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ABSTRACT
A central tenet of embodied artificial intelligence is that in-
telligent behavior arises out of the coupled dynamics be-
tween an agent’s body, brain and environment. It follows
that the complexity of an agents’s controller and morphol-
ogy must match the complexity of a given task. However,
more complex task environments require the agent to ex-
hibit different behaviors, which raises the question as to
how to distribute responsibility for these behaviors across
the agents’s controller and morphology. In this work a robot
is trained to locomote and manipulate an object, but the as-
sumption of functional specialization is relaxed: the robot
has a segmented body plan in which the front segment may
participate in locomotion and object manipulation, or it may
specialize to only participate in object manipulation. In this
way, selection pressure dictates the presence and degree of
functional specialization rather than such specialization be-
ing enforced a priori. It is shown that for the given task, evo-
lution tends to produce functionally specialized controllers,
even though successful generalized controllers can also be
evolved. Moreover, the robot’s initial conditions and train-
ing order have little effect on the frequency of finding spe-
cialized controllers, while the inclusion of additional propri-
oceptive feedback increases this frequency.
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1. INTRODUCTION
Proponents of embodied artificial intelligence argue that

intelligent behavior arises out of the coupled dynamics be-
tween an agent’s body, brain and environment [8, 1, 16,
5]. One corollary of this view is that the complexity of the
agents’s controller and morphology must match the com-
plexity of the task at hand. However, more complex task
environments require the agent to exhibit different behav-
iors, which raises the question as to how to distribute re-
sponsibility for these behaviors across the agents’s controller
and morphology. It has been argued [7, 10] that controllers
should be organized in a modular fashion such that different
control components are responsible for different behaviors,
but others have shown that such structural modularity is
not always necessary [6, 12, 2].

In addition to modularity in structure, modularity can be
thought of in terms of the functions that an agent performs.
Moreover, this separation of function can be ‘proximal’, that
is as seen from the point of view of the system itself, i.e. a
description from the point of view of a robot’s sensory-motor
system that accounts for how the agent reacts to different
sensory stimulation. It can also be ‘distal’, i.e. a high level
description from the point of view of an independent ob-
server that describes the behavior of an entire sequence of
sensory-motor steps [9].

When constructing a system to solve a given problem ei-
ther through engineering or evolution a mapping is created
from a functional space (objectives) to a physical space (how
to achieve them). Specifically, the objectives are defined in
terms of functional requirements in the functional space and
the physical embodiment is defined in terms of design pa-
rameters in the physical space. A design is a mapping from
the functional requirements to the design parameters. This
mapping is not unique and often there are infinitely many
viable solutions, but a specific solution is found through the
creative process of a human engineer or through an auto-
mated process such as evolution [20].

Partly due to the human bias that favors breaking a prob-
lem down into separable, simpler sub-problems, roboticists
often implicitly design such mappings to be functionally
modular in the ‘distal’ sense: different parts of the robot’s
body are responsible for different behaviors. For example,
wheels or legs may allow for movement while a separate grip-
per allows for object manipulation. In this work we investi-
gate a robot trained to locomote and manipulate an object,
but in which this assumption of functional modularity or
specialization of different body parts is relaxed: the robot



Figure 1: The virtual hexapod robot used in this
work.

has a segmented body plan in which the front segment may
participate in locomotion and object manipulation, or it may
be specialized such that it only participates in object manip-
ulation. In this way, selection pressure dictates the presence
and degree of functional specialization rather than enforcing
such specialization a priori.

In the next section the virtual robot and the incremen-
tal shaping method used for training the robot are intro-
duced. The following section reports results demonstrat-
ing how changes in initial conditions, training order, and
the inclusion of additional proprioceptive feedback affect the
success of the evolved controllers and the frequency of evo-
lution discovering functionally specialized controllers. The
final section provides some discussion of the observed re-
sults, discusses multiple hypotheses that could explain the
variability observed in the degree of specialization of evolved
controllers across several different experimental regimes, and
presents directions for potential future work.

2. METHODS
This section first describes the virtual robot used in this

work followed by a description of its controller. Next the
incremental shaping algorithm used for training the robot is
presented. The section concludes with a description of the
metrics used to evaluate the evolved controllers.

2.1 The robot
In this work a virtual hexapod robot is used (Fig. 1). The

robot is composed of three homogeneous body segments at-
tached to each other with one degree of freedom joints that
rotate through the robot’s sagittal plane. At the outset of
an evaluation period, the segments are arranged horizontally
(Fig.3a). The intersegmental joints may rotate neighboring
segments toward one another up to 90◦. Two legs are at-
tached to the anterior edge of each segment, one on each
side. Each leg is attached to its segment with a universal
joint that rotates through the sagittal plane with a range of
[−45◦, 45◦] and through the coronal plane with a range of
[−45◦, 45◦]. A joint angle of 0◦ for both degrees of freedom
maintains the leg perpendicular to its segment. Each leg is
capped with a spherical foot.

Twelve motors actuate the six legs, and another two mo-
tors actuate the joints between body segments for a total
of 14 motors. A touch sensor and distance sensor reside
in each of the two front feet, and a distance sensor is em-

bedded in the robot’s back, for a total of five sensors. The
touch sensors return a value of one when the correspond-
ing body part touches another object and zero otherwise.
The distance sensors return a value commensurate with the
sensor’s distance from the target object: they return zero
if they are greater than five meters from the target object
and a value near one when touching the target object. Ob-
ject occlusion is not simulated here; the target object can be
considered to be emitting a sound, and the distance sensors
respond commensurately to volume.

The robot’s controller is evolved such that the robot lo-
comotes toward, grasps and lifts a rectangular target object
placed in its environment.

2.2 The controller
The robot is controlled by a continuous time recurrent

neural network [4]. The CTRNN is composed of eight motor
neurons. Each pair of legs shares two motor neurons: one
motor neuron controls rotation through the sagittal plane
for both legs, while the other motor neuron controls rota-
tion through the coronal plane for both legs. Sharing motor
neurons ensures that when grasping the object the front legs
close symmetrically, while also reducing the size of the con-
troller and therefore the dimensionality of the search space.
The remaining two motors control the joints between body
segments and each receive commands from their own motor
neuron. The value of each motor neuron is updated accord-
ing to
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for 1 ≤ i ≤ 8

where yi is the state of neuron i, wji is the weight of the
connection from neuron j to neuron i, τi is the time constant
of neuron i, θi is the bias of neuron i, nji is the weight of
the connection from sensor j to neuron i, sj is the value of
sensor j and σ(x) = 1/(1 + e−x) is the logistic activation
function.

The virtual robot with a given CTRNN controller is evalu-
ated over a set number of simulation steps in a physical sim-
ulator1. For each simulation step, using a step size of 0.0005,
the sensors, CTRNN, joint torques and resulting motion of
the robot are updated.

2.3 Training
The same incremental shaping [19, 11, 18] algorithm pre-

sented in [6, 2] is used for dynamically tuning the robot’s
task environment to facilitate learning. This method is out-
lined in Fig. 2. In short, the target object is initially placed
in front of the robot such that it learns to grasp and lift the
object. Once it does, the target object is moved slightly fur-
ther away from the robot and training recommences. This
process is repeated such that the robot must eventually learn
locomotion as well as object manipulation in order to grasp
and lift distantly-located objects.

More specifically, a random CTRNN is initially created
by choosing all τ from the range [0.1, 0.5], all w from [-16,
16], all θ from [-1, 1], and all n from [-16, 16]; these ranges
were found useful in previous work [6]. This gives a total

1Open Dynamics Engine: www.opende.org



of 8 + 8 ∗ 8 + 8 + 5 ∗ 8 = 120 evolvable parameters. The
robot is then equipped with this controller and allowed to
behave in a task environment for 100 time steps in which the
target object is placed directly in front of the robot. After
evaluation the fitness of the controller is computed as

f =

(
maxt

k=1(D(LFF, k) ∗D(RFF, k)), if !g(k)

1 + maxt
k=1(H(TarObj, k)), if g(k)

(2)

where t is the number of time steps during the evalua-
tion, T (x, k) indicates that the touch sensor in body part
x fired during time step k, D(x, k) returns the value of
the distance sensor in body part x during time step k, and
H(TarObj, k) indicates the height of the target object from
the ground plane. The fitness awarded is therefore condi-
tional on whether the robot has successfully grasped the
object, which is defined as

g(k) = (T (LFF, k) == 1) & (T (RFF, k) == 1) & (3)

(D(LFF, k) > 0.89) & (D(RFF, k) > 0.89)

which ensures grasping is only indicated when both touch
sensors in the front feet fire during some time step in the
evaluation period, and that both distance sensors in the
front feet are sufficiently close to the target object during
the same time step. This latter condition allows the robot
to distinguish between touching the ground with both feet
and touching the object.

If the robot has not yet learned to grasp the object, the
upper condition in Eqn. 2 determines fitness, which rewards
the robot for minimizing the distance between its front feet
and the object. Once it learns to successfully grasp the
object the lower condition in Eqn. 2 determines fitness,
which rewards the robot for lifting the object as high as
possible.

A hill climber [17] is used to optimize the initial random
CTRNN against this fitness function. At each generation a
child CTRNN is created from the current best CTRNN and
mutated. Mutation involves considering each τ, w, θ and n
value in the child, and replacing it with a random value in
its range with a probability of 10/120 = 0.0833. This en-
sures that, on average, 10 mutations are incorporated into
the child according to a normal distribution. If the fitness of
the child CTRNN is equal to or greater than the fitness of the
current best CTRNN, and the child CTRNN is either suc-
cessful at picking up the target object in either the current
or previous environment, then the best CTRNN is replaced
by the child; otherwise the child is discarded. This ensures
that the grasping behavior learned in previous environments
is retained while the locomotion behavior is adapted to the
current environment.

After each possible replacement, the current CTRNN is
considered in order to determine whether a failure condition
has occurred, or whether it has achieved the success criteria.
In the present work the failure condition is defined as 100
generations of the hill climber elapsing before a successful
CTRNN is found. A successful CTRNN is defined as one
for which, at some time step during the current evaluation
both front feet touch the target object and it is lifted off the
ground above a certain threshold.

If the failure condition occurs, the task environment is
eased; if the current CTRNN succeeds, the task environ-
ment is made more difficult. Easing the task environment

1. IncrementalShaping()

2. Create and evaluate random parent p

3. WHILE ∼Done()

4. Create child c from p, and evaluate

5. IF Fitness(c) ≥ Fitness(p) AND
( PreviousSuccess(c) OR Success(c) )
[see Eqns. 2,3]

6. p = c

7. IF Failure()

8. EaseEnvironment()

9. Re-evaluate p

10. WHILE Success(p)

11. HardenEnvironment()

12. Re-evaluate p

13. Done()

14. 30 hours of CPU time have elapsed OR

TargetDistance > 10m

15. Failure()

16. 100 generations since last success

17. EaseEnvironment()

18. EvaluationTime ← EvaluationTime+100

19. Success(g)

20. ∃k, k ∈ {1, . . . , t} |
21. T (LeftFrontFoot, k)AND

22. T (RightFrontFoot, k)AND

23. (min(D(LeftFrontFoot, k), D(RightFrontFoot, k))
≥ 0.89) AND

24. H(TargetObject, k) > 1.5

25. PreviousSuccess(g)

26. TargetDistance ← TargetDistance-0.01m

27. success = Success(g)

28. TargetDistance ← TargetDistance+0.01m

29. RETURN success;

30. HardenEnvironment()

31. TargetDistance ← TargetDistance+0.01m

Figure 2: Incremental shaping pseudocode. The al-
gorithm executes a hill climber [1-14] (see text for
description). If the current genome fails [15,16], the
task environment is eased [17,18]; while it is suc-
cessful [19-24], the task environment is made more
difficult [30,31]. T (x, k) returns 1 if body part x is in
contact with another object and zero otherwise at
time step k. D(x, k) returns the value of the distance
sensor located at body part x at time step k. H(x, k)
returns the height of object x at time step k

involves increasing the current evaluation period by 10 time
steps. This has the effect of giving the robot more time to
succeed at the current task if it fails. Making the task en-
vironment more difficult involves moving the target object
further away from the robot. This has the effect of teaching
the robot to grasp and lift the target object when it is close,
and learning to locomote toward the target object, followed
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Figure 3: Sample functionally specialized controller.
The robot’s front body segment is raised and the
front feet are kept off the ground during locomotion,
i.e. they are only used for grasping the target object.

by grasping and lifting it, when it is placed further away. As
some CTRNNs that succeeded for a given target object dis-
tance also succeed when the target object is moved further
away, the target object is continually moved until the cur-
rent CTRNN no longer succeeds, at which time hill climbing
recommences. In order to further speed the algorithm an in-
dividual evaluation is terminated early if the robot ceases to
move before succeeding at the task.

2.4 Evaluating functional specialization
The two main questions of interest in the current work

are (1) whether a single CTRNN acting as a monolithic con-
troller for this robot can evolve to successfully locomote to-
ward, grasp and lift the target object, and (2) if so whether
the evolved controllers are functionally specialized in the
‘distal’ sense or not. To answer the first question it is suffi-
cient to consider the distance of the target object from the
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Figure 4: Sample functionally generalized con-
troller. This controller uses the robot’s front legs
for propulsion during locomotion and for grasping
and lifting of the target object.

robot at the end of training. The greater this distance, the
more simulations were performed in which the robot was
considered to be successful, and the more rapidly the con-
troller was able to adapt to changing environmental condi-
tions. This metric will be referred to as the adaptation
rate.

To investigate the second question one must consider that
the robot’s serially homogeneous body plan was designed
such that it may locomote using all six legs or, alternatively,
may rotate the anterior (or posterior) segment upward to
locomote using the four middle and posterior (or anterior
and middle) legs. A controller may then involve the front
legs in both locomotion and grasping by keeping the front
segment horizontal or, alternatively, it may restrict the front
legs such that they only contribute to object manipulation.



These latter controllers would realize functional specializa-
tion if locomotion and object manipulation are considered
as two separate functions.

In order to evaluate whether a given successful controller
is functionally specialized or not the simulation is run un-
til the controller grasps the target object, while recording
the sensor values during each time step. At the comple-
tion of this simulation the percent of total time steps during
which both front feet touch sensors fire is calculated. Con-
trollers with low values for this metric are considered to be
functionally specialized because the robot rarely touches its
front feet to the ground during locomotion. Conversely, con-
trollers that use their front feet both for locomotion (either
for propulsion, balance or both) and grasping are not func-
tionally specialized and will receive higher values from this
test. See Fig. 3 for an example of a functionally specialized
controller (feet only touch in 0.076% of time steps), and Fig.
4 for an example of a functionally generalized controller (feet
touch in 48.693% of time steps).

3. RESULTS
Using the above methods four different experimental regimes

were investigated and their results compared. Each regime
consisted of running 100 independent trials of the incremen-
tal shaping algorithm (Fig. 2) with identical initial envi-
ronmental conditions but different randomly-generated con-
trollers. In the first experiment (regime 1) the front body
segment joint was rotated upward 90◦ such that it was per-
pendicular to the ground with the front feet pointing forward
and the target object was initially placed directly in front of
the robot. All of the runs from this regime can be consid-
ered successful in the sense that they were able to adapt to
target objects placed at distances greater than three meters
(a distance that requires locomotion), grasp, and lift up the
object (see Fig. 5). Additionally, many of the runs from this
regime resulted in functionally specialized controllers (black
bars in Fig. 6).

In the second regime (regime 2) the robot was initial-
ized with both body segments horizontal so that all six
feet started on the ground and again the target object was
initially placed directly in front of the robot. It was as-
sumed that starting the robot flat would bias evolution to
initially discover and retain locomotion involving all six legs,
and therefore not specialize the front legs only for grasping.
However, while still finding successful controllers in the ma-
jority of trials, the number of controllers resulting from this
regime that developed functionally specialized controllers
was similar to regime 1, and in fact counter to intuition
more controllers from this regime caused the robot to touch
their feet to the ground in less than 5% of time steps as
compared with regime 1 (red bars in Fig. 6).

In the third experiment (regime 3) the body segments
started horizontally, but in this case the target object was
initially placed two meters away from the robot, so that be-
fore learning to grasp the target object the robot would first
be forced to learn to move toward it. Without initial evolu-
tionary pressure to involve the front legs in grasping it was
assumed that the controllers to evolve in this experiment
would be more likely to include them in locomotion, but
once again a similar number of controllers resulting from this
experiment developed functionally specialized controllers as
compared with regimes 1 and 2 (yellow bars in Fig. 6).

The fourth regime (regime 4) was identical to regime
2 in that the body segments were started parallel to the
ground with the target object initially directly in front of
the robot. However, for this experiment two additional sen-
sors were added to the robot: joint angle sensors for the two
joints connecting the body segments, and these were wired
to the controller. The controllers that evolved in this regime
not only performed better in the sense that they adapted
more rapidly to changes in the target object’s position dur-
ing training as compared to regime 2 (Fig. 7), but also were
more likely to be functionally specialized when compared to
the other three regimes (blue bars in Fig. 6).

4. DISCUSSION AND CONCLUSIONS
After noting that all four regimes were able to successfully

learn both locomotion and object manipulation in the ma-
jority of trials the question arises as to why evolution tends
to converge on functionally specialized behaviors, and why
the inclusion of additional sensors causes an increase in the
frequency of converging on such behaviors. Three possible
hypotheses are: (1) functionally specialized controllers are
more evolvable, and therefore supplant less specialized con-
trollers during an evolutionary run, (2) evolution initially
discovers a specialized or generalized controller, and sub-
sequently improves on that behavior but does not increase
or decrease specialization, and (3) functionally specialized
behaviors more easily allow for active perception [15].

Hypothesis (1) is supported by previous work, which has
indicated that modularity can increase evolvability [21], but
only under certain environmental conditions [13, 14]. How-
ever, Fig. 5 indicates that for two of the four regimes (regimes
2 and 4) studied here, adaptation rate is similar between
those runs that converged on functionally specialized be-
haviors and those that converged on generalized behaviors,
and in fact adaptation rate was lower within runs containing
specialists compared to generalists in the other two regimes
(regimes 1 and 3). This suggests that functionally special-
ized behaviors do not arise because they are more evolvable,
but for some other reason.

Hypothesis (2) suggests that evolution may become ‘locked
in’ to a specialized or generalized strategy, depending on
which type it discovers at the outset: it may be difficult to
subsequently evolve the robot’s controller to selectively tune
the amount of behavioral specialization of one part of the
body. It follows from this that the amount of specialization
may be biased by the initial conditions of the robot during
shaping. If scaffolding teaches grasping before locomotion
or, more strongly, begins with the front segment raised ver-
tically, controllers may converge on behaviors that allow the
front legs to grasp the object, but evolution cannot sub-
sequently co-opt those legs to participate in locomotion as
well. However, this hypothesis is contradicted by Fig. 5,
which indicates that changing the initial conditions to favor
usage of the front legs in locomotion (regimes 2 and 3) do
not produce more generalized controllers: these regimes also
converge in the majority of runs on functionally specialized
controllers. Hypothesis (2) is further invalidated by the run
illustrated in Fig. 8, which shows that evolution may in
some cases co-opt the front legs for increased participation
in locomotion.

According to hypothesis (3), it may be that the robot is
better able to actively perceive the proximity of the object—
and therefore determine desirable conditions for lifting—if



Figure 5: Plot of mean adaptation rate by regime with standard error bars shown. Data is split between
those controllers that cause the robot’s feet to touch the ground during less than 5% of time steps (leftmost
grouping in Fig. 6) and all others.

Figure 6: Histogram of the specialization metric for each of the four regimes. All runs in which the target
object reached at least three meters are included (100 runs from regime 1, 94 runs from regime 2, 85 runs
from regime 3, and 94 runs from regime 4).



Figure 7: Plot of mean adaptation rate with stan-
dard error bars for regimes 2 and 4.

the front legs do not participate in locomotion, because then
the touch sensors will only fire when in contact with the
target object. Such controllers may be easier for the evo-
lutionary process to find and optimize. Indeed, it has been
demonstrated in the literature that active categorical per-
ception may evolve in learning agents [3]. Moreover, pro-
viding the robot with additional proprioceptive feedback in
regime 4 not only increased the prevalence of functional spe-
cialization (as shown in Fig. 6), but also the adaptation rate
within those runs that produced specialized controllers (as
shown in Fig. 7). It is plausible that these added sensors
allow for better active perception as the touch sensors and
sensed body posture may together indicate appropriate con-
ditions for object manipulation.

Figure 8: Target object distance where controller
was successful vs. % of time steps with front feet
touch sensors firing from a single evolutionary run.

Several additional experiments were designed to test this
hypothesis. These experiments followed the theme of regimes
2 and 4. Specifically, in all cases the body segments were
started parallel to the ground with the target object initially
directly in front of the robot. What varied in these experi-
ments were the sensors the robot was equipped with. Since
a variable number of sensors results in a variable number
of parameters under evolutionary control these experiments
all used a fixed mutation rate of 10

288
≈ 0.035. Experiment

a used the same sensors as regime 1 above, these sensors
will be referred to as the base sensor set. Experiment b

used the sensors of regime 4: the base sensor set with two
joint angle sensors on the two joints connecting the main
body segments added in. Experiment c used a robot with
the base sensor set plus two more joint angle sensors: one
apiece for the two degrees of freedom of the front left leg
(just the left leg was used, because due to the construction
of the controller the left and right legs operated symmet-
rically). Experiment d used a robot with the base sensor
set plus two additional joint angle sensors on the middle left
leg, and similarly experiment e used a robot with the base
sensor set plus two additional joint angle sensors on the rear
left leg. Experiment f used a robot with the base sensor set
plus all the joint angle sensors featured in experiments b-d,
while experiment g used a robot with the base sensor set
plus touch sensors on the rear four feet. Experiment h used
a robot with the base sensor set plus distance sensors on the
rear four feet, and finally experiment i used a robot with all
the sensors of experiment f plus the additional touch sensors
and distance sensors on the rear four feet used in g and h.

Fig. 9 shows the mean adaptation rates with standard er-
ror bars for each of these additional experiments. Note the
steady decline in performance from experiment b through
experiment e. This result provides further evidence for hy-
pothesis (3) as it demonstrates that adaptation rate declines
as the included sensors provide less information in regards
to desirable conditions for lifting: the main body joints (b)
are most informative as discussed above, while the front leg
angles may provide some information about the relative po-
sition of the front feet. As the sensors are moved toward the
rear of the body less of this relevant information is available.
This is further demonstrated by experiment f which shows
that including all of the joint angle sensors buys the robot
very little above just including the most useful pair (b). Ad-
ditionally it is seen from experiment g that additional touch
sensors improve performance even more so than any angle
sensors do, because touch sensors provide the most direct
evidence as to which feet are on the ground and/or touching
the target object.

Figure 9: Mean adaptation rate with standard er-
rors for additional experiments, see text for details.

To verify that the additional sensors provide relevant in-
formation useful for the current task and do not merely aid
in locomotion, virtual robots were instantiated with the sen-
sor configurations of experiments b-e and were evolved for
locomotion alone. This consisted of expanding the range of
the robot’s distance sensors and placing the target object
a large (100 m) distance away. Fitness was calculated as



Figure 10: Mean fitness with standard errors when
selecting for just locomotion with the four different
pairs of joint angle sensors.

the fraction of distance between the start location and the
target object location that the robot was able to cover in a
set amount of time. Fig. 10 shows the mean fitnesses along
with standard error bars from these experiments grouped
by sensor configuration. Note that while including the joint
angle sensors on the joints connecting the main body seg-
ments (b) leads to improved locomotion performance, there
is no significant difference between the performance of the
other three sensor sets. This provides further evidence that
the differences observed across these configurations above
are due to active perception.

In conclusion, it was shown here that evolution can tune
the amount of functional specialization of different parts of
the body. In future work we plan to evolve morphology as
well as control: it is predicted that evolution would then
specialize both the morphology and function for different
body parts as the task environment dictates. This may prove
to be a more fruitful method for realizing robots capable of
an increasing number of behaviors, rather than fixing the
body plan and manually assigning function to structure.
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