information, these
models and tests may be set at random or left blank; if some prior
knowledge exists, it may be used to bias the initial populations.
In all four of the applications reported in this paper, the initial
populations are seeded with random models and tests.

3) Exploration Phase: Useful tests (inputs) are evolved with
their fitness proportional to their ability to create disagreement
among the successful candidate models. Since successful
models are already compatible with all prior input/output sets,
creating disagreement among their predictions focuses the
tests on targeting any remaining uncertainties in the model.
This is the approach taken in active learning methods [16].
Note, however, that disagreement among models can only be
measured insofar as candidate models are different; in absence
of sufficient model diversity, it may be necessary to seek a
diversity of outputs compared with tests performed on the
target system in previous cycles. Either way, we elicit some
previously unobserved behavior from the model, and by exten-
sion, from the target system itself.

If the overall objective of the entire process is not just to infer
a system but also to make it behave in a particular way, then the
fitness of inputs needs to also capture a measure of its ability
to elicit the desired output. In this case, a form of multiobjec-
tive search may be necessary (e.g., by alternating, weighting,
or Pareto-selecting tests), though often these objectives coin-
cide. Pareto optimization has already been investigated in the
context of coevolutionary algorithms [22], and may be useful
in evolving tests that extract desirable behavior and information
about internal structure from the target system.

We have found that in order to facilitate evolution of new
tests, it is often useful to evolve tests from scratch, rather
than seed them with tests from the previous cycles. Once
successful tests have been found, the best test is carried out on
the target system and the output measured. The input/output set
is recorded with all previous input/output sets.

4) Estimation phase: Useful candidate models are evolved
with their fitness proportional to their compatibility with all
input/output sets collected from the target system so far. As-
suming the target system is consistent, all input/output sets are
equally important and should be equally weighted.

When formulating a compatibility error for a specific appli-
cation of the algorithm, the error often takes the form

where indicates the number of experiments performed so far
on the target system, is the output obtained from the target
system during the th test, and is the output obtained from
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TABLE I
OVERVIEW OF THE FOUR APPLICATIONS

the model for the same test. An encoded model that correctly
describes the target system will produce the same output as the
target system for all tests, and its error will be low. We call this
the subjective quality of a model, since it is estimated based
only on known, possibly biased test data; the absolute quality
of a model is not known to the algorithm, but the objective of
the exploration phase is to create a suite of tests that make the
subjective quality approximate the absolute quality. Note that
diversity maintenance is important since assessment of tests is
based on creating disagreement among models, and this is only
possible insofar as models are different.

In some cases, models may fail to sufficiently explain the
most recent test; in other words, the error of the best model
at the end of the current pass through the estimation phase will
be higher than of the best model from the previous pass. This
can indicate the beginning of disengagement, which is one of
the three pathologies that coevolutionary algorithms may expe-
rience [15], [33], [54], [58], [62]. Disengagement occurs when
one population poses too much of a challenge to the other pop-
ulation; the dominated population then loses its fitness gradient,
because all individuals perform equally badly against the indi-
viduals from the dominating population. In recent papers [6],
[63], we have proposed several mechanisms for combating dis-
engagement. The most useful mechanism has proven to be the
test bank, in which difficult tests are removed from the test suite
and only returned to the test suite when models become accu-
rate enough to explain them. However, in the four applications
presented here, disengagement was not detected, so these mech-
anisms are not used.

5) Termination: There are four criteria for terminating the
algorithm, either 1) a sufficiently accurate model of the target
system has been obtained; 2) an evolved test has caused the
target system to exhibit the desired behavior; 3) a maximum
number of target or model evaluations have been performed; or
4) the algorithm failed. The algorithm fails when the estima-

tion phase fails to find any model that is compatible with all ob-
served data, or when the exploration phase fails to find a test that
causes different models to disagree. In the former case, this may
indicate that the search space or variation operators do not span
the target system, or that the target system is behaving inconsis-
tently. In the latter case, this may indicate that there is some un-
observable aspect of the target system that the test space cannot
elucidate. In either of these cases, the representation, operators,
or similarity metrics need to be reconsidered. In practice, it may
be difficult or impossible to measure the actual accuracy of a
model: some external kind of validation (see below) may then
be required. However, even if validation is not possible in a prac-
tical situation, the algorithm can still be run for a fixed budget of
physical trials, depending on the expense of performing a single
physical trial.

For the grammar induction application, the algorithm is ter-
minated if either criteria 1) or 2) is met: either a perfect model is
discovered, or 10 model evaluations have been performed.
For the gene network inference application, criterion 3) is used:
the algorithm terminates when 10 model evaluations have
been performed. For the final two robot applications, the algo-
rithm terminates when a fixed number of target evaluations have
been performed [criterion 3)].

6) Validation: In inference applications, a cross validation
step helps assess the significance of the resulting successful
model. Cross validation is achieved by performing a previously
unseen test on the target system and comparing its outputs to
the prediction proposed by the model. If the validation step is
unsuccessful, the new input/output set is added to all previous
input/output sets, and the algorithm resumes at the estimation
phase.

These six steps are applied, in turn, to each of the four prob-
lems described in this paper. An overview of the applications is
given in Table I. In the next section, we describe the application
of the algorithm to the problem of grammar induction.
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III. APPLICATION 1: GRAMMAR INDUCTION

Grammar induction is a special case of the larger problem
domain of inductive learning [5], which aims to construct sys-
tems based on sets of positive and negative classifications (for
an overview, see [50]). In grammar induction, the system is a
finite-state machine, or FSM, that takes strings of symbols as
input, and produces a binary output, indicating whether that
string, or sentence, is a part of the FSM’s encoded language.
Grammar induction is an attempt to model the internal struc-
ture of the hidden FSM, based only on pairs of sentences and
classifications. The most successful grammar induction algo-
rithms produced so far are heuristic in nature (see [14] for an
overview), and there have been several attempts to evolve FSMs
from sample data [25], [45], [46], but all approaches so far as-
sume that a representative sample of sentences have already
been classified by the target FSM. In other words they follow the
batch-oriented approach to system identification [see Fig. 1(a)]:
a pregenerated set of input/output data is fed into some induc-
tion algorithm, and a model FSM is produced.

Moreover, the pregenerated set of sentences in these ap-
proaches are usually assumed to be balanced: that is, there is
an equal number of positively and negatively classified sen-
tences. However, if an FSM is unbalanced (the FSM classifies
a majority of sentences either positively or negatively), then
collecting a balanced set of classified data for induction may
be prohibitively expensive: a large number of sentences would
have to be classified before a sufficient number of sentences
attaining the minority classification could be collected. The ap-
plication of our algorithm to the problem of grammar induction
does not presuppose a set of input/output data, but rather uses
an evolved set of models of the hidden FSM to generate a new
sentence which, when fed into the hidden FSM, will produce
a new data point that will help improve the model. It will be
shown in this section how the estimation-exploration algorithm
dramatically reduces the number of sentence classifications
required by the target FSM, compared with a batch approach to
grammar induction.

A deterministic finite automaton, or DFA, is a type of FSM
that can be represented using the five-tuple ,
where is the number of states, is the alphabet of the
encoded language, is a transition function, is the start state,
and is a set of final states. Then, given some sentence made
up of symbols taken from the alphabet , and beginning at
the start state , the first symbol is extracted from the sentence,
and based on that symbol the sentence transitions to a new
state as indicated by . The next symbol is then extracted from
the sentence, and based on the sentence transitions to a new
state. This process is continued until all symbols in the sentence
have been exhausted. If the last state visited is a member of ,
then the sentence receives a positive classification (the sentence
belongs to the language); otherwise, a negative classification is
assigned (the sentence does not belong to the language). Given
this formulation, we can now apply the estimation-exploration
algorithm to this problem.

1) Characterization of the Target System: We assume that the
target system is a DFA, and that we know the number of states,

Fig. 4. Example of deterministic finite automaton. The DFA is composed of
three states (n = 3), assumes a binary alphabet, and the third state is a final
state. The first of the two sentences receives a positive classification because it
ends at state 2; the second sentence receives a negative classification because it
ends at state 1.

which is given as . For simplicity, we here choose a binary al-
phabet. We then can represent as a matrix with values
in , where each column in represents a state, and the
values in a given column indicate which new state to transition
to, given the current symbol of a sentence. Finally, we can rep-
resent the set of final states using a binary string of length :
if , then state is a final state; otherwise, it is not. For
simplicity, we assume that the first column of represents the
start state. For the example three-state DFA shown in Fig. 4, the
sentence 010 receives a positive classification, but the second
sentence 011 receives a negative classification.

A simple grammar induction problem is then to model the
hidden DFA by finding a and an such that for all sentences,
the model produces the same classifications as those produced
by some target DFA. Therefore, from among ,

, , and are assumed to be known, but and are as-
sumed to be unknown. Note that a model with and/or

may still reproduce all of the same classifications as the
target DFA, if it accurately captures the classification structure
of the target DFA using a different and , or if only a few
input/output pairs have been tested.

In the estimation phase, each genome represents a candidate
model of the hidden DFA. Since the number of states is
known, each genome encodes a integer matrix with
values in and a binary vector of length . If
sentences have already been classified by the hidden DFA, then
the quality of a candidate model—its subjective error—is given
by

(1)

where is the binary classification generated for the th
sentence by the hidden target DFA, and is the classification
generated by the model DFA for the same sentence. Then, a
genome that obtains perfectly reproduces all of
the classifications produced by the hidden DFA so far, and
genomes with higher values of reproduce less of the
correct classifications.

The space of inputs (tests) that can be applied to any given
DFA is the space of binary sentences. For simplicity, we only
evolve sentences with length , the number of states. Sentences
of variable length could also be used. Thus, each genome in the
exploration phase is a binary string of length .

The quality of a sentence is determined to be the ability of
the given sentence to cause the greatest variation in classifica-
tions produced by the algorithm’s current best set of candidate
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models. In order to evolve more than one accurate model during
the estimation phase, variation must be maintained in the model
population until the estimation phase terminates. The simplest
way to ensure this is to evolve isolated subpopulations, so that
each subpopulation will evolve an accurate and unique model.
So for this application, the population of candidate models is
partitioned into subpopulations during each pass through the
estimation phase. At the end of each pass, there are then can-
didate models that explain the hidden DFA: the best model from
each subpopulation obtained during that pass through the esti-
mation phase. The quality metric of a candidate sentence (ex-
periment) is then given by

(2)

where is the classification of the candidate sentence by
candidate model . Sentences that do not differentiate between
the candidate models—all models produce the same classi-
fication—obtain (poorest quality); sentences that
produce the maximum classification variance obtain
(best quality). When a sentence is evolved that induces high
classification variance, and that sentence is classified by the
hidden DFA, then the resulting classification will usually
lend support to candidate models during the next pass
through the estimation phase, and provide evidence against the
remaining half. This idea is borrowed from the coevolutionary
literature, in which it has been shown that the fitness of a
test should be proportional to its ability to induce a learning
gradient in the competing population of learners [12], [22],
[33] (in our framework, a learner is a model DFA). The value
of causing disagreement between models is discussed in more
detail in Section VII.

2) Initialization: Since we do not assume an initial model of
a given hidden DFA, the algorithm initially generates a random
binary sentence, which is classified by the hidden DFA. This
single sentence/classification pair is then fed into the estimation
phase in order to generate an initial model.

3) Exploration Phase: The exploration phase begins each pass
with a population of 200 randomly generated genomes, and
the population evolves for 50 generations. At the end of each
generation, when all of the genomes have been evaluated, 150
pairs of genomes are selected randomly and sequentially (some
genomes may be selected more than once), and for each pair the
genome with a lower value of is copied and replaces the
genome with a higher value of .

The copied genome is then mutated: one randomly selected
element from the candidate sentence is chosen with a uni-
form distribution,1 and is replaced with a new random value.
Crossover is currently not used, but may be implemented in
future improvements to the algorithm. A total of 150 replace-
ments are performed after each generation. Note that a given
genome may undergo more than one mutation if it is selected,
copied, mutated, and then selected again. Once a set of selec-
tions, replacements, and mutations have occurred, all of the
new genomes in the population are evaluated.

1As are all the other random values used in the experiments described in this
paper.

When all 50 generations have been evaluated, the sentence
with the lowest value of is output and supplied to the target
system.

4) Estimation Phase: The estimation phase, like the ex-
ploration phase, evolves a population of 200 initially random
genomes for 50 generations. However, the population of the
estimation phase is partitioned into two genetically isolated
subpopulations with 100 genomes each.

Also, like the exploration phase, when all genomes in each
subpopulation have been evaluated, selection and mutation oc-
curs. In each subpopulation, 150 pairs of genomes are selected
at random, and for each pair the genome with the lower value of

is copied and replaces the genome with the higher value
of . The copied genome then undergoes mutation: first
either the encoded or is selected with equal probability;
then a value within the selected matrix or vector is randomly se-
lected and replaced with a new random value. Crossover is also
not implemented in this phase. The newly created genomes are
evaluated, and evolution continues. When this phase terminates,
two competing candidate models are output to the exploration
phase: the model with the lowest value of from each sub-
population.

Unlike the exploration phase, which begins each pass with
a population of random genomes, on the second and subse-
quent passes through the estimation phase each subpopulation
of random genomes is seeded with the best genome it evolved
during the previous pass. This allows the algorithm to continue
improving its previous best candidate models, and for the results
of the newly evolved test to lend support or provide evidence
against these models.

5) Termination: After each pass through the estimation phase,
the algorithm is terminated if either of two criteria are met: the
most fit model achieves an absolute error of 0, or 10 model
evaluations have been performed. In this paper, hidden DFAs
with ten states were inferred. If a model DFA classi-
fies all possible sentences correctly, then it obtains an absolute
error of 0. The set of all possible sentences in this context is con-
sidered to be all binary strings with lengths equal to the number
of states in the target DFA. So for the inference of DFAs with
ten states, there are 2 possible sentences. The number
of model evaluations is tallied as followed: during the th pass
through the estimation phase, each model requires evaluations
in order to determine its fitness; during the exploration phase,
each test requires model evaluations in order to determine its
fitness, where is the number of model subpopulations.

6) Validation: The calculation of the absolute error of a model
DFA is considered to be validation, because it uses sentences
unseen during model evolution. Thus, from the viewpoint of
validation, the algorithm can be said to have been successful
if the absolute error of the model DFA output after termination
is below some sufficiently small error threshold.

A. Grammar Induction Results and Discussion

The second column in Table I provides a summary of the
application of the estimation-exploration algorithm to this par-
ticular instance of grammar induction. The proposed algorithm
was run against a number of target DFAs with ten states, along
with two control algorithms. The first control algorithm was a
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Fig. 5. Model accuracy results from a single run. (a) Subjective errors of the
most fit model DFAs produced by the two control algorithms (a standard GA
and random testing) and the proposed algorithm (intelligent testing). (b) The
absolute errors for the sample model DFAs. The most fit model DFA at the end
of each generation, for all three algorithms, was extracted and its subjective and
absolute error calculated.

standard genetic algorithm: all 1024 binary sentences of length
10 were first classified by the target DFA, and then a random
population of 200 model DFAs were evolved until either a per-
fect model is discovered (one that achieves an absolute error
of 0) or 10 model evaluations are performed. Genetic en-
coding, selection and mutation are the same as described in
the previous section. This control algorithm, thus, follows the
batch approach to system identification depicted in Fig. 1(a).
The second control algorithm is identical to the estimation-ex-
ploration algorithm, except that the exploration phase is dis-
abled: when the estimation phase terminates, a randomly gen-
erated binary sentence of length 10 is sent to the target DFA for
classification.

Thirty target DFAs with ten states each were randomly gener-
ated for inference. Each of the three algorithms then performed
40 independent runs against each of the 30 target DFAs, re-
quiring a total of independent runs.

Fig. 5(a) reports the subjective errors [see (1)] of the best
model DFA during the course of each algorithm’s execution
against the same target DFA. For the standard genetic algorithm
(GA), the subjective error of the most fit model DFA after each
generation was recorded; for the latter two algorithms, the sub-
jective error of the most fit model DFA after each generation of
the estimation phase terminates was recorded. Note that because
the standard GA uses all possible sentences for model evalua-
tion, subjective error is equal to absolute error for the model

Fig. 6. Mean performance of the three algorithms against a single target DFA.
Forty independent runs were performed using each algorithm against the same
target DFA composed of ten states. Absolute errors were computed for the best
model DFAs produced at the end of each generation; the errors are averaged
over the 40 runs.

DFAs in that algorithm. Fig. 5(b) reports the absolute errors for
the same model DFAs.

As can be seen, only the estimation-exploration algorithm
achieves a perfect model, after about 190 target evaluations; the
other two control algorithms terminate without ever finding a
perfect model. Also, Fig. 5(a) shows that the standard GA be-
gins with a very high subjective error, while the latter two al-
gorithms begin with zero subjective errors, which then climb
and later reapproach zero. This is because it is much easier for
the model DFAs to correctly classify the few sentences labeled
by the target DFA than later on, when many sentences have
been labeled. Fig. 5(b) shows that the standard GA exhibits
the fastest drop in absolute error, which is to be expected be-
cause early in the algorithm the standard GA has much more
observed data available for model evolution than the latter two
algorithms do. Finally, Fig. 5(a) shows that intelligent testing
induces much greater subjective errors in the model DFAs com-
pared with random testing. This is indirect evidence that the pro-
posed algorithm is discovering informative tests: tests that ex-
pose unexplained aspects of the target system.

Fig. 6 reports the mean absolute errors of the most fit model
DFAs produced by all three algorithms for one of the target
DFAs. The absolute errors for the model DFAs were averaged
over the 40 independent runs. The error bars in the figure (as
well as the error bars in all subsequent plots in this paper) in-
dicate standard error with a 95% confidence interval. As in the
previous plot, the average accuracies of the model DFAs pro-
duced by the standard GA early on are much better than the
latter two algorithms, due to the scarcity of observed data avail-
able to the iterative methods. However, the proposed algorithm
attains a significantly better mean performance than the other
two algorithms after less than 100 target evaluations have been
performed.

Fig. 7 reports the comparative performance of the three al-
gorithms against the 30 target DFAs. Fig. 7(a) reports the mean
number of model evaluations required by each algorithm to pro-
duce a perfect model: a model DFA with an absolute error of 0.
Note that in most cases, the proposed algorithm is able to con-
sistently discover a perfect model with fewer model evaluations
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Fig. 7. Comparison of algorithm performance against 30 random target DFAs. (a) The mean number of model evaluations required until a perfect model is found.
(b) The mean number of target evaluations required until a perfect model is found. (c) The mean fraction of positive classifications acquired by the sentences
proposed to the target DFA.

than the standard GA, even though the standard GA has access
to much more information about the target system (compare the
heights of the dark gray bars against the light gray bars). Con-
versely, the standard GA always outperforms iterative, random
testing (compare the dark gray bars against the medium gray
bars), indicating the performance gain of the estimation-explo-
ration algorithm comes not from performing iterative inference,
but from sending informative tests to the target DFA.

Fig. 7(b) compares the number of target trials required by the
second control and proposed algorithms to find a perfect model.
The standard GA is not shown in this plot because each stan-
dard GA requires exactly 1024 target trials before the algorithm
commences. For most of the 30 target DFAs, intelligent testing
requires significantly fewer target trials in order to discover a
perfect model. Even with roughly 1/5 the number of target trials
(about 200 trials compared with 1024 trials), the proposed algo-
rithm can discover a perfect model more quickly (i.e. with fewer
model evaluations) than the standard GA can.

Fig. 7(c) compares the fraction of positive classifications ob-
tained from the target DFA for the tests proposed by the second
control and proposed algorithms. Because the second control al-
gorithm proposes random tests, the fraction of positive classifi-
cations obtained by this algorithm gives an approximation of the
balance of the target DFA. The balance of a DFA is considered
to be the probability that it will produce a positive classification
given any arbitrary sentence; DFAs with probabilities of 0.5 are
considered balanced, and those with probabilities far from 0.5
are considered imbalanced. As can be seen, the target DFAs are
aligned in Fig. 7 in order of their balance. [The target DFAs in
Fig. 7(a) and (b) are aligned with the ordering in Fig. 7(c); for
example, target DFA 5 in Fig. 7(a) and (b) is the same target

DFA 5 shown in Fig. 7(c)]. It can be seen that intelligent testing
tends to consistently elicit more balanced classifications from
very imbalanced target DFAs: in other words intelligent testing
creates a sufficiently accurate model that more of the underrep-
resented class of sentences can be discovered and proposed to
the target DFA (indicated by the relatively taller light gray bars
on the left side of Fig. 7 and the relatively shorter light gray bars
on the right side.) This indicates that evolving tests that cause
disagreement among models leads to the uncovering of less ob-
servable components of the target system: in this applications,
this involves traversal to final states that produce minority clas-
sifications.

However, it can be seen that intelligent testing also outper-
forms random testing on many balanced DFAs (note the signif-
icant performance advantages of the proposed algorithm on the
horizontally centered target DFAs). This indicates that a target
DFA may have less observable components even if it is bal-
anced: for example, some states may be visited by random sen-
tences much more often than other states if the state transition
graph has regions of dense connectivity and other regions have
sparse connectivity.

In this section, we have described the application of the esti-
mation-exploration algorithm to the problem of grammar induc-
tion.We have shown that it is worthwhile to evolve experiments
(sentences) for this problem, and that the quality of a test lies in
its ability to distinguish between two candidate models. Further-
more, we have shown that intelligent testing can discover a per-
fect model using fewer model and target tests than either a sim-
ilar iterative algorithm that employs random testing, as well as a
standard genetic algorithm that assumes a large amount of pre-
classified sample data. Finally, we have shown that intelligent
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testing is most useful when the hidden DFA has low observ-
ability. In the next section, we describe the application of the
algorithm to the problem of gene network inference.

IV. APPLICATION 2: GENE NETWORK INFERENCE

Systems biology [39] is concerned with the synthesis of large
amounts of biological detail in order to infer the structure of
complex structures with many interacting parts. In this way, sys-
tems biology can be viewed as another example of system iden-
tification. The field of gene network inference is a rapidly bur-
geoning subfield in systems biology [39], and is concerned with
inferring genetic regulatory networks based on the results of a
set of tests performed on the network in question.

Many different models of the underlying genetic network
have been used, usually classified based on the amount of
biological detail inherent in the model (see [17] and [18] for an
overview). In addition to the type of model, several methods
have been used to infer genetic networks, including clustering
algorithms (see [18] for an overview), correlation metrics
[3], linear algebra [13], simulated annealing [48], and genetic
algorithms [31], [38].

A number of input and output data pairs are required in order
to obtain enough information about the target network to infer
its structure correctly. As pointed out in [18], it is desirable to
reduce the number of input/output pairs required as much as
possible, so that a minimum of experiments have to be con-
ducted. Also, the type of experiment required should be as cheap
as possible in terms of experimental difficulty and accuracy of
acquired output data. Iba and Mimura [31] showed that by using
a multipopulation evolutionary algorithm to not only infer the
hidden network, but also to propose additional experiments that
would most help to refine the current best evolved network hy-
pothesis. However, their model requires the experimenter to per-
form costly knockout or lesion experiments in order to supply
the algorithm with an actual subset of the regulatory network.

Our approach does not require such invasive experiments, but
rather assumes that the input data to a biological experiment is a
set of chemical concentrations. These chemicals can be viewed
as either initial concentrations of the gene products themselves,
or some other media such as signalling proteins or glucose that
externally affect the cell. This approach obviates the need for in-
vasive testing, leading to a simpler experiment. The input is as-
sumed to trigger gene regulation, which produces a set of output
gene product concentrations over time, as obtained using mi-
croarray tools. We can now apply the estimation-exploration al-
gorithm to infer the structure of a hidden gene network, given
sets of initial chemical concentrations, and resulting product
concentrations, as outlined in Fig. 2(c).

1) Characterization of the Target System: The target system
is assumed to be a gene network in which the number of genes

is known, but how one gene contributes to the regulation of
another is assumed to be unknown.

The steps for applying the estimation-exploration algorithm
to this particular problem are only summarized below: please
refer to [9] for more details regarding this application.

Fig. 8. Observability of gene regulation. In the gene network model used
here, it is assumed that gene product concentration is measured after some time
period has elapsed (t ). (a) If the final concentration of some gene product is
intermediate, there is only one possible rate for the gene product concentration
change between t and t (we assume in this paper that the change during this
time interval is linear). (b) If the final which attempts to evolve an accurate
model using a set of observed gene product concentration is either zero or
completely saturated, there are several hypotheses for how this gene is regulated
(three possible hypotheses are indicated by trajectories i, ii, and iii). Therefore,
the regulation of the gene in (b) is less observable than the gene in (a).

Both the target gene network and models of it are represented
using an matrix with entries in [ 1, 1]. The new
concentration of gene after some time period is then given by

(3)

Since the variables indicate concentration, the and
functions bound the value between 0 (for no concentration)
and 1 (for concentration saturation). Genomes in the estimation
phase are then represented as matrices. The subjective
error of a given network model is simply the mean squared
error between the concentrations output by the hidden network
and the candidate model so far. For this application, absolute
error is simply the distance of a model gene network from the
actual gene network

(4)

where represents gene ’s regulation of gene in the target
system , and represents gene ’s regulation of gene in the
candidate model .

The test for a hidden gene network is determined as a vector
of floating-point values in [0, 1] that represent initial gene
product concentrations; thus, genomes in the exploration phase
are vectors of floating-point values. The output from the target
system or model is a vector of floating-point values indicating
eventual gene product concentrations after some time period has
elapsed. Unlike in the grammar induction application in which
test quality is given by its ability to cause the candidate models
to disagree, the test quality in this application is to increase the
observability of the system; in other words, to minimize the
number of extremal concentrations, which indicate less about
the internal structure of the network than intermediate concen-
trations. Fig. 8 shows why final gene product concentrations that
are either zero or saturated reveal less information about the un-
derlying network than gene product concentrations that fall be-
tween these extremes.

2) Initialization: The algorithm begins by generating some
initial random input vector . This is then applied against the
hidden target network . The resulting input/output
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vector pair is fed into the estimation phase, and the algorithm
commences.

3) Exploration Phase: The exploration phase begins with
a population of 1000 random genomes, and the population is
evolved against the single candidate model output by the es-
timation phase. Selection and mutation then proceed similarly
to the previous application, with the mutation operators altered
to handle the floating-point valued genomes. The population is
evolved for 30 generations, at which point the genome with the
best quality is output to the target network .

4) Estimation Phase: Evolutionary search in the estimation
phase begins with a population of 200 random genomes, each
encoding some . The subjective error of each genome is
computed, and 150 replacements are performed: for each
genome pair, the genome with lower subjective error replaces
the genome with higher subjective error. Mutation but not
crossover is applied to the copied genomes. The population is
evolved for 30 generations, at which point the genome with
the lowest subjective error is passed to the exploration phase.
During the second and subsequent passes through this phase,
the initial random population is seeded with the best model
evolved during the previous pass.

5) Termination: As in the grammar induction, the algorithm
was run until either a perfect model was produced, or a max-
imum number of model evaluations (for this application 10 )
had been performed. Because the model in this application con-
sists of continuous values (indicated by the strength and kind of
gene ’s regulation of gene ), there is a vanishingly small prob-
ability that a perfect model—one that achieves an absolute error
of 0—will be discovered, so all runs for this application termi-
nate when 10 model evaluations have been performed.

6) Validation: Validation of a candidate model is interpreted
as its absolute error.

A. Gene Network Inference Results and Discussion

In order to test the algorithm against this task, two control
algorithms were formulated as in the previous application: the
first control algorithm acts as a standard GA which attempts to
evolve an accurate model using a set of observed data from the
target system; the second control algorithm is identical to the
estimation-exploration algorithm, except that the exploration
phase is disabled: each pass through the exploration simply
outputs a random set of gene product concentrations.

Because the tests in this application are composed of con-
tinuous values (instead of binary values in the grammar induc-
tion application), there are an infinite number of possible tests,
so we can not provide the standard GA with an exhaustive set
of sample data already processed by the target system. Rather,
we generate a set of 100 random vectors of initial gene
product concentrations, with the values of each vector sampled
from [0, 1]. By choosing a maximal number of model evalu-
ations 10 , and using a population size of 200 for all
three algorithms, and running both the estimation and explo-
ration phases for 30 generations, the second control algorithms
performs a total of 56 target evaluations, and the proposed al-
gorithm performs 55 target evaluations (because the proposed
algorithm incurs slightly more model evaluations per iteration
than the second algorithm due to the active exploration phase, it

only gets through 55 iterations before the 10 model eval-
uations have been exhausted). The standard GA was provided
with 100 sets of sample data so that it requires almost twice as
many target evaluations as the other two algorithms.

All three algorithms were run against a total of 80 randomly
generated target gene networks. The networks varied in the
number of genes in the network , and the network’s connec-
tivity . For each network, each gene was regulated by a total
of other randomly chosen genes (with the possibility of itself
being one of the genes); the other genes do not directly
regulate that gene . The first 20 target networks were
generated with and ; the following 20 with
and ; the following 20 with and ; and last
20 networks with and . For each target network,
each algorithm performed a total of 30 independent runs in an
attempt to infer the hidden regulatory network.

Fig. 9 reports the average performance of the three algorithms
against these 80 target networks. Because a perfect model is
never found, each algorithm performs 10 model evalua-
tions; the standard GA performs 100 target trials; the iterative
algorithm with random testing performs 56 target trials; and
the estimation-exploration algorithm performs 55 target trials.
The mean performance of each algorithm is calculated to be the
mean of the absolute errors of the 30 best model gene networks
output at the termination of the 30 independent runs.

First, it can be noted that for all classes of target network, the
standard GA performs significantly worse than the other two al-
gorithms. Individual runs (data not shown) indicate that the stan-
dard GA tends to converge on very poor local minima after only
a few generations, and never make any subsequent progress.
Surprisingly, the iterative algorithm employing random testing
performs significantly better than the standard GA, using half
as many target trials. This indicates that the iterative approach
for this problem domain provides an evolutionary advantage:
each successive pass through the estimation phase presents the
evolving models with a fitness landscape different from the pre-
vious pass, and that this difference is induced by the new test
obtained from the target system.

Second, the proposed algorithm only outperforms random
testing on the largest and most densely interconnected gene net-
works ( , ). This occurs for two reasons. Because
the tests are composed of continuous rather than binary or in-
teger values, there is a very low probability that the same test
will be proposed more than once during random testing, and a
set of unique tests is more informative than a set of tests in which
several tests appear more than once. Also, large, densely inter-
connected networks tend to lead to more extremal gene product
concentrations than smaller, sparse gene networks: a gene reg-
ulated by many other genes will exhibit a large change in its
gene product concentration, compared with a gene which is only
regulated by a few genes. Thus, as in the previous application,
our algorithm is most valuable for inferring large target systems
with low observability.

This claim that extremal gene product concentrations are
more likely in large, dense gene networks is supported by
Fig. 10: 1000 random networks were generated using values
of selected from [2, 30] with a uniform distribution, and
values of selected from , where is an already
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Fig. 9. Mean performances of the three algorithms against the four classes of
target gene networks. (a) Mean performance of all three algorithms against the
20 target gene networks with n = 5 genes and k = 2 connectivity, (b) the 20
target networks with n = 5 and k = 5, (c) the 20 target networks with n = 10
and k = 2, and (d) the 20 target networks with n = 10 and k = 10.

randomly selected value for . For each of the 1000 random
networks, ten input vectors were randomly constructed, and

Fig. 10. Observability of various gene network types. 1000 gene networks
with different values of n and k were generated randomly. For each network,
100 random input vectors were supplied, and the average fraction of resulting
extremal output concentrations was calculated. (a) The relationship between the
number of genes (n) and the fraction of extremal values. (b) The relationship
between connection density (n=k) and the fraction of extremal values for the
same 1000 networks.

Fig. 11. Testing results from a sample run using random and intelligent
testing. Each column indicates the resulting gene product concentrations
obtained from a test proposed by either (a) the iterative algorithm using random
testing or (b) the proposed algorithm. Black squares indicate extremal gene
product concentrations and white areas indicate nonextremal concentrations.

the corresponding ten output vectors were calculated using
(3). The average fraction of extremal output concentrations
was computed for each network, and is plotted in Fig. 10(a)
as a function of the number of genes in the network , and
in Fig. 10(b) as a function of connectivity . Clearly, the
fraction of noninformative output elements increases both with
the number of genes, and with connectivity. Thus, it becomes
increasingly valuable not only to evolve models, but also to
evolve informative experiments for the inference of larger and
more complex gene networks.

Fig. 11 substantiates this claim by showing the resulting gene
product concentrations from tests proposed by a sample run of
the iterative algorithm with random testing and the proposed al-
gorithm. The sample runs were both drawn from the set per-
formed against one of the target gene networks with and
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Fig. 12. Mean fraction of extremal gene product concentrations produced by
random and intelligent testing. Results are reported for both algorithms against
the 20 target gene networks with n = 10 and k = 10.

. As can be seen, the proposed algorithm tends to pro-
pose tests that produce many fewer extremal gene product con-
centrations [indicated by the fewer black squares in Fig. 11(b)
compared with Fig. 11(a)].

Fig. 12 reports the mean fraction of extremal gene product
concentrations produced by the tests proposed by the iterative
algorithm with random testing and the estimation-exploration
algorithm, while inferring the 20 target networks with
and . It is clear that for all 20 target networks, intel-
ligent testing achieves significantly fewer extremal concentra-
tions than random testing. This indicates that evolving tests that
produce as many nonextremal gene product concentrations as
possible allows for the evolution of more accurate tests when
the target network is large and has low observability.

Interestingly, some of the genes in a given hidden network
are less observable than others. For example the experimental
results obtained by the proposed algorithm in Fig. 11(b) fail to
consistently achieve nonextremal concentrations for the fourth
gene (indicated by the long black bars for that gene over the
course of the run), while it seems relatively easy to obtain nonex-
tremal concentrations for the sixth and seventh gene (evidenced
by the long white bars for those genes near the end of the run).
This indicates that this gene is very strongly positively or nega-
tively regulated and, thus, has low observability because it often
reaches extremal concentrations. We plan to improve the quality
metric for experiments in future work such that genes with low
observability (as indicated by previous experiments) automati-
cally come under increasing scrutiny.

Thus, the estimation-exploration algorithm has three benefits
for gene network inference. First, it does not require invasive,
expensive, slow and disruptive experiments such as knockout or
lesion studies. Rather, the exploration phase carefully evolves a
low-cost experiment (a change in the initial gene product con-
centrations) that yields a large amount of information about the
target system. Second, the number of experiments performed on
the target system is reduced, because each proposed experiment
is carefully chosen. Finally, the automated evolution of informa-
tive experiments becomes increasingly valuable as the hidden
networks become larger and more densely interconnected, since
large, dense networks often produce information-poor output
data in response to random testing.

Fig. 13. Evolutionary progress of a traditional evolutionary robotics regime.
Thirty generations of a genetic algorithm that evolves a neural network
controller for a robot so that it performs a forward locomotion task (the robot
and its controller are shown in Fig. 14). Fitness is the distance traveled by
the robot. Each dot indicates a simulated robot evaluation. The best controller
is then transferred to a target robot, which has some hidden morphological
difference (one of the robot’s lower legs has broken off). Evolution then
continues on the target robot, using the same genetic algorithm, for another 70
generations. Each square indicates an evaluation on the target robot. The solid
line indicates the best fitness achieved at each generation.

The following two sections describe the application of our
algorithm to two important problems in robotics research:
automating behavior generation, and automating damage diag-
nosis and recovery.

V. APPLICATION 3: EVOLUTIONARY ROBOTICS

An evolutionary robotics experiment requires an evolutionary
algorithm to optimize aspects of a simulated or physical robot in
order to generate some desired behavior. Because it is difficult
and time-consuming to perform the thousands of fitness evalua-
tions required by an evolutionary algorithm on a physical robot,
most or all of evolutionary robotics experiments are performed
in simulation.

Evolution in simulation raises a major challenge: The trans-
feral of evolved controllers from simulated to physical robots,
or “crossing the reality gap” [32]. Because there are always dif-
ferences between the simulated robot and its physical instan-
tiation, controllers evolved in simulation do not always allow
for the same behavior to arise in the target robot when trans-
ferred. Fig. 13 shows the evolutionary progress for an evolu-
tionary robotics experiment. A neural network controller was
evolved for a simulated legged robot for 30 generations, and
then transferred into a different robot (the target robot, which in
this case was also simulated) that is morphologically different
from the simulated robot: the target robot is missing one of its
lower legs. The transferal causes a large drop in fitness, and
subsequent evolution, involving about 3000 evaluations on the
target robot, only recovers about 70% functionality.

There are several approaches to the challenge of controller
transferal, including adding noise to the simulated robot’s sen-
sors [32]; adding generic safety margins to the simulated objects
comprising the physical system [26]; evolving directly on the
physical system ([23], [47] and [59]); evolving first in simula-
tion followed by further adaptation on the physical robot ([47],
[51]); or implementing some neural plasticity that allows the
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Fig. 14. Robot and its controller used for the evolutionary robotics experiments. (a) Quadrupedal robot. T indicates touch sensors; A indicates angle sensors;
M indicates motorized joints. (b) Neural network controller. Sensors are arranged on the input layer, and motors are arranged on the output layer. B indicates
bias neurons that output a value of 1 at each time step.

physical robot to adapt during its lifetime to novel environments
([19], [24], [60]).

Another approach that can be used in lieu of, or in addition
to the above-mentioned approaches, is to treat the problem as a
system identification task in which there are hidden differences
between the target robot and the robot simulator, which must
be automatically uncovered and included into the simulation.
In this section, we document the application of our algorithm
to this problem, such that the exploration phase evolves con-
trollers for a sensor-driven target robot to make it behave, and
the resulting behavior of the target robot is used to refine the
robot simulator. The goal is to automatically refine the simulator
sufficiently that controllers evolving in it cause the target robot
to produce similar behavior to that seen in simulation. Thus,
the target robot serves as the target system; the controller is the
input vector that elicits behavior from the system; the resulting
sensor time series are treated as the output from the system; and
the robot simulator serves as the model of the target system.
Fig. 2(d) outlines the algorithmic flow for this application.

Most evolutionary robotics experiments evolve controller
parameters for a robot with a fixed controller topology and
fixed morphology (examples include [23] and [53]), whether

the evolution is performed in simulation or the real world.
Other approaches have widened evolution’s control over the
design process by subjugating the controller topology and/or
the robot’s morphology to modification as well (e.g., [2],
[7], [30], [41], [43], and [55]) with the aid of simulation.
In this application, we evolve the simulator itself: this may
involve virtual modifications to the simulated robot’s body, its
sensor/motor apparatus, its virtual environment, or the physical
parameters of the simulation itself. The ability to evolve a sim-
ulated robot’s morphology or its environment, in addition to its
controller, has become much easier recently due to the advent
and availability of physics-based simulators, which allow for
faster than real-time, three-dimensional dynamic evaluation of
different physical systems (see [21] for an overview). Next, we
describe the preparatory steps for applying our algorithm to
this problem.

1) Characterization of the Target System: The target system
here is a quadrupedal robot with an articulated body, a set of
sensors and motors, and a neural network controller that con-
nects sensors to motors. In this work, the target robot is not a
physical robot out in the world, but a separate, simulated robot
which is identical to the default simulated robot except for some
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unknown morphological differences. The task of the algorithm
is to indirectly infer these differences, and modify the default
simulator to reflect them accurately. In future work, we plan to
apply our algorithm to a physical robot. The layout of the target
robot is shown in Fig. 14(a), and the topology of its controller is
shown in Fig. 14(b). The simulation environment, the simulated
robot and its neural network controller are described in more
detail in [8].

The experimenter must then choose those morphological or
environmental characteristics that he thinks may differ between
the target robot and the simulation and that will affect the suc-
cessful transferal of behavior. Currently, this selection is done ad
hoc, but it is intuitive: for example the color between the robots
will not matter, but mass distribution and sensor behavior will
most likely not be modeled accurately at the outset, and both
affect behavior greatly.

For the work reported here, we induced a difference in mass
distribution and sensor time lags between the target robot and
the initial default robot simulator. For these initial experiments,
we assume that the target robot only differs from the default
simulation in those characteristics that we have chosen to place
under evolutionary control. From similar experiments [8], we
have found that in some cases even an approximate simulator
that does not refine all the differing physical characteristics be-
tween the simulated and target robot allows for adequate transfer
of behavior.

Thus, for this application the algorithm must automatically
infer the differences in body part masses and sensor time lags
only using sensor feedback from the target robot. Therefore, a
candidate model is a set of 17 floating-point parameters (masses
of the nine body parts and the time lags for the eight sensors),
which are collected into genomes and evolved. The parameters
are used to modify the default robot simulator, producing a can-
didate robot simulator.

The quality of a candidate simulator is given by the ability
of the simulated robot to mimic the observed behavior of the
target robot. More specifically, given previously evolved con-
trollers tested on the target robot, the simulated robot should
mimic as closely as possible the sets of sensor time series pro-
duced by the target robot. However, unlike the previous two ap-
plications, we can not directly compare model and target output
to gauge model accuracy. Quantitatively comparing sensor data
from two highly coupled, highly nonlinear machines like the
robot used here is very difficult: slight differences between the
two machines rapidly leads to uncorrelated signals. To address
this, we have formulated a comparison metric called the rolling
mean metric, which is described in detail in [8].

In this application, a test is a set of 68 floating-point values
used to label the robot’s neural network controller. Therefore,
the genomes in the exploration phase are vectors of 68 floating-
point values in [ 1, 1]. The quality of a test is how far the robot,
using the labeled controller, moves forward during 1000 time
steps of the simulation. It is implicitly assumed that there are
many possible gaits for the target robot and, therefore, different
evolved controllers that make it move in various ways. There-
fore, as long as separate passes through the exploration phase
begin with different random populations of controllers, different
useful controllers will be output to the target robot, and addi-

tional information will be extracted from the robot automati-
cally. This obviates the need to explicitly include a term in the
fitness function to evolve controllers that distinguish between
competing models (as in the grammar induction case) or expose
some unobservable part of the target system (as in the gene net-
work inference case). However, such terms could be formulated
and included in the fitness function in future.

2) Initialization: Unlike the previous two applications, here
the algorithm begins in the exploration phase, evolving neural
network controllers using a default robot simulator.

3) Exploration Phase: Each pass through this phase begins
with a random population of 100 genomes. Each controller in
turn is evaluated on the simulated robot, and the fitness (for-
ward displacement) is recorded. Selection and mutation is im-
plemented differently from the previous two applications.

Once all of the genomes in the population have been evalu-
ated, they are sorted in order of forward displacement, and the 50
genomes with the least displacement are deleted from the popu-
lation. Fifty new genomes are selected to replace them from the
remaining 50, using tournament selection, with a tournament
size of 3. Each floating-point value of a copied genome has a
1% chance of undergoing a point mutation (replacement of the
evolved value with a new random value). Of the 50 copied and
mutated genomes, 12 pairs are randomly selected and undergo
one-point crossover. The population is evolved for 30 genera-
tions. When this phase terminates, the controller with the best
fitness is output and downloaded to the target robot, and the re-
sulting sensor values are recorded. Both the evolved controller
and resulting sensor time series are passed into the estimation
phase.

4) Estimation Phase: The genetic algorithm operating in the
estimation phase is similar to the one in the exploration phase.
During the first pass through the estimation phase, a population
of 100 random genomes is generated; during subsequent passes
through this phase, the initial population contains 99 random
genomes, and a copy of the best genome evolved during the
previous pass. Each genome is evaluated in turn: the default
simulation is modified according to the genome; the simulated
robot is evaluated using the previously evolved controllers for
1000 time steps; sets of sensor time series are obtained; and the
genome’s rolling mean is calculated. Selection and mutation for
the estimation phase is similar to that for the exploration phase.
The population of the estimation phase is evolved for 30 gen-
erations as well, and outputs the most accurate simulator to the
exploration phase, which begins again with a random popula-
tion of controllers.

5) Termination: The algorithm iterates through the cycle
shown in Fig. 2(d) 20 times, starting at the exploration phase
with the default simulator, and terminating after the 20th pass
through the estimation phase. This produces 20 evolved con-
trollers and 20 simulator modifications.

6) Validation: There is no validation phase necessary for this
example since in this case we know the absolute error. This
error is not available to the algorithm.

A. Evolutionary Robotics Results and Discussion

Fifty independent runs of the algorithm were conducted
against the target robot. Fig. 15 shows the convergence toward
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Fig. 15. Convergence toward the physical characteristics of the target robot. Each pass through the estimation phase produces a set of mass changes for each of
the nine body parts of the robot (top row) and a set of time lags for each of the eight sensors of the robot (bottom row). The trajectories indicate the mean and
standard deviation of the best guesses output by the estimation phase from the 50 independent runs. The each bar corresponds to the best guesses from that pass
through the estimation phase. The open circles indicate the actual differences between the target robot and the starting default simulated robot (for example, the
first body part of the target robot is 1.5 kg heavier than the corresponding body part of the default simulated robot).

Fig. 16. Behavior recovery after controller transferal. After the first pass through the exploration phase, the best evolved controller caused the simulated robot
to move as shown in (a) the trajectory of its center of mass is given by the thin line. The same controller was then supplied to the target robot, and the resulting
trajectory of its motion is given by the thick line. The movement of the updated simulated robot after the 20th pass through the exploration phase (using the new
best evolved controller) is given by the thin line in (b). The motion of the target robot using the same controller is given by the thick line in (b). The horizontal axis
indicates forward distance, and the vertical axis indicates height (both are in meters).

the actual mass distribution and sensor time lags of the target
robot. The figure makes clear that for all 50 runs, the algorithm
was better able to infer the time lags of the eight sensors than
the mass increases of the nine body parts (indicated by the con-
vergence of the means and the negligible standard deviations
toward the actual time lags on the bottom row compared with
the large standard deviations on the top row). In the inference
of the time lags, the algorithm only had difficulty with sensor
3, and tended to overestimate its particular lag. Also, the algo-
rithm tended to have difficulty converging on the correct mass
increases of most of the body parts, but did a relatively good
job inferring the mass changes of body parts 4 and 8.

The fact that the algorithm had more difficulty with some
parts of the robot and not others is not surprising: the asym-
metric mass distribution of the robot causes some aspects of the
robot’s morphology to be more observable than others. For ex-
ample, the time lag of a touch sensor, attached to a very heavy
leg that is only ever dragged along the ground plane (such that
the sensor always fires), is much more difficult to infer than an-
other touch sensor attached to a leg that repeatedly touches the
ground and lifts off again. Also, a sensor with a shorter time lag
is probably easier to infer than one that has a long time lag.

Another reason that it was easier for the algorithm to infer
sensor rather than body part characteristics is that the sensors
themselves provide feedback about the robot. In other words,
the algorithm automatically, and after only a few target trials,
deduces the correct time lags of the target robot’s sensors, but
is less successful at indirectly inferring the masses of the body
parts using the sensor data. As discussed in the previous two
sections, often some of the components in a target system (in

this case, an asymmetric robot) are less observable than other
components.

One of the runs was selected at random, and the gait of the
simulated robot was compared against the gait of the target
robot, when both used the same evolved controller. Fig. 16(a) in-
dicates the change in behaviors when the first evolved controller
was transferred, and Fig. 16(b) shows the behavior change when
the 20th evolved controller was transferred, during the last iter-
ation through the algorithm’s cycle.

This figure shows that even with an approximate description
of the robot’s mass distribution, the simulator is improved
enough to allow smooth transfer of controllers from simulation
to the target robot. Using the default, approximate simula-
tion, there is a complete failure of transferal, as indicated
by Fig. 16(a): the target robot simply moves randomly, and
achieves no appreciable forward locomotion.

After 20 iterations through the algorithm, an improved sim-
ulator is available to the exploration phase, which evolves a
controller that allows the simulated robot to move forward, al-
though not as far as the original simulated robot [indicated by
the shorter trajectory in Fig. 16(b) compared with Fig. 16(a)].
This is most likely due to the fact that the simulator is now ac-
curately modeling the heavier mass of the target robot. Also, the
new gait causes the robot to hop [indicated by the large vertical
curves of the robot’s center of mass in Fig. 16(b)] instead of
walk [indicated by the steady trajectory of Fig. 16(a)]. In con-
trast to the first pass, the target robot exhibits very similar be-
havior to the simulated robot when it uses the same controller:
both travel a similar distance (about 6.5 m), and both move in
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Fig. 17. Average transferal success after each target trial. The light gray bars
indicate the average distance traveled by the simulated robot using the best
evolved controller output by that pass through the exploration phase, over all
50 runs. The dark gray bars indicate the average distance traveled by the target
robot using the same controller, during each target trial. Error bars indicate two
units of standard deviation.

the same way (both exhibit a hopping gait that produces trajec-
tories with similar frequencies and amplitudes).

Finally, for each pass through the exploration phase, the dis-
tance traveled by the simulated robot using the best evolved con-
troller was averaged over all the 50 runs. Similarly, the distance
traveled by the target robot using the same controller was aver-
aged over the 50 runs. The results are shown in Fig. 17, which
indicates that improvement in behavior transferal success, even
using an approximate simulator, is a general phenomenon. On
average, over the 50 independent runs, there is a drop by 50%
in the distance traveled by the target robot, compared with the
default simulated robot. After about five iterations through the
algorithm’s cycle there is only a statistically insignificant de-
crease in distance traveled between the two robots. Although
not shown in Fig. 17, this similar distance is matched in all of
the cases viewed by a qualitative similarity in gait patterns, as
shown for a single run in Fig. 16(b).

In this section, we have shown that the estimation-exploration
algorithm can be used to automatically evolve an accurate robot
simulator. Even if the simulator does not describe the target
robot perfectly, it does allow for automated transferal of evolved
controllers from simulation to the target robot. Moreover, suc-
cessful transferal becomes possible after only three or four target
trials. In the next section, we extend this approach to automate
the process of diagnosis and recovery for robots that undergo
some unanticipated malfunction.

VI. APPLICATION 4: DAMAGED ROBOT RECOVERY

For a robot to function for long periods of time in a hos-
tile, unknown or remote environment, it must be able to deal
autonomously with uncertainty: specifically, unanticipated in-
ternal damage or external environmental change. The recent dif-
ficulties with Jet Propulsion Laboratory’s two Mars rovers pro-
vide a dramatic example: both robots suffered different, unantic-
ipated partial failures [42]. Automatic recovery is most acute in
such instances where human operators cannot manually repair
or provide compensation for failure. In this work, we are con-
cerned with catastrophic, highly nonlinear robot faults that re-
quire recovery controllers qualitatively different from the orig-
inal controller.

Some work has been done on employing evolutionary algo-
rithms to restore functionality after some unanticipated damage
has occurred, but all of this work relies on massive numbers of
hardware trials: robot recovery has been demonstrated in [4] and
[47], and for electronic circuits in [10] and [37]. However, re-
peated generate-and-test algorithms for robotics is not desirable
for several reasons: repeated trials may exacerbate damage and
drain limited energy; long periods of time are required for re-
peated hardware trials; damage may require rapid compensation
(e.g., power drain due to coverage of solar panels); and repeated
trials continuously change the state of the robot, making damage
diagnosis difficult.

Grefenstette and Ramsey [28] propose an algorithm for con-
tinual behavioral learning in a robot context which does not re-
quire large numbers of target trials. However, their system as-
sumes that changes in the robot’s environment (in their case,
speed change of a prey robot) can be directly inferred using
sensor data and provided to the behavior learning component. In
their case, it is assumed that the prey robot may change speed,
and their described algorithm assumes that speed change can be
detected by the predator robot; the observed change in then fed
directly into the predator’s behavior learning component. How-
ever, the more difficult aspect of damage diagnosis and recovery
is usually diagnosis: in the estimation-exploration algorithm it
is assumed that robot or environmental changes are not known
in advance, and must be inferred indirectly using the sensors
that also drive behavior. Grefenstette and Ramsey state that in-
direct sensing of environmental change could be included into
their system, but they do not provide any description as to how
this could be accomplished.

As mentioned in the previous section, several types of plastic
neural network controllers have been proposed that allow for
rapid, lifetime adaptation to external perturbation (e.g., [19],
[24] and [60]). Furthermore, Keymeulen et al. [36] have formu-
lated an algorithm that continuously updates an internal model
of sensor input/world response data obtained from a wheeled
robot, and uses this model to evolve and download controllers
to the robot during task execution. They have demonstrated that
their algorithm greatly reduces the number of required hardware
trials, compared with a similar model-free algorithm. However,
none of these approaches generate a hypothesis describing what
particular change the robot or its environment has experienced.
Second, the evolved controllers have not been shown capable of
fundamental reorganization when faced with unanticipated, cat-
astrophic failure (such as the separation of a limb), as is demon-
strated here for our proposed algorithm.

Srinivas [57] was one of the first researchers to study error di-
agnosis and recovery, but his approach, along with subsequent
approaches ([1], [11], [20], [35], [61]), require online operation
(repeated testing on the physical robot), and cannot handle unan-
ticipated errors. Baydar and Saitou [4] proposed the first offline
error diagnostic and recovery system, which relies on Bayesian
inference for error diagnosis, and genetic programming [40] for
error recovery. However, their algorithm also only handles pre-
specified error types.

Mahdavi and Bentley [47] recently demonstrated an online
evolutionary algorithm that automatically recovers behavior for
a physical robot. However, after damage the physical robot re-
quired 400 hardware trials and nearly seven hours to recover
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Fig. 18. Parsing of an example genome in the estimation phase. This particular genome has one active and three inactive genes. The resulting single modification
(a weakening of the third motor by 43%) is applied to the default simulator.

72% of its original functionality. Their approach is similar to
that portrayed in Fig. 13: evolution is continued on the target
robot after transferal.

Here, we describe the application of the estimation-explo-
ration algorithm to the problem of damaged robot recovery,
which, for the results presented here, requires only ten target
trials (on average) to restore functionality. Like the previous
application, the algorithm automatically evolves two separate
structures: a robot simulator that explains unanticipated internal
damage or external environmental change suffered by the target
robot; and a compensatory neural network controller that re-
stores functionality to the target robot, given the evolved robot
simulator. Below, we outline the application of the first five
steps of the proposed algorithm to the problem of automated
damage diagnosis and recovery; validation, as in the previous
applications, is not used here.

1) Characterization of the Target System: Like the previous
application, the target robot is an independent simulated robot
that possesses some unknown differences in contrast to an
initial, approximate simulator. We use the same quadrupedal
robot as before (Fig. 14), but the target robot no longer has a
larger mass and time-delayed sensors, but does suffer some un-
expected malfunction or environmental change. The algorithm
must then diagnose this malfunction using sensory feedback as
before, and update the simulator to reflect this damage: if the
target robot has lost a leg, then a good simulator must simulate
a robot with the correct leg missing.

The model in this application is a genome that can encode
zero to four simultaneous malfunctions. Each encoded malfunc-
tion is parameterized as to: which body part, joint, sensor, or
motor it applies; what has happened (the joint has broken or
the sensor has failed); and how severe the damage is (expressed
as a percentage). Genomes are comprised of 16 floating-point
values, and each genome is divided into four genes, each com-
prised of four values; each gene describes a possible malfunc-
tion. These values are parsed into a set of malfunctions to apply
to the default simulated robot. Fig. 18 outlines a sample genome
being parsed; refer to [8] for more details regarding the specifics
of the genetic encoding. Thus, each genome produces some

modification of the simulated robot and its environment; this
simulation is treated as the candidate model. The quality of a
model is again the ability of the given simulated robot to mimic
the behavior of the crippled target robot.

This encoding gives a search space of 200
10 different genomes. As the values are discretized,
there are at most

possible sets of simulator modifications, although some of
these are not unique because ordering is irrelevant, multiple
modifications can be additive (two weakenings of the same
motor by 10% is equivalent to one weakening of the same
motor by 20%) and modifications encoded by inactive genes
are not applied.

A test in this application is the same as for the previous ap-
plication: genomes encode a vector of 68 synaptic weights for
the controller. The quality of a labeled controller is how far it
enables the crippled robot to move forward during 1000 time
steps of the simulation.

2) Initialization: As in the previous application, we begin with
a default simulation of the quadrupedal robot and its environ-
ment, and initiate the exploration phase to evolve a neural net-
work controller for it. The best evolved controller is then down-
loaded onto the damaged target robot, and the resulting sensory
data, along with the evolved controller, are fed into the estima-
tion phase in order to improve the simulation.

3) Exploration Phase: During each pass through the explo-
ration phase a population of 200 genomes is evolved for 40
generations. Before each evaluation, the default simulator is
modified (i.e., the simulated robot is damaged) according to the
evolved set of modifications supplied by the estimation phase.
Selection and mutation are implemented the same way as in the
previous application. At the end of this phase, the best controller
is output to the target robot.

4) Estimation Phase: Each pass through the estimation phase
begins with a random population of 200 genomes; on the second
and subsequent passes through this pass, the random population
is seeded with the best simulator modification evolved during
the previous pass. Each genome in turn is parsed; the resulting
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TABLE II
UNANTICIPATED SITUATIONS TESTED

modifications (if any) are applied to the default simulator; the
modified simulated robot is evaluated using the controllers al-
ready tested on the target robot; and both the sensor logs from
the damaged target robot and those obtained from the simula-
tion are compared using the rolling mean metric [8] to assess
the accuracy of the current genome. Once all of the genomes in
the population have been evaluated, the population is sorted ac-
cording to accuracy, and selection, mutation and crossover is ap-
plied. Each pass through the estimation phase evolves the pop-
ulation for 40 generations. At the end of the pass, the best set of
simulator modifications is passed to the exploration phase.

5) Termination: Starting at the exploration phase, the algo-
rithm iterates through the cycle shown in Fig. 2(e) ten times,
leading to ten evolved controllers, ten target tests, and ten
evolved simulations. See Table I for a summary of the applica-
tion of the estimation-exploration algorithm to this problem.

6) Validation: There is no validation phase necessary for this
example since in this case we know the absolute error. This
error is not available to the algorithm.

A. Damaged Robot Recovery Results and Discussion

Thirteen different target robots were tested: each suffered a
different unanticipated situation. Table II describes the situa-
tions. The algorithm was then run 20 times against each of the
13 target robots. The estimation phase attempts to evolve simu-
lator modifications that will describe this situation: for each of
the 13 situations, there are only a few genomes (or none, in the
case of situations 11–13) that will describe it perfectly, out of
the 86 400 possible situations. Each run requires about 4 h of
computation on a 1 GHz PC.

Fig. 19 documents the performance of a single run of the
control algorithm against a target robot that has suffered a 50%
failure of one of its touch sensors (situation 5 in Table II). The
algorithm evolves an approximate description of the damage
after the first target test, and evolves a perfect description after
the second test. This indicates that as the algorithm accumulates
more data from the target robot by causing it to behave in dif-
ferent ways, it is better able to model the target robot’s situation.
Also, Fig. 19(a) shows that, armed with an accurate model after

Fig. 19. (a) The evolutionary progress of a sample run against situation 5:
one of the angle sensors breaks by 50%. The dotted lines indicate the progress
of the first five passes through exploration phase. The captions indicate the best
simulator modifications evolved by four passes through the estimation phase.
The triangle shows the original distance traveled by the target robot. The circle
indicates distance traveled after suffering the failure. The squares indicate
the distance traveled by the damaged target robot during each of the four
trials. (b)–(d) Images of the target robot’s motion: (b) before the unanticipated
situation; (c) after encountering the unanticipated situation; and (d) during the
fifth target trial.

Fig. 20. Automated recovery after a catastrophic failure using the proposed
algorithm. (a) The behavior of the default simulated robot using the best
controller evolved during the first pass through the exploration phase. (b) The
target robot has lost part of a leg through joint separation, and the robot attempts
to move using the first evolved controller. (c) The motion of the damaged target
robot during the second target trial.

the second test, the algorithm is able to evolve a compensatory
controller for the damaged robot that restores functionality.

Fig. 20 indicates that the proposed algorithm is even able to
provide compensatory controllers when the target robot suffers
catastrophic failure, such as a change in the robot’s topology
(one of the lower legs has broken off, represented by situation
3 from Table II). Here, the algorithm correctly identifies the
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Fig. 21. The average performance of the proposed algorithm against all 13
damaged robots. The algorithm was run ten times against each situation. The
white bars indicate the average distance traveled by the default simulated robot
using the first evolved controller. The light gray bars indicate the average
distance traveled by the target robot during the first target trial. The dark gray
bars indicate the average distance traveled by the target robot during the tenth
target trial.

damage after the second pass through the estimation phase, and
the exploration phase uses this accurate simulator to evolve a
new controller that allows the damaged robot to move using only
three legs. Note the difference in trajectories shown in Fig. 20(a)
and (c): the original gait caused the robot to move using long
hops [indicated by the long loops in Fig. 20(a)], but the damaged
robot uses a compensatory controller that causes it to move in
short, hesitant hops] indicated by the short loops in Fig. 20(b)].
Thus, the algorithm automatically diagnoses mild or severe mal-
function, and either modifies the gait slightly over subsequent
trials or evolves a qualitatively different gait, depending on the
damage incurred.

Fig. 21 reports the ability of the proposed algorithm to recover
function for damaged robots. The algorithm was able to restore
functionality (regarded as a statistically significant increase in
mean performance between the first and tenth hardware trial) for
all but damage scenarios 6, 11, and 13. Even in these three cases,
many of the runs produce a significant increase in performance.
Note that even in the catastrophic cases such as 3, 4, 7, and 10
(indicated by almost complete lack of forward motion during the
first hardware trial) some functionality was restored, indicating
that our algorithm may be useful for recovering some function
from severely damaged robots.

Note also that both algorithms were able to successfully re-
cover when faced with an unanticipated environmental change:
the horizontal canting of the ground plane (situation 10). This
was probably due to the drastic effect on all sensors induced by
this change. It is important to note that the proposed algorithm
can distinguish between internal damage and external environ-
mental change, and reconstruct the change in simulation, based
solely on indirect sensory information.

Most encouragingly, some functionality was restored in cases
11 and 12, in which there was no genome that could perfectly
describe the malfunction. Further study is required in order to
understand how truly unanticipated situations can best be ap-
proximated by a set of simulator modifications.

VII. DISCUSSION

The previous four sections have described the application of
the estimation-exploration algorithm to four separate problems:
grammar induction, gene network inference, the evolution of an

accurate robot simulator, and automated diagnosis and recovery
from unanticipated robot malfunction. These four applications
have not only demonstrated that our approach is problem do-
main independent, but have also highlighted its various proper-
ties and benefits. Before we summarize the results from these
applications, however, it is worthwhile to go into more detail
about the differences between the proposed algorithm and other
coevolutionary algorithms.

A. Differences From Pure Coevolutionary Algorithms

The main difference between the estimation-exploration al-
gorithm and other coevolutionary systems proposed so far is that
our algorithm is a hybrid system: the fitness of both the model
and test populations is influenced by the opposing population,
but also by the behavior of an additional, third component—the
target system. In other coevolutionary algorithms, the fitness of
an individual is influenced by one or more individuals from an-
other (or the same) population. For this reason, the fitness of
a coevolving individual in such systems is purely subjective; it
is calculated based only on other individuals. However, in our
system, there is a static component to search, which is the ability
of a model to mimic the observed behavior of a target system:
as long as the target system does not alter its internal structure
over time, there is an objective aspect to the search for better
models. For this reason, we view previous coevolutionary sys-
tems as pure coevolutionary systems, and the estimation-explo-
ration algorithm as a hybrid coevolutionary system.

B. Application of the Algorithm

In the grammar induction problem, it was shown that an in-
telligent test is often one that distinguishes between alterna-
tive candidate models, a concept related to that propounded in
the competitive coevolutionary literature: the quality of an indi-
vidual in one population is proportional to its ability to induce a
performance gradient in the subset of individuals challenging it
from the competing population [12], [22], [33]. There are sev-
eral reasons cited as to why such a test is desirable, but there is
a specific advantage in the context of the estimation-exploration
algorithm, described next.

If a test does not induce disagreement between models, and
the test is passed to the target DFA for classification, then on
the subsequent pass through the estimation phase there will be
an absolute but not a relative change in the fitnesses of the best
models: the fitnesses of the best models from each subpopu-
lation will either all go up by one (if they match the classifica-
tion of the target DFA) or down by one (if they disagree with
the target DFA). If the best models all improve in fitness, there
is little chance for evolutionary improvement: new models can
only classify any previous sentences not yet correctly classified
by the current best models, if there are any. If the best models all
experience a drop in fitness, then there is sufficient room for im-
provement: a new model may correctly classify all the sentences
that the best model(s) do, as well as the new sentence that they
do not.

However, as the inference process proceeds, and the models
in the estimation phase improve, there is an increasing likeli-
hood that the best models will correctly classify any incoming
sentence. Therefore, there will be a diminishing return over the
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inference process of proposing sentences for classification that
the best models already agree on. However, if a sentence is pro-
posed for classification by the target DFA that causes disagree-
ment among the best models, there is a guarantee that of the
best models will incorrectly classify the new sentence, thereby
ensuring the possibility of further model improvement.

Tests that cause model disagreement have an added benefit:
it helps to uncover less observable components of the target
system. For example, in the grammar induction application, in-
telligent testing tended to elicit much more balanced classifi-
cations from unbalanced target DFAs than random testing was
able to [see Fig. 7(c)]. For many of these unbalanced DFAs, the
proposed algorithm was able to extract enough of the minority
classifications using intelligent testing to evolve a much more
accurate model, on average, than the same algorithm but with
random testing. In such cases when the hidden system has low
observability, tests must be formulated that produce more of the
underrepresented output in order to infer the internal structure
of the system: in the estimation-exploration algorithm this oc-
curs as a natural result of evolving tests that cause disagreement
among models.

For the gene network inference problem, we have shown that
it is possible to automatically evolve the regulatory connec-
tions between a set of genes given a set of input and output
gene product concentrations. Moreover, our approach does not
require invasive, expensive, slow, and disruptive experiments
such as knockout or lesion studies. Rather, the exploration phase
carefully evolves a low-cost experiment (a set of initial chemical
concentrations that trigger gene regulation) that yields a large
amount of information about the physical system.

Like the grammar induction problem, it was found that
evolving useful tests, instead of proposing random ones, speeds
the discovery of accurate gene network models, thus requiring
a minimum of physical experimentation. Moreover, it was
found that the usefulness of evolving tests increases as problem
difficulty increases: it was found that evolving tests is increas-
ingly useful as the hidden gene networks increase in size and
connectivity. This finding bodes well for the scalability of our
approach, suggesting that our algorithm may prove very useful
for genetic network inference in particular, and for systems
biology research in general.

In Section V, we described the application of the estima-
tion-exploration algorithm to the problem of automatically
generating controllers for robots. In that application the hidden
target system is a robot with unknown morphological differ-
ences compared with an initial default simulated robot. The
algorithm evolves controllers for the robot in simulation, which
are then tested on the target robot. The resulting sensor data,
along with the evolved controller, serve as input/output data
pairs which are used to evolve improvements to the robot sim-
ulator. It was shown that this approach automatically produces
accurate enough simulators for the successful transferal of con-
trollers from simulation to the target robot, using a minimum of
trials on the target robot. This approach is appealing because:
repeated testing on a physical robot is time-consuming and
potentially damaging; the sensors already being used to drive
behavior also act as diagnostic sensors, returning indirect infor-
mation about the target robot’s morphological characteristics;

and our approach could be combined with other approaches
that have already been suggested for automating the process of
evolved controller transferal.

In the last application, we employed the estimation-explo-
ration algorithm to automatically diagnose unanticipated mal-
functions suffered by the target robot, and automatically evolve
compensatory controllers for it. As in the previous three appli-
cations, recovery was achieved with a small number of target
trials. In this application a maximum of ten target trials were suf-
ficient to restore functionality in the face of: minor, catastrophic,
or compound damages; no damage at all; changes in the robot’s
environment; or malfunctions that could not be perfectly ex-
pressed in simulation. Most importantly, the algorithm was able
to automatically distinguish and describe these diverse situa-
tions using only sensory feedback and the rolling mean metric,
which quantitatively compares behaviors between highly cou-
pled, highly nonlinear dynamic robots. Once a correct diag-
nosis is discovered the algorithm is often able to evolve a com-
pensatory controller, often evolving qualitatively different gaits
in response to fundamental changes experienced by the target
robot.

C. Model Accuracy Versus Structural Accuracy

When performing system identification, it is possible to gen-
erate a model that successfully mimics the input–output be-
havior of the target system, which we refer to as model accu-
racy, but fails to reflect the actual internal structure of the target
system, which we call structural accuracy. Whether our pro-
posed algorithm actually captures structural as well as model
accuracy depends on the specific application.

For grammar induction, there are often several DFAs that pro-
duce identical classifications. So for this application, it is impos-
sible to determine, using any algorithm, whether a model DFA
has captured the actual internal structure of the target DFA: ab-
solute error of a candidate model is simply approximated using
a large set of previously unseen sentences.

In the gene network application, our algorithm does capture
the internal structure of the target gene networks: absolute error
is considered to be the distance between the internal structures
of the model and target networks. As can be seen in Fig. 9(d),
the internal structures of the best model gene networks produced
by the estimation-exploration algorithm are closer to those of
the target networks than those models produced by the other
two algorithms (indicated by the final absolute errors of the best
models). However, this correlation between model and struc-
tural accuracy depends on the way in which we have chosen
to model gene networks: validation methods for determining
whether a given gene network model actually captures the regu-
lation inherent in an actual biological gene network is currently
being investigated.

In the case of the first robot application, Fig. 15 indicates that
all of the runs tend to converge on the actual internal structure
of the target system: the mass distribution and sensor time lags
of the target robot. In the case of the second robot application,
Table II reports that for many of the damage scenarios, the esti-
mation-exploration algorithm actually discovers the perfect de-
scription of the damage (see column 3). However, for these two
applications we are most interested in determining how well the
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TABLE III
ALGORITHM INFERENCE ABILITY

algorithm can approximate an indescribable structural change
to the robot or its environment and recover from it.

D. Comparison of Performance

Table III summarizes the inference ability of the algorithm
for the grammar induction and gene network inference applica-
tions. The first row reports that for 21 of the 30 target DFAs,
the estimation-exploration algorithm was able to find a perfect
model using fewer target evaluations than the other two control
algorithms [see Fig. 7(b)]. The remaining nine targets showed
no statistical improvement using intelligent testing. Moreover,
for 14 of the 30 target DFAs, the proposed algorithm discovered
a perfect model using significantly fewer model evaluations [see
Fig. 7(a)]. In the case of gene network inference, all three algo-
rithms performed 10 model evaluations, the standard GA
performed 100 target evaluations, the iterative algorithm with
random testing performed 56 target evaluations and the estima-
tion-exploration algorithm performed 55 target evaluations. As
can be seen from Table III, the proposed algorithm consistently
produces more accurate models for large and more densely con-
nected gene networks (see Fig. 9). This indicates that the esti-
mation-exploration algorithm is scalable: intelligent testing be-
comes increasingly useful as the size of the target system in-
creases and its observability decreases.

Table IV summarizes the recovery ability of the proposed al-
gorithm for the latter two robot applications. In the third appli-
cation, the target robot had a different mass distribution and sig-
nificant sensor time lags, compared with its corresponding robot
simulator. As a control, a neural controller was evolved directly
on this target robot using the genetic algorithm described in Sec-
tion V. Ten independent runs of this control were performed.
After 600 evaluations in each run, the best controller was ex-
tracted, and the mean distance achieved by the robot using these
ten networks in turn was found to be 5.3 m. The intervals in
this table represent standard deviation, indicating the distribu-
tion of distances traveled by the best robot from each run, for
both algorithms. Both the means and the standard deviations

TABLE IV
ALGORITHM RECOVERY ABILITY

indicate that in this case, the estimation-exploration algorithm
caused the target robot to achieve the same performance as the
control algorithm, in which all evolution is performed directly
on the target robot, but using only 20 physical tests, compared
with 600. Thus, there was an order of magnitude improvement
in extracting a desired behavior from the target robot.

A similar control was devised for the damaged robot recovery
application. Again a genetic algorithm was used to evolve neural
controllers directly on the target robot, which in this case was
a damaged quadrupedal robot (one of the lower legs separates
completely from the body). In this case, even after 1550 evalu-
ations (evolving a population of 100 controllers for 30 genera-
tions), only half of the mean distance was achieved compared
with the mean distance traveled by the target robot after ten
physical tests using the proposed algorithm. Although there is
a slight overlap in the standard deviations, it is clear that the
proposed algorithm performs better than simply evolving con-
trollers directly on the target robot, using two orders of magni-
tude fewer target trials (1500 versus 10).

VIII. CONCLUSION

We have introduced the estimation-exploration algorithm,
a coevolutionary approach to system identification. We have
shown how our algorithm differs from other pure coevolu-
tionary systems because it does not so much introduce a new
advance in coevolutionary theory, but rather introduces a sys-
tematic, domain independent method for performing synthesis
or analysis using coevolution.

Unlike other coevolutionary systems, the estimation-explo-
ration algorithm evolves candidate models that are influenced
not only by the competing population of tests, but also by the
target system. This removes two potential pathologies from the
algorithm (cycling and overspecialization) which are often suf-
fered by other coevolutionary algorithms. The third pathology,
disengagement, has been observed to occur in our algorithm, but
not for the four applications shown here. We have formulated
two mechanisms that combat disengagement, and are currently
investigating additional mechanisms.

We have documented its application to four very different
problems, thus demonstrating its problem domain indepen-
dence. The algorithm has several other benefits that have been
highlighted in the various applications: coupled automation of
both models and intelligent tests; the active minimization of
target testing; increased usefulness as target systems increase
in size and complexity; increased usefulness for target systems
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with low observability; and automating the extraction of useful
behavior from a hidden system.

Thus, our algorithm performs well at inference: it can au-
tomatically construct a hidden system that explains the gath-
ered data. Active learning is also concerned with the intelli-
gent selection of tests [16], but in that domain a classifier is
used to describe input/output relations; no explicit model of the
target system is generated. This is an important distinction to
make, because by building explicit models to explain the data
rather than learning an approximation of the input/output rela-
tionships, we obtain several benefits:

1) we can use the resultant model to learn more about the
hidden system (we can use it to test hypotheses about the
actual system);

2) we can uncover possible causalities rather than just cor-
relations (“gene regulates gene ,” rather than “the ex-
pressions of genes and are correlated”);

3) we can obtain a comprehensible description of some
change in the hidden system (such as what damage has
incurred, and where);

4) we can generate some useful behavior for it (continuation
of function by circumventing the damage).

The third and fourth property allow us to recover function
from the hidden system using a minimum number of tests.
Second, unlike active learning, tests can be constructed, al-
lowing for the exploration of a possibly infinite space of tests,
rather than selected from some fixed space of tests with equal
dimensionality.

Furthermore, using evolution allows us to synthesize models
and tests for systems about which little is known. This is impor-
tant in nonlinear black-box system identification tasks for which
not even the underlying topology of the hidden system is known
[56]. Artificial evolution could be used to build explicit models
directly from observed data in such instances, a challenge that
has not yet been addressed in the system identification literature,
to the best of the authors’ knowledge. For example the algorithm
could be used in a remote robotics application to synthesize a
model of a novel environment based only on the robot’s sensor
data: this is an attractive avenue for future study. In future work,
we also plan to apply the algorithm to a range of actual physical
systems, including physical robots and real biological networks.
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