
How Robot Morphology and Training Order Affect the Learning of
Multiple Behaviors

Joshua Auerbach Josh C. Bongard

Abstract— Automatically synthesizing behaviors for robots
with articulated bodies poses a number of challenges be-
yond those encountered when generating behaviors for simpler
agents. One such challenge is how to optimize a controller that
can orchestrate dynamic motion of different parts of the body
at different times. This paper presents an incremental shaping
method that addresses this challenge: it trains a controller
to both coordinate a robot’s leg motions to achieve directed
locomotion toward an object, and then coordinate gripper
motion to achieve lifting once the object is reached. It is
shown that success is dependent on the order in which these
behaviors are learned, and that despite the fact that one robot
can master these behaviors better than another with a different
morphology, this learning order is invariant across the two robot
morphologies investigated here. This suggests that aspects of the
task environment, learning algorithm or the controller dictate
learning order more than the choice of morphology.

I. INTRODUCTION

Robots with three-dimensional, articulated bodies that act
in physical or physically-realistic environments must be able
to coordinate motion of different subsets of their body parts
during different phases of performing a task. In this work
a behavior is defined as the successful coordination of one
of these subsets to achieve part of a desired task. Ideally,
the same controller should be able to direct these different
behaviors and allow transitions between them.

Evolutionary robotics [1], [2] is an established technique
for generating robot behaviors that are difficult to derive ana-
lytically from the robot’s mechanics and task environment. In
particular, such techniques are useful for realizing dynamic
behaviors (eg. [3], [4]) in which individual motor commands
combine in a nonlinear fashion to produce behavior, thereby
making analytical derivations of optimal controllers infea-
sible. However, evolutionary algorithms alone are often not
sufficient to evolve multiple dynamic behaviors: to date most
reported efforts have primarily focused on realizing a single
behavior, such as locomotion [3], [4] or grasping [5], [6].

Previous work has shown that it is possible to realize
multiple behaviors in a robot by gradually incorporating
more modules into its controller [7], [8]. However, this
approach does not scale well as the number of modules, and
therefore the size of the controller grows with the number
of behaviors. A scalable approach to behavioral flexibility
might allow the same dynamic controller to exhibit multiple
attractor states, in which individual behaviors correspond to
individual attractor states, an idea with some currency in the

Morphology, Evolution and Cognition Laboratory – Department of
Computer Science – University of Vermont – Burlington, VT 05401 –
joshua.auerbach@uvm.edu

robotics literature [9], [10]. One of the main difficulties in
this approach however is realizing multistability [11] in the
controller: it should settle into different attractor states that
correspond to the different desired behaviors in the face of
the appropriate sensory stimulation. Another recent finding
indicates that rather than different behaviors corresponding
to different attractor states, they may correspond to distinct
transients within the dynamical system composed of the
agent’s environment, body and brain [12].

This paper extends the results reported in [13] in which
a virtual legged robot was trained to perform a mobile
manipulation [14], [15] task. The robot in [13] learned
to coordinate its legs to locomote toward an object and
then coordinate the motions of a gripper to achieve object
manipulation. It was demonstrated there that successful
attainment of both these behaviors is dependent on the
order in which they are learned. This result lends support
to the growing body of evidence that incremental shaping
([16], [17] and [18]) – the gradual complexification of an
agent’s task environment, also known in the developmental
psychology literature as scaffolding [19] – can improve the
probability of successful learning. However, the selection of
an appropriate scaffolding schedule that enforces the order
in which behaviors should be learned greatly impacts the
probability of the agents successfully learning all of the
behaviors [20]. The question then arises as to what dictates
this learning order: the task environment, the learning
algorithm, the controller, the robot’s morphology, or some
combination of all four.

In the work presented here the dynamic scaffolding
method described in [13] is extended to enable a virtual
autonomous robot to overcome three learning milestones:
object manipulation, dynamic forward legged locomotion
toward an object, and directed legged locomotion toward
an object, all using a single monolithic controller – a feat,
insofar as the authors are aware, that has not been previously
reported in the literature. It is shown that, from among
several scaffolding schedules that attempt to train the robot to
achieve these behaviors in different orders, that the one that
selects for manipulation, then forward locomotion, and then
directed locomotion significantly increases the probability of
a robot successfully learning all three, and that this order is
invariant across two different robot morphologies that were
investigated. In the next section the virtual robots and the
incremental shaping method are introduced; the following
section reports results demonstrating how this method, with
the proper scaffolding schedule, can produce controllers that

succeed in previously unseen environments, and the final
sections provide some discussion and directions for future
investigation.

II. METHODS

This section first describes the two virtual robots used
for this work followed by a description of their controllers.
Next the incremental shaping algorithm used for training the
robots is presented along with the various dynamic scaf-
folding schedules investigated here. The section concludes
with a description of the metrics used to evaluate the robots’
success.

A. The robots

In this work two virtual quadrupedal robots are used1.
Robot 1 (Fig. 1, left) is comprised of a main body, four
legs and a front gripper. Each leg consists of an upper and
lower part connected to each other and the main body. The
gripper is comprised of a small spherical base connecting the
main body to the gripper pincers. The gripper base can be
rotated upward relative to the main body, and both the left
and right pincers are comprised of a gripper arm (proximal
to the gripper base) and gripper tip (distal to the gripper
base). This robot is identical to the one used in [13] and the
reader is referred there for more details regarding the robot’s
morphology.

Robot 2 (Fig. 1, right) is identical to robot 1 except for
the orientation of the legs. Robot 2 has been modified by
rotating the legs at the point they are attached to the main
body such that each is positioned at a 45◦ angle to the main
body. The upper legs in this robot move vertically in the
plane defined by the vector lying along the upper leg and a
downward-pointing vector, while the lower legs continue to
move in the sagittal plane. This alteration was implemented
to make turning easier.

Eight motors actuate the four upper and lower legs, another
motor actuates the gripper base, and four motors actuate the
base and distal parts of the left and right gripper pincers,
for a total of 13 motors. A touch sensor and distance sensor
reside in both the left and right gripper tips, a rotation sensor
resides in the gripper base, and a distance sensor resides
on the robot’s back, for a total of six sensors. The touch
sensors return a value of one when the corresponding body
part touches another object and zero otherwise. The distance
sensors return a value commensurate with the sensor’s dis-
tance from the target object: they return zero if they are
greater than five meters from the target object and a value
near one when touching the target object. Object occlusion
is not simulated here; the target object can be considered
to be emitting a sound, and the distance sensors respond
commensurately to volume.

The robots attempt to locomote toward, grasp and lift a
rectangular target object that is placed at varying locations

1These results have not yet been validated on a physical robot, as
the multiple morphologies would require constructing a morphologically-
reconfigurable legged robot. However, this option will be explored in future
work.

Fig. 1. The two virtual robots used in this work: Robot 1 (left), Robot 2
(right).

in relation to the robot. Unlike the robot’s task in [13], in this
work the target object is not constrained to being placed in
front of the robot within its sagittal plane: additional target
object placements away from the robot’s centerline select for
turning behavior.

B. The controllers

Each robot is controlled by a continuous time recurrent
neural network [21]. The CTRNN is composed of 11 motor
neurons (the two gripper arm motors share the same motor
neuron, as do the two gripper tip motors to ensure the gripper
closes symmetrically). The remaining 9 motors each receive
commands from their own motor neuron. Other network
configurations such as those containing non-motor or hidden
neurons were experimented with, but are omitted from the
current work, because they were not found to improve
performance.

The value of each motor neuron is updated according to

ẏi =
1
τi

−yi +
11∑

j=1

wjiσ(yj + θi) +
6∑

j=1

njisj

 (1)

for 1 ≤ i ≤ 11

where yi is the state of neuron i, wji is the weight of the
connection from neuron j to neuron i, τi is the time constant
of neuron i, θi is the bias of neuron i, nji is the weight of
the connection from sensor j to neuron i, sj is the value
of sensor j and σ(x) = 1/(1 − ex) is the logistic activation
function.

The virtual robot with a given CTRNN controller is
evaluated over a set number of simulation steps in a physical
simulator2. For each simulation step, using a step size of
0.0005, the sensors, CTRNN, joint torques and resulting
motion are updated.

C. Training

A version of incremental shaping extended from the algo-
rithm presented in [13] is used for dynamically tuning the
robot’s task environment to facilitate learning. This method is
outlined in Fig. 2. A random CTRNN is created by choosing
all τ from the range [0.1, 0.5], all w from [-16, 16], all θ

2Open Dynamics Engine: www.opende.org

from [-1, 1], and all n from [-16, 16]; these ranges were
found useful in previous work [13]. This gives a total of
11 + 11 ∗ 11 + 11 + 6 ∗ 11 = 209 evolvable parameters.
The robot is then equipped with this controller and allowed
to behave in a task environment for 100 time steps in which
the target object is placed directly in front of the robot. After
evaluation the fitness of the controller is computed as

fsub =
t

max
k=1

(D(LeftgripperT ip, k) (2)

∗D(RightgripperT ip, k))

if the touch sensors in the left and right gripper tips fail to
fire at the same time during any time step of the evaluation
period, and

fsub = 1 +
t

max
k=1

(D(SensorNode, k)) (3)

otherwise, where t is the evaluation time, and D(x, k)
indicates the value of the distance sensor affixed to body
part x at time step k. Eqn. 2 rewards controllers for steering
the robot toward the target object. Eqn. 3 rewards controllers
for also lifting the target object onto the robot’s back (where
the sensor node is located) while it is touching the target
object with both gripper tips.

One extension added to the algorithm used in this work
over that of [13] is that a single CTRNN controller is
evaluated in multiple environments in which the target object
is placed at different locations. The final fitness of the
controller is computed as

f =
S

min
b=1

fsub(b) (4)

where S is the number of target object locations or sub-
evaluations that the CTRNN is evaluated for and fsub(b) is
the fitness of the CTRNN on sub-evaluation b (see eqns. 2,3).
Using the minimum fitness over all sub-evaluations renders a
given CTRNN only as fit as it is in its weakest sub-evaluation
which prevents finding CTRNNs that specialize at picking
up the target object in one location, but do not work well in
others.

A hill climber [22] is used to optimize the initial random
CTRNN against this fitness function. At each generation a
child CTRNN is created from the current best CTRNN and
mutated. Mutation involves considering each τ, w, θ and n
value in the child, and replacing it with a random value
in its range with a probability of 10/209 = 0.0478. This
ensures that, on average, 10 mutations are incorporated into
the child according to a normal distribution. If the fitness
of the child CTRNN is equal to or greater than the fitness
of the current best CTRNN, and the child CTRNN is either
successful at picking up the target object in either the current
or previous environment, then the best CTRNN is replaced
by the child; otherwise the child is discarded. This ensures
that the grasping behavior learned in previous environments
is retained while the locomotion behavior is adapted to the
current environment.

After each possible replacement, the current CTRNN is
considered in order to determine whether a failure condition

1) IncrementalShaping()
2) Create and evaluate random parent p
3) WHILE ∼Done()
4) Create child c from p, and evaluate
5) IF Fitness(c) ≥ Fitness(p) AND

(PreviousSuccess(c) OR Success(c))
[see Eqns. 2,3,4]

6) p = c
7) IF Failure()
8) EaseEnvironment()
9) Re-evaluate p

10) WHILE Success(p)
11) HardenEnvironment()
12) Re-evaluate p
13) Done()
14) 30 hours of CPU time have elapsed
15) Failure()
16) 100 generations since last success
17) EaseEnvironment()
18) EvaluationTime ← EvaluationTime+100
19) Success(g)
20) ∃k, k ∈ {1, . . . , t} |
21) T (LeftgripperTip, k)&
22) T (RightgripperTip, k)&
23) D(SensorNode, k) ≥ 0.825
24) PreviousSuccess(g)
25) TargetDistance ← TargetDistance-0.01m
26) success = Success(g)
27) TargetDistance ← TargetDistance+0.01m
28) RETURN success;
29) HardenEnvironment()
30) TargetDistance ← TargetDistance+0.01m

Fig. 2. Incremental Shaping pseudocode. The algorithm executes a hill
climber [1-14] (see text for description). If the current genome fails [15,16],
the task environment is eased [17,18]; while it is successful [19-23], the task
environment is made more difficult [24,25]. T (x, k) returns 1 if body part x
is in contact with another object and zero otherwise at time step k. D(x, k)
returns the value of the distance sensor located at body part x at time step
k.

has occurred, or whether it has achieved the success criteria.
In the present work the failure condition is defined as 100
generations of the hill climber elapsing before a successful
CTRNN is found. A successful CTRNN is defined as one
for which, at some time step during the current evaluation
both gripper tips touch the target object and it is lifted far
enough onto the robot’s back such that the distance sensor
there fires above a certain threshold.

If the failure condition occurs, the task environment is
eased; if the current CTRNN succeeds, the task environment
is made more difficult. Easing the task environment involves
increasing the current evaluation period by 10 time steps.
This has the effect of giving the robot more time to succeed
at the current task if it fails. Making the task environment
more difficult involves moving the target object further away
from the robot. This has the effect of teaching the robot to
grasp and lift the target object when it is close, and learning
to turn and locomote toward the target object, followed
by grasping and lifting it, when it is placed further away.

a b

c d

Fig. 3. Sample generalization plots from evolution of a generalized controller on robot 2 (red indicates the robot was successful at picking up the target
object at that location) with the four scaffolding schedules superimposed. Specifically the plots shown are for controllers that were successful at distances
of 3 meters (a), 3.2 meters (b), 3.3 meters (c) and 3.92 (d) the final training distance reached in this run.

As some CTRNNs that succeeded for a given target object
distance also succeed when the target object is moved further
away, the target object is continually moved until the current
CTRNN no longer succeeds, at which time hill climbing
recommences. In order to further speed the algorithm an
individual evaluation is terminated early if the robot ceases
to move before succeeding at the task.

D. Scaffolding Schedules

As mentioned above each CTRNN is evaluated at multiple
target object locations. These locations are a function of
the distance of the target object from the robot, which
increases with each success. Specifically, four different such
functions, or scaffolding schedules were compared in this
work. All four attempt to select first for grasping followed
by a combination of turning and locomoting. The schedules
are created in this way because it was shown in [13] that
selecting for grasping first proved the best way to achieve
both grasping and locomotion.

The first scaffolding schedule, henceforth referred to as
‘T’, begins with only one sub-evaluation and places the target
object in front of the robot at increasing distance until the
target object is a distance of three meters from the robot.
It was observed that by this distance, the robot must have
learned a stable gait to reach the target object. As distance
is increased past three meters the target object is moved
out in both directions along the line perpendicular to the
robot’s sagittal plane, requiring two sub-evaluations: one sub-

evaluation with the target object placed in front and to the
left, and another in which the target object is placed in front
and to the right of the robot. Formally

(x, z) =

{
(0, L), if L ≤ 3.0
(±
√
L2 − 9.0, 3.0), otherwise

(5)

where L is the distance of the target object from the robot’s
start location. This schedule is depicted graphically as the
thick lines in Fig. 3. The next schedule used is

(x, z) = (±L2/10.0,
√

10.0|x| − x2) (6)

that is the target object is moved concurrently along the
perimeter of circles with radius 5 meters and centers at 5
and -5 meters (‘C’). In this case two sub-evaluations are
always used. The final two schedules both move the target
object away from the robot linearly on both sides. One does
so with a slope m = 1/ tan(22.5◦) (‘L1’) and the other does
so with a slope m = 1/ tan(45◦) = 1 (‘L2’). In both these
cases the function used is

(x, z) = (±L/
√

(m2) + 1, |mx|) (7)

See Fig. 3 for a graphical representation of these schedules.
In order to speed evaluation of child CTRNNs in schedules

with multiple sub-evaluations, if the sub-fitness of the first
sub-evaluation attempted by the child CTRNN is lower than
the fitness of the current best CTRNN (which was set
to its lowest scoring sub-fitness), then no additional sub-
evaluations are performed and the child CTRNN is discarded.

1) GeneralizationTest()
2) NumSuccesses = 0;
3) FOR x = −5; x ≤ 5; x+ = 0.1
4) FOR z = 0; z ≤ 5; z+ = 0.1
5) Place target object at (x, z) and

let simulation run for 10,000 time steps
6) If Success() [see Fig. 2]
7) NumSuccesses++;
8) RETURN (NumSuccesses / 5151)

Fig. 4. GeneralizationTest, the 10x5 grid is uniformly sampled at
101x51=5151 target object locations to determine percentage of grid co-
ordinates where the controller is successful.

E. Measuring Performance

In order to evaluate the quality of an evolved CTRNN,
two metrics are considered. The first is how far away the
target object was placed at the end of 30 hours of training.
While this metric is useful for judging how rapidly the robot
can adapt to a changing environment it does not measure
how successful a given CTRNN is in unseen environments.
For this purpose a generalization metric has been devised. If
the point directly in front of the robot is considered to be
the origin of a Euclidean space, then a 10 meter by 5 meter
grid extending from (-5,0) to (5,5) can be constructed and a
controller can be systematically tested to determine how well
it performs the task for a sampling of target object locations
within this grid. Specifically, this grid is sampled as shown
in Fig. 4. Additionally, for each grid position, whether or
not the controller was successful there is recorded and can
be plotted as shown in Figs. 3 and 5.

Fig. 5. Generalization plot from best controller for robot 1.

III. RESULTS

For each robot and each scaffolding schedule mentioned
above a set of 100 independent runs were conducted giving
a total of 2 ∗ 4 ∗ 100 = 800 total runs. Each run consisted of
running the incremental shaping algorithm for 30 hours of
CPU time. At the completion of each run, the generalization
test as described in Fig. 4 was performed on the final
CTRNN from that run to test its ability to generalize to
unseen environments. For each set of runs, the mean final
target object distance and the mean generalization percent of

those final CTRNNs are plotted in Fig. 6. While the mean
generalization score for each set of runs was under 10% in all
instances, there were runs in each set that found controllers
with much higher generalization values. The generalization
scores for the final controllers from the top five runs from
each set are given in Table I.

a

b

c

Fig. 6. Mean final distance achieved in training (a) mean generalization
% of final CTRNN (b), and mean generalization % of final CTRNN for
all locations where x /∈ [−1, 1] (c) across the 100 runs for each of the
two virtual robots (robot 1 in black, robot 2 in blue) and each of the four
scaffolding schedules. All plots include standard error bars.

The T scaffolding schedule significantly outperforms the
other three schedules both in training distance achieved
and generalization, for both robots. Comparing performances
between robots, it is noted that the T schedule evolves

Schedule: T C L1 L2

Robot 1:

53.6% 32.5% 23.3% 13.2%
20.2% 28.3% 19.7% 12.7%
16.6% 24.7% 14.9% 9.7%
15.2% 24.3% 13.2% 9.2%
15.1% 22.7% 11.5% 9.0%

Robot 2:

57.7% 26.3% 24.7% 12.6%
40.4% 24.8% 24.1% 8.9%
28.4% 21.4% 21.9% 7.6%
27.4% 19.3% 19.6% 5.8%
26.4% 19.1% 13.5% 4.8%

TABLE I
FIVE BEST GENERALIZATION VALUES OF FINAL CONTROLLERS FROM

EACH SET.

significantly more generalized controllers with the second
robot (left hand grouping in Fig. 6b,c) while reaching similar
final training distances as the first robot (left hand grouping in
Fig. 6a). While the relative performance of the four schedules
remains consistent across robots, the three other schedules
lead to slightly less generalized controllers with the second
robot (three right hand groupings in Fig. 6b).

A. A Sample Evolved Controller

Fig. 7 shows the behavior of the controller that achieved
the highest generalization score overall, which comes from
using the T schedule with robot 2. Here it can be seen how
the behaviors differ based on target object locations. Fig. 7a-h
show the robot picking up the target object when it is located
in front and to the right of the robot’s initial position. The
robot actually turns too far to the right while approaching the
target object and then straightens itself out before picking up
the target object. Fig. 7i-p show the same CTRNN controlling
the robot to pick up the target object when it is located
forward and to the left of the robot’s initial position. In this
case the robot does not turn too far, but approaches the target
object at an angle that allows it to swing the target object
onto its back.

The results of the generalization test performed on this
same CTRNN are shown in Fig. 3d. This plot is colored red
for all the locations where the CTRNN was successful in
picking up the target object, and blue where it was not. This
controller was able to pick up the target object in over 50%
of target object locations. Specifically, there are large number
of locations at which the CTRNN is successful even though it
was never exposed to these locations during its training. Also
it is noted that this CTRNN is successful for the majority of
locations it would have experienced under any of the other
scaffolding schedules, indicating it is possible for a controller
to succeed at those locations, but that it can only do so after
forward locomotion has been learned (as enforced by the T
scaffolding schedule).

Fig. 3a-c show generalization plots for controllers from
the same run as Fig. 3d that were saved when the robot
was successful at training distances of 3, 3.2, and 3.3 meters
respectively; that is, these controllers are ancestors of the
final CTRNN from this run. It can be seen that there is a
discontinuous jump in generalization between 3.2 and 3.3

meters. This illustrates how between these two distances,
the increased pressure for the controller to learn turning
resulted in a much greater ability to generalize to unseen
environments once turning was mastered.

IV. DISCUSSION

A. Order Matters

The question presents itself as to why the T scaffolding
schedule results in more successful controllers than any of
the other schedules. The justification given in [13] is that the
order in which the necessary behaviors needed to complete
a task are selected for greatly affects the probability that all
behaviors will be learned. In that work it was shown that
if the robot was trained to pick up the target object first
followed by training for locomotion it was more successful
than if it was trained to locomote first and then trained to pick
up the target object. Based on this result, all four schedules
presented in this work select for grasping first, but the T
schedule allows the robot to learn forward locomotion and
then additionally learn the taxis behavior. The other three
schedules each, to varying degrees, pressure the robot to
learn turning toward the target object either before or while
learning to locomote. This proves that, because these three
schedules are less successful, forward locomotion should be
learned before turning, for both robot morphologies. As can
be seen in Fig. 6 the probability of training a controller to
enable taxis and object manipulation is inversely proportional
to the pressure to learn turning before locomotion: the T, C,
L1, and L2 schedules decline in performance, but increase
in the pressure they exert to learn turning before locomotion.

B. Training Milestones

Another way to consider why the T schedule yields the
most successful controllers is that it forces the evolved
controllers to achieve certain milestones during training. Fig.
8 reports the rate at which both robots overcome these
milestones using the T scaffolding schedule. Almost all runs
rapidly reach around one meter, the furthest point at which
the robot can pick up the target object by leaning or lunging
forward without having to take any steps. The drop in learn-
ing rate (represented by increased slope) at this point denotes
the difficulty in incorporating an oscillatory dynamic into
the controller to allow stepping while retaining the dynamic
that allows grasping and lifting once the target object is
reached. This is the first learning milestone. Between one and
three meters the learning rate is relatively constant: CTRNN
parameters are tuned to enable stable oscillations, which
induce rhythmic motion in the legs, thus carrying the robot
to the target object. This is the second learning milestone.

When the target object is placed more than three meters
from the robot and an increasing distance away from its
sagittal plane, there is a growing asymmetry in the distance
sensor values reported by the two claw tips at the outset of an
evaluation. This point corresponds to an apparent slowing in
the learning rate as shown by the greater slope to the right in
Fig. 8. It is acknowledged that the learning rate is expected

a b c d e f g h

i j k l m n o p

Fig. 7. A sample successful controller for robot 2. a-h: The robot moves toward the target object placed 3.9 meters ahead and to the right while turning
(a-d), turns too far (e,f), compensates (g) and then picks up the target object (h). i-p: The robot moves toward the target object placed equal-distance away
on the left side without overshooting (i-n) and swings it onto its back (o-p).

to slow somewhat as the controller is now evaluated in two
environments instead of one (the target object is placed to
the right and then to the left). However, it can be seen that
the learning rates for the two robots are not the same: robot
2 more rapidly adapts to target object placements further
from its sagittal plane than robot 1 does. This indicates
that the slowed learning rate is not only a result of the
increased evaluations, but is also a function of morphology
and behavior: robot 2’s morphology eases the transition from
forward locomotion to directed locomotion better than robot
1’s morphology does.

Fig. 8. This plot shows for the T schedule: robot 1 (black) and robot
2 (blue) the target object distance in training vs. mean time to reach that
distance with standard error bars for all distances reached by at least 30
runs. Many runs surpassed this distance, but are not shown for the sake of
clarity.

C. Morphology Matters

Fig. 9 plots the maximum distance to which the target
object was moved during training against the number of
runs (out of 100) that produced successful controllers for
that distance before their time limit of 30 hours expired. It
can be seen that more of the runs using robot 1 discovered
controllers that drove the robot to a distance of three meters,
compared to the runs using robot 2 (the blue line is above
the black line between one and three meters in Fig. 9).

This is presumably due to the fact that controllers can
be more easily trained to produce forward locomotion in
robot 1, which has legs parallel to its sagittal plane and
therefore to its direction of travel. However, more runs using
robot 2 discover controllers that allow the robot to reach
and manipulate the target object when it is placed beyond
three meters and away from its centerline, evidenced by the
crossing of the lines around 3.2 meters. This is presumably
due to the splayed legs of robot 2 allowing for directed
locomotion more easily.

Fig. 9. This plot shows for the T schedule: robot 1 (black) and robot 2
(blue) the target object distance in training vs. number of runs reaching that
distance.

This observation is strengthened by Fig. 5, which reports
the generalization ability of the best controller evolved for
robot 1. Despite the robustness of this controller (it guides
the robot toward success in 53.6% of the target object
placements), the robot is rarely successful in regions that
require a small turning radius (the two regions in the lower
left and right of Fig. 5). This further suggests that robot 2 is
better able than robot 1 to learn turning.

One last piece of evidence supporting this observation
can be seen in Fig. 6c. Here the generalization abilities
of the two robots across all four scaffolding schedules are
compared, but these values are calculated considering only
target object placements outside of x ∈ [−1, 1]: locations

that require turning, because the target object is at least one
meter away from the robot’s sagittal plane. It is noted that
the difference in scores between robot 1 and 2 using the T
schedule are greater in this plot than in Fig. 6b, in which all
target object locations are considered. This further confirms
that controllers evolved for robot 2 are more likely to be able
to pick up target objects at locations that require turning.

V. CONCLUSIONS AND FUTURE WORK

This work has demonstrated that with the proper scaffold-
ing schedule (T) it is possible to evolve controllers capable
of performing a non-trivial sequence of behaviors even in
previously unseen environments. Moreover it has demon-
strated that altering morphology can impact the performance
achievable through incremental shaping: robot 2 resulted in
more generalized behaviors than robot 1.

However, for the two morphologies considered in this
work it does not alter the sequence in which behaviors
should be learned. Robot 2’s splayed legs make turning
easier, however scaffolding schedules that select for turning
before locomotion is learned were not better able to integrate
object manipulation, turning and locomotion into a controller
using this body plan. Therefore it is concluded that the task
environment, the learning algorithm, and/or the evolvability
of CTRNNs dictate learning sequence more than morphology
does.

In order to strengthen this conclusion more morphologies
will need to be considered. Future work will investigate
how additional morphologies perform under these scaffolding
schedules. Additionally the authors intend to investigate how
evolving the robot’s body plan along with its controller may
result in less sensitivity to the order in which behaviors are
learned. This would simplify the application of shaping for
realizing multiple dynamic behaviors in intelligent agents.

REFERENCES

[1] I. Harvey, P. Husbands, D. Cliff, A. Thompson, and N. Jakobi, “Evo-
lutionary robotics: the sussex approach,” Robotics and Autonomous
Systems, vol. 20, pp. 205–224, 1997.

[2] S. Nolfi and D. Floreano, Evolutionary Robotics: The Biol-
ogy,Intelligence,and Technology. Cambridge, MA, USA: MIT Press,
2000.

[3] T. Reil and P. Husbands, “Evolution of central pattern generators for
bipedal walking in a real-time physics environment,” Evolutionary
Computation, IEEE Transactions on, vol. 6, no. 2, pp. 159–168, Apr
2002.

[4] G. Hornby, S. Takamura, T. Yamamoto, and M. Fujita, “Autonomous
evolution of dynamic gaits with two quadruped robots,” Robotics,
IEEE Transactions on, vol. 21, no. 3, pp. 402–410, June 2005.

[5] J. J. Fernandez Jr. and I. D. Walker, “A biologically inspired fitness
function for robotic grasping,” in Proc. of the Genetic and Evolutionary
Computation Conf. GECCO-99, W. Banzhaf, J. Daida, A. E. Eiben,
M. H. Garzon, V. Honavar, M. Jakiela, and R. E. Smith, Eds. San
Francisco, CA: Morgan Kaufmann, 1999, pp. 1517–1522.

[6] A. Chella, H. Dindo, F. Matraxia, and R. Pirrone, “Real-time visual
grasp synthesis using genetic algorithms and neural networks.” in
AI*IA, ser. Lecture Notes in Computer Science, R. Basili and M. T.
Pazienza, Eds., vol. 4733. Springer, 2007, pp. 567–578.

[7] R. Brooks, “A robust layered control system for a mobile
robot,” Robotics and Automation, IEEE Journal of [legacy, pre
- 1988], vol. 2, no. 1, pp. 14–23, 1986. [Online]. Available:
http://ieeexplore.ieee.org/xpls/abs all.jsp?arnumber=1087032

[8] R. Calabretta, S. Nolfi, D. Parisi, and G. P. Wagner, “Duplication of
modules facilitates the evolution of functional specialization,” Artif.
Life, vol. 6, no. 1, pp. 69–84, 1999.

[9] T. Inamura, I. Toshima, and H. Tanie, “Embodied symbol emergence
based on mimesis theory,” International Journal of Robotics Research,
vol. 23, no. 4, pp. 363–377, 2004.

[10] M. Okada and Y. Nakamura, “Design of the continuous symbol
space for the intelligent robots using the dynamics-based information
processing,” Robotics and Automation, 2004. Proceedings. ICRA ’04.
2004 IEEE International Conference on, vol. 4, pp. 3201–3206 Vol.4,
26-May 1, 2004.

[11] J. Foss, F. Moss, and J. Milton, “Noise, multistability,
and delayed recurrent loops,” Physical Review E, vol. 55,
no. 4, pp. 4536+, April 1997. [Online]. Available:
http://dx.doi.org/10.1103/PhysRevE.55.4536

[12] E. Izquierdo and T. Buhrmann, “Analysis of a dynamical recurrent
neural network evolved for two qualitatively different tasks: walking
and chemotaxis,” in Artificial Life XI: Proceedings of the Eleventh
International Conference on the Simulation and Synthesis of Living
Systems, S. Bullock, J. Noble, R. Watson, and M. A. Bedau, Eds.
MIT Press, Cambridge, MA, 2008, pp. 257–264.

[13] J. Bongard, “Behavior chaining: incremental behavioral integration
for evolutionary robotics,” in Artificial Life XI: Proceedings of the
Eleventh International Conference on the Simulation and Synthesis of
Living Systems, S. Bullock, J. Noble, R. Watson, and M. A. Bedau,
Eds. MIT Press, Cambridge, MA, 2008, pp. 64–71.

[14] W. Carriker, P. Khosla, and B. Krogh, “Path planning for mobile
manipulators for multiple task execution,” IEEE Transactions on
Robotics and Automation, pp. 403 – 408, June 1991.

[15] H. Seraji, “A unified approach to motion control of mobile manipula-
tors,” The International Journal of Robotics Research, vol. 17, no. 2,
pp. 107–118, 1998.

[16] S. P. Singh, “Transfer of learning across sequential tasks,” Machine
Learning, vol. 8, pp. 323–339, 1992.

[17] M. Dorigo and M. Colombetti, “Robot shaping: Developing situated
agents through learning,” Artificial Intelligence, vol. 70, no. 2, pp.
321–370, 1994.

[18] L. Saksida, S. Raymond, and D. S. Touretzky, “Shaping robot be-
havior using principles from instrumental conditioning,” Robotics and
Autonomous Systems, vol. 22, pp. 231–249, 1997.

[19] D. Wood, J. Bruner, and G. Ross, “The role of tutoring in problem
solving,” J Child Psychol Psychiatry, vol. 17, no. 2, pp. 89–100, 1976.

[20] R. D. Beer, “The dynamics of brain-body-environment systems: A
status report.” in Handbook of Cognitive Science: An Embodied
Approach, P. Calvo and A. Gomila, Eds. Elsevier, 2008, pp. 99–
120.

[21] ——, “Parameter space structure of continuous-time recurrent neural
networks,” Neural Comp., vol. 18, no. 12, pp. 3009–3051, 2006.

[22] S. J. Russell and P. Norvig, Artificial Intelligence: A Modern Approach,
2nd ed. Prentice Hall, December 2002.

