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Abstract. In previous work [4] a framework was demonstrated that al-
lows an autonomous robot to automatically synthesize physically-realistic
models of its own body. Here it is demonstrated how the same approach
can be applied to empower a robot to synthesize physically-realistic
models of its surroundings. Robots which build numerical or other non-
physical models of their environments are limited in the kinds of predic-
tions they can make about the repercussions of future actions. In this
paper it is shown that a robot equipped with a self-made, physically-
realistic model can extrapolate: a slow-moving robot consistently pre-
dicts the much faster top speed at which it can safely drive across a
terrain.

1 Introduction

Modeling has long played a part in robotics research, but has been plagued
by two main challenges: models must either be laboriously created by hand, or
(whether manually or automatically created) they are of limited use for making
predictions about the outcome of future actions. Models have also been used
extensively in evolutionary robotics [13], where the goal is to use evolutionary
algorithms to automate the creation of behaviors. There are three main ap-
proaches to evolutionary robotics: controllers are either evolved directly on the
physical device, requiring thousands of evaluations [6][8]; controllers are adapted
from an existing, hand-designed controller [17]; or a hand-designed simulator is
used to evolve controllers in simulation before transferal to the physical device
[10][14]. The first approach is infeasible for continuous, rapid adaptation; the
second approach requires a human to create the starting behavior; and the third
approach requires a human to craft a simulation of the robot.

In previous work [2][4] a fourth method was introduced that overcomes these
obstacles by allowing the robot to evolve simulations of itself, and then use the
best of the evolved simulations to internally rehearse behaviors before attempting
them in reality. It was found that the models allowed the robot to make successful
predictions regarding future actions: it first created a self-model using only gentle
rocking motions; it then optimized a locomotion pattern using the self-model;
and finally it executed that pattern successfully in reality.

Here it is demonstrated that the same technique can allow a robot to model
its surroundings, and then make successful predictions about how it can interact
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with that environment. Specifically, it is shown that a robot can learn the topo-
logical properties of a terrain and then predict the maximum speed at which
it can traverse that terrain without tipping over. Many techniques exist for al-
lowing a robot to model its environment (or the nature of its interaction with
that environment), dating back to the first research with autonomous robots [12].
More recent approaches have embraced probabilistic models (for an overview see
[18]). Other approaches include compiling a database of past experiences [11] or
training neural networks to reproduce sensor-motor correlations [9]. However,
the models from all of these approaches are limited, in that they only allow the
robot to make predictions about future actions that have either been performed
before, or are some aggregate of those actions. For example in [9], the robot can
predict future change in its position given the current acceleration, as long as
that acceleration falls within the space of past accelerations that were used to
train the model.

In the next section the robot, its environment, and the technique it uses
to make successful predictions about new behaviors in that environment is de-
scribed. In section 3 results generated using this approach are presented, and in
the final section some discussion and concluding remarks are provided.

2 Methods

Here it is assumed that a robot wishes to reconstruct the topological features of
its surrounding terrain, in order to better understand how it can interact with
it: for instance, what is the top speed at which it can drive across the terrain
without tipping. Clearly, the robot should not simply drive fast to determine this
threshold, as it may actually tip over. Rather it should move slowly, synthesize
an accurate topological model of that terrain, and then drive a virtual copy of
itself across that terrain to determine its safest top speed.

This process is executed as follows. First the robot slowly traverses the terrain
it wishes to model, known as the target terrain. In this work, a virtual robot and
environment are used in lieu of a physical robot and environment: in future work
a physical robot will be used. Two examples of the robot and its environment
are shown in Fig. 1.

This traversal generates sensor data, which the robot stores. The robot then
generates a series of environmental simulations, known as model terrains. It
drives a virtual copy of itself across each model terrain, which again generates
sensor data. It then compares the model-generated sensor data against the sensor
data from the target terrain. The closer the match, the more accurate the current
model terrain must be. The robot then uses a hill climber [15] to optimize the
model terrains by minimizing the distance between the model-generated and
target-generated sensor data.

Both the target and model environments are simulated using physical sim-
ulation1. In a physical simulation, all objects have physical properties such as
mass, velocity, and friction. Objects are connected to one another using joints,

1 www.ode.org
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a b

Fig. 1. The robot, and two sample environments. The wheeled robot is shown
at center. a: The robot driving across a terrain with 10 boulders each with a radius of
10cm. b: The same robot traversing a terrain with 200 boulders with radius 45cm.

which may be powered. At each time step of the simulation, the positions of the
objects are updated based on their current acceleration, and the internal and
external forces acting on them.

The robot used here is made up of five objects: a rectangular body and four
spherical wheels. The wheels are driven at a constant rotational velocity. The
wheels are connected directly to the body: turning is accomplished by driving the
left and right wheels at slightly different velocities. Every traversal of a terrain is
accomplished as follows. The robot begins driving forward, with the left wheels
moving at 0.6 revolutions per second and the right wheels at 0.4 rev/sec (or vice
versa). The robot can sense, in degrees, how much its main body tilts to the left
or right, and how much it tilts forward and backward. If the robot moves outside
the terrain, it will not tilt for a period of time as it is on flat ground. This acts
as a signal to the robot to reverse direction, and change the velocity differential
on its left and right wheels.

Environments are created by altering two parameters: the number of boulders
within the terrain, and the radius of those boulders. The boulders are embedded
within the (flat) ground, and cannot be moved by the robot. It is assumed that
the robot knows that the boulders are embedded and immovable, but not how
many and how large they are. Boulders are distributed randomly, using a uniform
distribution, across the terrain.

3 Results

The robot first traversed three environments with 10 boulders of radius 10cm,
100 boulders of radius 10cm, and 200 boulders of radius 10cm. Fig. 2a,c and e
reports the time series of the resulting tilt sensor data collected by the robot
from these three environments.

It was found (data not shown) that there was no correlation between the
distance between two given environments (as characterized by the number of
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Fig. 2. Robot experience when traversing three different terrains. The robot
sensor time series (a) and binned data (b) for environment 1. The time series (c)
and binned data (d) for environment 2. The time series (e) and binned data (f) for
environment 3.
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boulders), and the difference between time series sensor data from those envi-
ronments. For instance for the three environments described above, environments
1 and 3 are more different from each other than 1 is from 2, or 2 is from 3. Yet
the distance between the sensor data from environments 1 and 3 is no larger
than the distance between the sensor data from environments 1 and 2, or from
environments 2 and 3.

However, a correlation was found when the sensor data was collected into
bins. Each bin denotes the amount of time (during a traversal) that the robot’s
main body maintained a certain orientation. This data is shown for the robot
traversing environment 1 in Fig. 2a, in which the main body is mostly flat.
For environment 2 (Fig. 2d), the larger number of boulders caused the robot
to list onto its left wheel pair, right wheel pair, back wheel pair, or forward
wheel pair (represented by the four spines in the figure). In environment 3, the
many boulders caused the robot to jostle around, therefore spending time in
many more orientation regimes. Taking the absolute difference between each bin
across two binned data sets, and summing those differences gives a single value
indicating the distance between these two data sets. This signal was found to
differ more between the data sets from environments 1 and 3 than either the
distances between the data sets from environments 1 and 2, or environments 2
and 3.

This observation is shown more generally in Fig. 3. The robot was com-
manded to traverse 10 different environments, with an increasing number of
boulders. For each environment, the sensor data was binned as explained above,
and for each pair of environments, the difference between the binned data was
calculated. As can be seen, a clear correlation exists: the greater the difference
between two environments, the greater the distance between the corresponding
pair of binned sensor data.
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Fig. 3. Differences between sensor data collected from 10 different environments, with
increasing numbers of boulders.
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The robot was then commanded to use this indirect measure of environment
similarity to infer the topology of a hidden environment : a target environment
in which the number, distribution and radii of the boulders is unknown. For
each trial, the robot began by traversing the hidden environment, recording
the resulting sensor data, and binning it. The sensor values were stored in a
30 × 30 matrix of bins over the range [−60o

, 60o]2. Values beyond this range
indicate that the robot is about to tip over, and the simulation was stopped
prematurely. A random model environment was then created by choosing the
number of boulders from the range [1, 200] using a uniform distribution, and the
radii of the boulders from the range [0.05, 0.45] using a uniform distribution.
(The ranges indicate the minimum and maximum possible values for these two
environmental parameters.)

A model environment is then created from these two parameter values, tra-
versed, and sensor data is collected and binned. Then, the distance between the
model-generated and target-generated binned sensor data is computed. A child
model environment is then created from the current model environment as fol-
lows. The two environmental parameters are copied, and with 50% probability
the boulder number parameter is mutated; otherwise, the boulder radii param-
eter is mutated. If the boulder number parameter is mutated, a Gaussian value
is chosen from [−10, 10] and added to the current value. If the boulder radii is
mutated, a Gaussian value is chosen from [−0.1, 0.1] and added to the current
value. A child model environment is then synthesized from these two new pa-
rameter values. (Note that as the distribution of boulders is still random, the
same parameter values may generate different environments.)

The robot traverses the child model environment, and the sensor data is col-
lected and binned. If the distance between the binned sensor data from the target
and child model environments is less than the distance between the data from
the target and parent model environments (in other words, if the child model
environment is more accurate than the parent model environment) the parent
model environment is discarded and replaced by the child model environment.
Otherwise, the child model environment is discarded. This process is repeated
for 100 generations.

Thirty independent trials were conducted using this process. For both the tar-
get and model environments, the robot was allowed to traverse them for 20,000
time steps of the simulation. Figure 4a reports the performance of these trials. As
can be seen, the error (ie. the distance between the binned data from the target
and model environment) gradually decreases over evolutionary time, indicating
that this metric provides some gradient in the space of all possible model en-
vironments. However, the number of boulders encoded does not approach the
true number of boulders in the target environment, which was fixed at 100. The
models do however converge on the correct value for the boulder radii, which
was fixed at 0.25, indicating that the robot successfully infers the size of the
boulders in the environment indirectly, given only tilt sensor information.

2 This differs from the 20× 20 matrix of bins over the range [−15o

, 15o] shown in Fig.
2.
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Fig. 4. Relative performance of the three experiments. a: The robot in the
first experiment was allowed to traverse the target and model environments for 20,000
simulation time steps. b: Another thirty trials were conducted in which traversal time
was extended to 40,000 time steps. c: A third set of thirty trials were conducted in
which traversal time was extended to 60,000 time steps.

A further 30 trials were conducted in which the traversal time for both the
target and model environments was extended to 40,000 time steps (Fig. 4b), and
finally a third set of 30 trials were conducted in which the robot was allowed to
traverse the environments for 60,000 time steps (Fig. 4c).

In order to determine whether the robot could use the synthesized models
to make successful predictions about the result of future actions, two trials were
randomly selected from the third experimental regime, and their best model
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environments were extracted. The robot was then commanded to traverse these
two models at increasing speed, for 5000 time steps. Sixteen speeds were used:
[5rev/sec, 6rev/sec, . . . 20rev/sec]. For each speed, the robot traversed each of
the two model environments 30 times. During each traversal, the simulation
was stopped if the robot tipped over. If the simulation was repeatedly stopped
prematurely for a given speed, this indicates that this is probably an unsafe
speed at which to traverse not only the model environment, but also the target
environment that it represents.

Fig. 5a reports the mean time to stopping for these two model environments.
As can be seen, both models predict that the robot will begin to tip over at 9
rev/sec. The robot was then driven over the target environment at these same
speeds, and the mean time until the robot tipped over was again calculated.
For the target environment, the robot indeed begins to tip over at 9 rev/sec,
indicating that the robot was successfully able to use the models to predict, in
advance, the threshold at which behaviors become dangerous.
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Fig. 5. Predictions of future action made by various models. a: Two of the
optimized models predict that the robot will begin flipping over when it drives over
the target environment at wheel speeds of 9 revolutions/second and higher, which
matches that actual behavior of the robot in the target environment. b: Two other
inaccurate models (at the minimum and maximum extremes of the allowed environment
parameters) incorrectly predict that the robot will begin flipping over at 13rev/sec (the
minimal model) or at speeds less than 5rev/sec (the maximal model).

In comparison, two other inaccurate models were used to predict the result
of future action: a minimal model containing only one boulder with a radius of
5cm, and a maximal model containing 200 boulders with radii of 45cm. Fig. 5b
reports the poor predictions generated by these models. Not surprisingly, the
minimal model incorrectly predicts flipping over commences at higher speeds
(13 rev/sec). The maximal model incorrectly predicts flipping over commences
at lower speeds (5 rev/sec).
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4 Discussion and Conclusions

In this work it has been shown that minimal sensor feedback (two tilt sensors) is
required to indirectly infer and synthesize accurate, physically-realistic models.
This finding supports the findings in [4], in which only two tilt sensors were used
to indirectly recover the topology of a legged robot. Despite this minimal sensor
requirement, sensor feedback must be processed correctly in order to induce a
search gradient in the space of possible models (Fig. 3). The sensor processing
introduced here in effect removes the time component from the sensor data.
This reflects the observation that physical environments are extremely noisy and
nonlinear, and it is well known that even accurate models will begin to diverge
from nonlinear systems after a very short time interval [16][7]. In effect, the
binning process described here compares the phase portraits of nonlinear signals,
in which the dimensions of the portraits correspond to the number of sensors.
Further investigation into the most appropriate method of signal comparison
across a wide range of robots, sensors and environments is warranted.

This method of processing has the added benefit that the statistical behavior
of the robot over time can be inferred by a human observer through visual inspec-
tion of the binned data (Fig. 2). Indeed visual inspection by human experts is
a priority in this stream of research: processed sensor data should clarify robot
behavior; three-dimensional physical simulations reveal robot [4] and environ-
ment structure; and automated compression of mathematical models improves
both intelligibility and predictive ability [3].

Fig. 4 indicates that increasing the amount of traversal time on an environ-
ment allows a robot to better infer the environment’s topology: the mean error
of the trials drops from regime 1 (20,000 time steps) to regime 2 (40,000 time
steps) to regime 3 (60,000 time steps). This can be explained by the observation
that longer traversal times leads to more balanced sensor data: rare sensor data
and biases from short traversals (such as only tipping to the left by encountering
a series of boulders on the right) is damped out in longer traversals.

Similarly, the accuracy of the inferred size of the boulders improves in the
long traversal experimental regime (Fig. 4c): the trials converge more rapidly
and more tightly to the actual boulder size of 25cm. On the other hand, the
number of boulders is rarely inferred correctly (Fig. 4). This is presumably due
to the fact that certain random distributions of boulders (such as many boulders
together) may fool the robot into believing there are more (or less) boulders than
there actually are. Surprisingly however, even with this particular handicap, the
robot is still able to correctly predict the outcome of future actions.

This is an encouraging result, as one of the main arguments against using
models in robotics [5][1] is that a perfect model can never be created (or at
least not in a finite amount of time). The results here indicate that a robot does
not need to create a perfect model in order to correctly predict the result of
future action. Rather, it merely needs to create a model that is appropriate for
considering the outcomes of certain types of future action. For instance, because
the robot does not model boulder distribution, it cannot plot a path through the
boulder field. This result indicates that rapid synthesis of multiple, approximate
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models in which each is tuned for considering the results of a particular kind
of future action may be more adaptable than a robot that attempts to create a
single, perfect model.
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