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Abstract. This talk will outline challenges and opportunities in translating evolutionary 
learning of autonomous robotics from simulation to reality. It covers evolution and 
adaptation of both morphology and control, hybrid co-evolution of reality and simulation, 
handling noise and uncertainty, and morphological adaptation in hardware. 
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Introduction 

The idea that machine learning processes inspired by biological evolution can be used to 
design autonomous machines, has its roots in the early days of evolutionary computation and 
has been implemented numerous times, starting with the seminal work of Sims [9]. 
Nevertheless, the transition of evolutionary robotics from simulation to reality has been met 
with many challenges, as is evident from the relatively few examples of successful 
implementations of these methods in physical reality. Though many robotic experiments are 
carried out in simulation, a robot must ultimately function in physical reality. 

Consider the problem of evolving controllers for a dynamical, legged robot, shown in 
Figure 1 [13]. The nine-legged machine composed of two Stewart platforms back to back. 
The platforms are powered by twelve pneumatic linear actuators, with power coming from an 
onboard 4500psi paintball canister. While most robotic systems are use position-controlled 
actuators whose exact extension can be set, pneumatic actuators of the kind used here are 
force-controlled. Like biological muscle, the controller can specify the force and duration of 
the actuation, but not the position. It is therefore a challenging control problem. The 
controller architecture for this machine was an open-loop pattern generator that determines 
when to open and close pneumatic valves. The on-off pattern was evolved; Candidate 
controllers were evaluated by trying them out on the robot in a cage, and measuring fitness 
using a camera that tracks the red ball on the foot of one of the legs of the machine (see inset 
in Figure 1b for a view from the camera). Snapshots from one of the best evolved gates are 
shown in Figure 1c. Nolfi and Floreano [8] describe many other interesting hardware 
experiments evolving controllers for wheeled robots 
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Figure 1: Evolving a controller for physical dynamic legged machine: (a) The nine-legged machine is powered by 
twelve pneumatic linear actuators arranged in two Stewart platforms. The controller for this machine is an open-loop 
pattern generator that determines when to open and close pneumatic valves. (b) Candidate controllers are evaluated 
by trying them out on the robot in a cage, and measuring fitness using a camera that tracks the red foot (see inset). 
(c) Snapshots from one of the best evolved gates. From [13]. 

While evolution successfully generated viable gaits in this case, applying evolutionary 
processes to physical machines is difficult for two reasons. First, even if we are only 
evolving controllers for a machine with a fixed morphology, each evaluation of a candidate 



controller involves trying it out in reality. This is a slow and costly process that also wears 
out the target system. Performing thousand of evaluations is usually impractical. Second, if 
we are evolving morphology as well, then how would these morphological changes take 
place in reality? Changes to the controller can be done simply by reprogramming, but 
changes to the morphology require more sophisticated processes. Nature has some interesting 
solutions to this problem, such as growing materials, or self-assembling and self-replicating 
basic building blocks like cells. 

1. Evolving controllers for physical morphologies 

One approach to evolving controllers for fixed morphologies is to make a simulator with 
such fidelity that whatever works in simulation will also work in reality equally well. This is 
possible only for some types of locomotion, such as quasi-static kinematics that can be 
accurately predicted [6][4]. Figure 2a shows some of the machines that evolved for quasi-
static locomotion in simulation; these machines were “copied” from simulation into reality 
using rapid-prototyping technology (Figure 2b) where they functioned in a way similar to 
their simulation. Unfortunately, however, it is unlikely that a similarly predictive dynamic 
simulator would exist, given that machine dynamics are inherently chaotic and sensitive to 
initial conditions and many small parameter variations. But even if such simulators existed, 
creating accurate models would be painstakingly difficult, or may be impossible because the 
target environment is unknown. 

 
Figure 2: Evolving bodies and brains: (a) Three evolved robots, in simulation (b) the three robots reproduced in 
physical reality using rapid prototyping.  From [6]. 

An alternative approach to “crossing the reality gap” is to use a crude simulator that 
captures the salient features of the search space. Techniques have been developed for 
creating such simulators and using noise to cover uncertainties so that the evolved controllers 



do not exploit these uncertainties [5]. Yet another approach is to use plasticity in the 
controller: Allow the robot to learn and adapt in reality. In nature, animals are born with 
mostly predetermined bodies and brains, but these have some ability to learn and make final 
adaptations to whatever actual conditions may arise. 

A third approach is to co-evolve simulators so that they are increasingly predictive. Just 
as we use evolution to design a controller, we can use evolution to design the simulator so 
that it captures the important properties of the target environment. Assume we have a rough 
simulator of the target morphology, and we use it to evolve controllers in simulation. We 
then take the best controller and try it – once – on the target system. If successful, we are 
done; but if the controller did not produce the anticipated result (as is likely to happen since 
the initial simulator was crude), then we observed some unexpected sensory data. We then 
evolve a new set of simulators, whose fitness is their ability to reproduce the actual observed 
behavior when the original controller is tested on them. Simulators that correctly reproduce 
the observed data are more likely to be predictive in the future. We then take the best 
simulator, and use to evolve a new controller, and the cycle repeats: If the controller works in 
reality, we are done. If it does not work as expected, we now have more data to evolve better 
simulators, and so forth. The co-evolution of controllers and simulators is not necessarily 
computationally efficient, but it dramatically reduces the number of trials necessary on the 
target system.  

The co-evolutionary process consists of two phases: Evolving the controller (or 
whatever we are trying to modify on the target system) – we call this the exploration phase. 
The second phase tries to create a simulator, or model of the system – we call this the 
estimation phase. To illustrate the estimation-exploration process, consider a target robot 
with some unknown, but critical, morphological parameters, such as mass distribution and 
sensory lag times. Fifty independent runs of the algorithm were conducted against the target 
robot. Figure 3a shows the 50 series of 20 best simulator modifications output after each pass 
through the estimation phase. Figure 3a makes clear that for all 50 runs, the algorithm was 
better able to infer the time lags of the eight sensors than the mass increases of the nine body 
parts. This is not surprising in that the sensors themselves provide feedback about the robot. 
In other words, the algorithm automatically, and after only a few target trials, deduces the 
correct time lags of the target robot's sensors, but is less successful at indirectly inferring the 
masses of the body parts using the sensor data. Convergence toward the correct mass 
distribution can also be observed. But even with an approximate description of the robot's 
mass distribution, the simulator is improved enough to allow smooth transfer of controllers 
from simulation to the target robot. Using the default, approximate simulation, there is a 
complete failure of transferal: the target robot simply moves randomly, and achieves no 
appreciable forward locomotion. It is interesting to note that the evolved simulators are not 
perfect; they capture well only those aspects of the world that are important for 
accomplishing the task. 

The exploration-estimation approach can be used for much more than transferring 
controllers to robots – it could be used by the robot itself to estimate its own structure. This 
would be particularly useful if the robot may undergo some damage that changes some of its 
morphology in unexpected ways, or some aspect in its environment changes. As each 
controller action is taken, the actual sensory data is compared to that predicted by the 
simulator, and new internal simulators are evolved to be more predictive. These new 



simulators are then used to try out new, adapted controllers for the new and unexpected 
circumstances. Figure 3b shows some results applying this process to design controllers for a 
robot which undergoes various types of drastic morphological damage, like loosing a leg, 
motor, or sensor, or combinations of these. In most cases, the estimation-exploration process 
is able to reconstruct a new simulator that captures the actual damage using only 4-5 trials on 
the target robot, and then use the adapted simulator to evolve compensatory controllers that 
recover most of the original functionality. There are numerous applications to this 
identification and control process in other fields. 

(a) (c) 

 
(b) 

Figure 3: Co-evolving robots and simulators: (a) Convergence toward the physical characteristics of the target robot. 
Each pass through the estimation phase produces a set of mass changes for each of the nine body parts of the robot 
(top row) and a set of time lags for each of the eight sensors (bottom row). The open circles indicate the actual 
differences between the target robot and the starting default simulated robot [1]. (b)  Three typical damage 
recoveries. a: The evolutionary progress of the four sequential runs of the exploration EA on the quadrupedal robot, 
when it undergoes a failure of one of its touch sensors. The hypotheses generated by the three runs of the estimation 
EA (all of which are correct) are shown. The dots indicate the fitness of the best controller from each generation of 
the exploration EA. The triangle shows the fitness of the first evolved controller on the target robot (the behavior of 
the ‘physical’ robot with this controller is shown in b); the filled circle shows the fitness of the robot after the 
damage occurs (the behavior is shown in c); the squares indicate the fitness of the ‘physical’ robot for each of the 
three subsequent hardware trials (the behavior of the ‘physical’ robot during the third trial is shown in d). e-h The 
recovery of the quadrupedal robot when it experiences unanticipated damage. i-l The  recovery of the hexapedal 
robot when it experiences severe, compound damage. The trajectories in b-d, f-h and j-l show the change in the 
robot’s center of mass over time (the trajectories are displaced upwards for clarity) [2]. (c) The simulator 
progressively learns the entire robot morphology from scratch. Panels (a-g) are progressive intermediate self-
inference stages, panel (h) is the true target system [3]. 



2. Making morphological changes in hardware 

An evolutionary process may require a change of morphology, or production of a new 
physical morphology altogether. One approach for generating new morphology is to use 
reconfigurable robots [12]. Reconfigurable robots are composed of many modules that can 
be connected, disconnected and rearranged in various topologies to create machines with 
variable body plans. Self-reconfigurable robots are able to rearrange their own morphology, 
and thus adapt in physical reality. Figure 4a shows one example of a self-reconfiguring robot 
composed of eight identical cubes [14]. Each cube can swivel around its (1,1,1) axis, and 
connect and disconnect to other cubes using electromagnets on its faces. Though this robot 
contains only 8 units, it is conceivable that future machine will be composed of hundreds and 
thousands of modules of smaller modules, allowing much greater control and flexibility in 
morphological change. 

 
Figure 4: Transferring morphological changes into reality (a) Reconfigurable molecube robots [14], (b) Rapid 
prototyping, (c) Future rapid prototyping systems will allow deposition of multiple integrated materials, such as 
elastomers, conductive wires, batteries and actuators, offering evolution a larger design space of integrated 
structures, actuators and sensors, not unlike biological tissue. From [7]. 

An alternative approach to varying morphology is to produce the entire robot 
morphology automatically. For example, the robots shown in Figure 2b were produced using 
rapid prototyping equipment: These are 3D printers, that deposit material layer by layer to 
gradually build up a solid object of arbitrary geometry, as shown in Figure 4b. This “printer”, 
when coupled to an evolutionary design process, can produce complex geometries that are 
difficult to produce any other way, and thus allow the evolutionary search much greater 



design flexibility. But even when using such automated fabrication equipment we needed to 
manually insert the wires, logic, batteries and actuators. What if the printer could print these 
components too? Future rapid prototyping systems may allow deposition of multiple 
integrated materials, such as elastomers, conductive wires, batteries and actuators, offering 
evolution an even larger design space of integrated structures, actuators and sensors, not 
unlike biological tissue. Figure 4c shows some of these printed components [7]. 
 

 
Figure 5: Macro-scale physical models of stochastic self-assembly. (a) Stochastic self-assembly and self 
reconfiguration of 10-cm scale modules on an oscillating air table: Top: units with electromagnets; Bottom: Units 
with swiveling permanent magnets [10]. (b) Three dimensional stochastic self assembly and reconfiguration of 10-
cm cubes in oil [11]. 

Looking at biology, one would ultimately like to emulate ‘growing structures’ – 
structures that can actively move material from one place to another, adapting to needs in situ. 
As we move to smaller and smaller scales, however, deterministically moving material 
becomes increasingly difficult. An interesting alternative is to exploit the random ‘Brownian’ 
motion of the particles in the environment to assist in stochastic self assembly. Figure 5 
shows some macro-scale prototypes of such stochastically reconfiguring systems, both in 2D 
and in 3D. Implementation of such systems at the micro scale, using many thousands of units, 
entails many physical as well as computational challenges, involving local actuation, sensing, 
and control. 

3. Conclusions 

The transition of evolutionary robotics methods from simulation to reality has met 
several hurdles: Besides the scaling limits of evolutionary computation itself, we are 
confronted with the limits of simulation and modeling, the cost, time and risk of training 
machines in reality, and the technical challenge of adapting morphology in reality. Again we 



have resorted to inspiration from biology: Better ways to design adaptive simulations, better 
ways to determine the most useful physical evaluation, and new ways to adapt physical 
morphology through automatic reconfiguration and material growth, all leading to new ideas 
for engineering and new engineering insights into biology. 
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