
This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION 1

Accelerating Self-Modeling in
Cooperative Robot Teams

Josh C. Bongard

Abstract—One of the major obstacles to achieving robots ca-
pable of operating in real-world environments is enabling them to
cope with a continuous stream of unanticipated situations. In pre-
vious work, it was demonstrated that a robot can autonomously
generate self-models, and use those self-models to diagnose unan-
ticipated morphological change such as damage. In this paper, it
is shown that multiple physical quadrupedal robots with similar
morphologies can share self-models in order to accelerate mod-
eling. Further, it is demonstrated that quadrupedal robots which
maintain separate self-modeling algorithms but swap self-models
perform better than quadrupedal robots that rely on a shared self-
modeling algorithm. This finding points the way toward more ro-
bust robot teams: a robot can diagnose and recover from unantic-
ipated situations faster by drawing on the previous experiences of
the other robots.

Index Terms—Collective robotics, evolutionary robotics,
self-modeling.

I. INTRODUCTION

I NDUSTRIAL robots have permeated and revolutionized
every aspect of heavy industry because they can execute

preprogrammed actions in fixed, indoor industrial environ-
ments. Robots would be equally useful in outdoor or home
environments, but creating devices that can continuously adapt
and autonomously cope with the constantly changing aspects
of such environments—or the effects such environments have
on them—has had limited success.

Rather than continuously having to reprogram new controllers
for a robot once it or its environment changes, evolutionary
robotics [28] is a field that uses evolutionary computation to
autonomously generate behaviors for robots. There are three
main approaches to evolutionary robotics: controllers are either
evolved directly on the physical device, requiring thousands of
evaluations [12], [14]; controllers are adapted from an existing,
hand-designed controller [36]; or a hand-designed simulator is
used to evolve controllers before transferal to the physical device
[20], [31]. The first approach is infeasible for continuous, rapid
adaptation; the second approach requires a human to create the
starting behavior; and the third approach requires a human to
craft a simulation of the robot. This detracts from the overall

Manuscript received August 13, 2007; revised February 4, 2008 and April
21, 2008. This work was supported in part by the NASA Program for Research
in Intelligent Systems under Grant NNA04CL10A and the National Science
Foundation (NSF) under Grant DMI 0547376. Generalization of the algorithm
to multiple robots was supported by an NSF Experimental Program to Stimulate
Competitive Research (EPSCoR) Grant (EPS-0236976) awarded to the Univer-
sity of Vermont.

The author is with the Department of Computer Science, University of Ver-
mont, Burlington, VT 05405 USA (e-mail: josh.bongard@uvm.edu).

Digital Object Identifier 10.1109/TEVC.2008.927236

goal of evolutionary robotics, which is to realize an automated
mechanism for behavior generation.

In previous work [7], [9], a fourth method was introduced
that overcomes these obstacles by allowing the robot to evolve
simulations of itself and its local surroundings, and then use the
best of the evolved simulations to internally rehearse behaviors
before attempting them in reality. Much work has been con-
ducted on enabling a robot to autonomously model its environ-
ment [37], but our work is the only method proposed thus far
that enables a robot to explicitly model its own body. This ap-
proach can be used by a robot to diagnose and recover from body
damage when such damage cannot be inferred by direct obser-
vation or retrieved from a database of past experiences [21].

Rather than most evolutionary computation-based modeling
approaches in which a set of training data is generated first and
then models are evolved to explain that data (e.g., [23], [1],
[16]), the framework developed in [7] and [9] uses an active
learning [3] approach: modeling alternates with a search for
new training data, based on the current state of the models. This
raises the question of how to search for new training data. Seung
et al. [33] showed that, in theory, the optimal choice for the next
training data is the one which causes the current set of models
to disagree in their predictions. In previous work, the estima-
tion–exploration algorithm [7] (EEA) was introduced, which
uses an evolutionary algorithm to search for these informative
training samples: a fitness function rewards candidate training
data for how much model disagreement it causes. A second evo-
lutionary algorithm optimizes a set of models against the current
set of training data evaluated by the target system being mod-
eled. The EEA can also be viewed as a type of co-evolutionary
algorithm [17], in which models and tests alter the structure of
one another’s fitness landscapes.

The EEA has been applied to problems in machine learning
[6], gene network identification [11], damage localization in
truss structures [22], biomechanics [38], and robotics [10], [9].
In this paper, it is shown how multiple, independent physical
robots with the same body plans can accelerate self-modeling by
sharing their experiences. This work builds on some preliminary
work in [5], in which the algorithm variants reported here were
developed using a virtual system. This paper validates those ap-
proaches on a physical robot.

Robot teams is an area of intense research. Collective robotics
[24], [15], [25] is concerned with robots working together on
some collective task. Much of the work in the field has focused
on external modeling such as creating global maps [13], [26],
[18] or estimating object positions [35]. Other work has focused
on modeling an entire robot group for collaborative work [27],
or parallel learning of useful controllers [32]. The work reported

1089-778X/$25.00 © 2008 IEEE

Authorized licensed use limited to: IEEE Xplore. Downloaded on October 6, 2008 at 8:26 from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

2 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION

Fig. 1. Physical robot capable of autonomous self-modeling. An action is selected at random (a) and executed by the physical robot (b), which moves it from a
planar configuration into a static pose. The resulting orientation of the main body is recorded, and, along with the action that caused it, is passed to a modeling
component. The modeling component then optimizes a set of self-models (c) and (d) into a new set of self-models (e) and (f) that better mimic the behavior of
the physical robot. A new action is then sought (g) that causes the self-models to assume maximally different poses (h) and (i). This action is then executed on
the physical robot (b). Self-modeling then recommences (c) and (d) with two action/result pairs. The process continues until a sufficiently accurate self-model is
found, or a set number of cycles elapse.

here differs from these projects in that it enables robots to work
together on topological modeling: indirectly inferring their body
topologies without directly sensing that topology. As mentioned
previously, this is of use when the robot is confronted with some
unanticipated change, such as body damage.

The next section describes the algorithm as applied to a single
robot, as well as a series of strategies for adapting this algo-
rithm for use by a team of cooperating robots. Section III pro-
vides results indicating the relative performance of the variants.
Section IV presents discussion of the results and Section V pro-
vides some concluding remarks.

II. METHODS

The EEA, as applied to a single physical robot, is outlined
in Fig. 1. The robot performs a series of actions, each of which
is a collection of motor commands that move the robot from a
planar configuration into a static pose. The sensors record the
orientation of the robot during the pose: This sensor data is re-
ferred to as the action’s result. The action/result pair is then used
to optimize a set of self-models. A good self-model is regarded
as one that produces the same sensor data as the physical robot
when it is supplied with the same action.

A. The Robot

The physical robot [Fig. 1(b)] is composed of four upper leg
parts, four lower leg parts, and a main body. The upper legs are
attached to the main body symmetrically, and the lower legs to the
upper legs. All joints are actuated by servo motors that can rotate

the joint between 90 and 90 . The default position for the mo-
tors (0) causes the robot to lie flat. Rotations to negative angles
cause the body part to rotate downward; positive angles cause it to
rotate upward. Once the robot performs an action, the orientation
of the main body was measured manually to a precision of 0.1 :
How much it is tilted to the left or right, and how much forward
or backward. The tilt information is bundled with the action that
caused it and supplied to the self-model synthesis component.

The robot was controlled by an onboard PC-104 computer
with a Pentium 166-MHz processor, 64 MB of RAM, and
512 MB of compact flash memory for data storage. For external
communication with the computational components (which
were run off board on a standard desktop PC), data from the
robot was collected on a compact flash card, and uploaded
to the external PC for processing. Similarly, actions were
transferred to the physical robot on the compact flash card.
Batteries supplied the robot with on-board power; a Diamond
DMM-32X-AT data acquisition board was used for collecting
the joint angle sensor data; and an SV-203 servo control board
was used for driving the hinge motors.

B. Self-Models

In the modeling phase [Fig. 1(c)–(f)], a set of 15 self-models
are evolved using a parallel hill climber to infer the way in which
the robot’s body parts are attached together. In previous work
[9], it was shown that 15 self-models was sufficient to infer the
body plan of the physical robot: more complex robots may re-
quire more self-models. The training set is composed of the set

Authorized licensed use limited to: IEEE Xplore. Downloaded on October 6, 2008 at 8:26 from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

BONGARD: ACCELERATING SELF-MODELING IN COOPERATIVE ROBOT TEAMS 3

Fig. 2. Genotype to phenotype translation for the self-models. The algorithm begins by knowing how many motorized parts the robot is composed of (a). A self-
model genotype G encodes information for connecting the parts together. G(i; 1) indicates to which body part i should attach. G(i; 2) indicates where on the
periphery it should attach. (b) shows five possible placements for part 1, and a sample placement for part 5.

of action/result pairs that have been obtained from the robot so
far. On the first cycle through the algorithm, the modeling phase
has one pair; on the second cycle through it has two action/result
pairs; and so on. The algorithm is assumed to know: how many
motorized parts there are (eight), the mass and geometry of each
part, parts are attached perpendicularly to each other, each body
part is horizontal, and that actuating a body part with a positive
angle will cause it rotate upward by that amount, and a nega-
tive angle downward by that amount. In future work, these con-
straints will gradually be relaxed. The algorithm must indirectly
infer how the parts are connected using only the tilt information
in the training data.

Each self-model is encoded using two sets of data: specific
self-information and invariant self-information. Specific self-in-
formation encodes information assumed to be specific to each
individual robot, such as local terrain topology, wear and tear on
the joints, and sensor noise. Invariant self-information encodes
information that is assumed to be relatively invariant across
the robot team, such as the robots’ mechanical topology. In
the present work, specific self-information encodes information
about the slope of the ground on which each robot moves, and
invariant self-information encodes the placement of orientation
of the robot’s body parts.

1) Specific Self-Information: In the present work, the same
robot [Fig. 1(b)] is used to simulate two or three robots working
in concert. However, it is assumed that multiple robots may be
working in different locales and may have accumulated slight
wear and tear on both sensors and motors. To encapsulate this
uniqueness for each robot, specific self-information is encoded
in two values: , each of which encodes a floating-
point value in . These numbers indicate a specific tilting
bias for the robot, which may be caused by motor or sensor inac-

curacies, or by sloping ground. When a self-model is actuated,
and the left/right tilt and forward/back tilt of the self-model’s
main body is recorded in degrees, is added to the left/right
tilt and is added to the forward/back tilt to simulate these
undetectable conditions in the physical robot. A self-model with

or denotes that the phys-
ical robot tilts two degrees to the left, right, forward, or back,
respectively, more than it should.

For example, if the physical robot is standing on ground
canted two degrees to the right, or its left/right tilt sensor
accrues a bias such that it emits a faulty, higher signal, the
left/right tilt value returned by the physical robot could always
be two degrees greater than a perfect self-model that can only
simulate flat ground. If a self-model sets , it will be able
to successfully reproduce the sensor data of the tilted physical
robot. In short, these two values, if inferred correctly, help the
robot to produce an accurate self-model of itself, even though
there may be aspects of its locale or construction that it cannot
model explicitly (such as ground tilt or sensor noise).

2) Invariant Self-Information: In the present work, invariant
self-information encodes the mechanical topology of the phys-
ical robot: which body parts are attached to which others, and
the orientation of those parts.

This information is encoded as a 8 2 genotype with
floating-point values in the range , and dictates how
the nine known body parts [Fig. 2(a)] should be connected
to one another to produce a phenotype. The phenotype is a
three-dimensional, physically realistic simulated robot, like
those shown in Fig. 1(c)–(f). The genotype is translated into a
phenotype as follows. Each row in the matrix corresponds to
one of the eight body parts. For each of the body
parts, entry is scaled to an integer value in .

Authorized licensed use limited to: IEEE Xplore. Downloaded on October 6, 2008 at 8:26 from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

4 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION

This indicates to which body part the current part attaches.
A value of 0 indicates the part attaches to the main body; a
value of 1 indicates it attaches to motorized body part 1; and so
on. In the example shown in Fig. 2(b), part 1 attaches to part

, and part 5 to part 1 . The second
value in the row, , indicates where on the periphery of
the parental body part the current part should be attached. A
value of indicates that part should connect to
the upper left of the parent body part; larger values attach the
part at further positions around the periphery of the parent part,
proceeding in a clockwise direction. In the example shown in
Fig. 2(b), body part 1 attaches to the upper-right of the main
body , and then body part 5 attaches in turn to
the upper-right of body part 1 .

The current encoding scheme for ensures that any set of
values for produces a fully connected self-model. However,
it does aid self-modeling in that body parts with lower indices
are easier to model than body parts with higher indices. Body
part 1, for example, can only be attached to body part 0, which is
the correct connection, and body part 2 has a 50% probability of
being attached to the correct parent body part (body part 0). In
future work a less biased encoding scheme will be implemented.

3) Self-Model Evaluation: Once a self-model is formed, it
is actuated with each of the actions that have already been exe-
cuted by the physical robot.

The self-models are simulated within a three-dimensional,
real-time dynamical simulator.1 At each time step of the simula-
tion, all of the external forces (gravity, momentum and friction),
internal forces (such as motor actuation) and constraints (at-
tachment points, collisions with other objects) acting on each
body part are combined, and are passed to an integrator that
computes the new position and velocity of the part. Each can-
didate self-model starts in a planar configuration [such as is
shown in Fig. 1(c)–(f)], and the virtual motors are rotated to the
angles encoded in the current action. The equations of motion
are integrated until all of the motors in the self-model reach their
respective angles: this often moves the robot into a nonplanar
configuration [such as is shown in Fig. 1(h), (i)]. In this config-
uration, the left/right and forward/back tilt of the self-model’s
main body is recorded as and , respectively, for action .

The self-model is then relaxed back to the planar configura-
tion, and the second action performed by the physical robot is
used to actuate the self-model again. This process is repeated
for each action that the physical robot has performed so far.

The subjective error of a self-model is then given by

(1)

where is the total number of actions that have been performed
by the robot so far; is the amount the robot tilted to the
left or right when it executed action , is the amount the
self-model tilted to the left or right when it executed action ,

is the left/right bias encoded by the self-model, is the
amount the robot tilted forward or backward when it executed
action , is the amount the self-model tilted to the left or
right when it executed action , and is the forward/back bias

1www.ode.org

encoded by the self-model. therefore computes the mean
error, in degrees, between all tilt angles recorded by the robot
and all corresponding tilt angles produced by the self-model. In
short, the accuracy of a self-model is how well it reproduces the
behaviors of the robot when supplied with the same actions.

At the beginning of the algorithm, a random action is per-
formed by the physical robot, and 15 random self-models are
created. A hill climber then optimizes each of the 15 self-models
in an attempt to minimize . Once a self-model has been eval-
uated, both and are copied, and one or the other is chosen
for mutation, with an equal probability. A single value in either

or is then chosen at random, and a small value chosen from
a random Gaussian distribution is added to it. The resulting self-
model is then evaluated. If the new self-model achieves a lower
subjective error than the parent self-model, the parent genotype
is discarded; otherwise, the child is discarded. This process is
continued for 200 generations, for each of the 15 self-models.
These optimized self-models [Fig. 1(e), (f)] are then passed to
the testing phase [Fig. 1(h), (i)] for locating a new action.

On the second and subsequent cycles through the modeling
phase, hillclimbing begins with the best self-models from the
previous cycle, but the self-models are re-evaluated against the
larger training set, which contains the original action/result pairs
plus the new pair just obtained from the robot.

C. The Actions

The testing phase attempts to find a new action that, when
executed by the robot, will provide more information about its
topology. The physical robot is capable of 36 possible actions.

The first eight actions command one of the motors to rotate
downward by 30 and the other seven to rotate upward by 30 .
The remaining 28 actions command two of the motors to rotate
downward by 30 and the other six upward by 30 . In earlier
work [5], it was shown that by allowing only one or two body
parts to affect the tilt of the main body, the robot could more
rapidly infer its own topology. Body parts rotated downward
lift the main body, while those rotated upward do not affect tilt.
This is illustrated by the four sample poses shown in Fig. 3.

Initially, one of the 36 actions is selected at random and sent to
the target robot to generate the first action/result pair [Fig. 1(a)].
On the second and subsequent cycles, the optimized self-models
from the modeling phase are used to determine which new ac-
tion to send to the robot. During these cycles, the fitness of
each remaining untried action is computed. The action with
the highest fitness is sent to the physical robot for evaluation.
The fitness of each action is determined as followed. Each ac-
tion is sent, in turn, to the 15 self-models. The behaviors of the
self-models in response to the action determine its fitness.

More precisely, the fitness of an action is computed as

(2)

(3)

(4)

where rewards the candidate action for inducing variance
across the self-models. represents the variance across

Authorized licensed use limited to: IEEE Xplore. Downloaded on October 6, 2008 at 8:26 from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

BONGARD: ACCELERATING SELF-MODELING IN COOPERATIVE ROBOT TEAMS 5

Fig. 3. Alternative approaches for exploiting two or more robots for self-mod-
eling. In the Combined variant (a), two robots each execute different actions,
and then feed those two actions (along with their results) into a common base
algorithm. In the Swap variant (b), each robot maintains its own independent
base algorithm, but they swap their current best self-models.

the left and right tilting of the 15 optimized self-models when
supplied with action , and represents the variance
across the forward and backward tilting of the 15 optimized
self-models. For example a low value for indicates
that all the self-models tilted to the left, or all to the right; a
high value indicates some tilted to the left, some did not tilt left
or right, and some tilted to the right. Likewise for .

The first term rewards an action for how much it causes
the optimized self-models to tilt in different directions. This re-
flects the theoretical finding from active learning in which it was
shown [33] that the best way to choose new training data for la-
beling by the target system (in this case, the robot) is the one that
causes the self-models to disagree in their predictions about the
label for this training data. Once this training data is labeled by
the system and added to the training set, now only some of the
self-models, not all, will agree with the results from the system,
because the self-models disagree about the new training data.
Further modeling can then replace these recently revealed erro-
neous self-models with new self-models that explain all the old
training data, plus the new training data.

The second term penalizes potentially “dangerous” actions.
Dangerous actions are those which may cause the robot to be-
have very differently from the self-models, even though the self-
models are topologically very similar to the robot. For example,
if an action causes the robot to balance on its left and right

upper legs, it may maintain an untilted main body [as shown in
Fig. 3(b)], while topologically similar, yet not perfectly accurate
self-models may predict that the main body will tilt. These dan-
gerous actions have the effect of making the self-model search
space very rugged: relatively accurate self-models suddenly ex-
perience a misleading increase in error when such new training
data is collected. “Dangerous” actions are avoided by taking the
current self-model set and producing mutants of each of them,
as described in Section II. The 15 self-models and
their corresponding mutant self-models are then
actuated with the current candidate action, and the predicted
tilt angles from the original models are stored in and

, and the predicted tilt angles from the mutated models

are stored in and . then records the mean
disagreement between the tilt angles of the original and mutant
model pairs. This amount of disagreement predicts the poten-
tial disagreement between the robot and a topological similar
self-model. Self-models with high values of are thus avoided.
For a more detailed treatment of this phenomenon, see [4].

D. Algorithm Variants

A total of 14 algorithm variants were tested (Table I), and the
relative ability of the variants to produce accurate self-models
was measured. Some of the variants relied on a single robot op-
erating in isolation (Fig. 1), and is referred to as the base al-
gorithm. Some of the variants rely on several robots drawing
training data from, and combining resulting sensor data into the
base algorithm [Fig. 3(a)]. Some of the variants also rely on
several robots, but each robot maintains its own base algorithm
[Fig. 3(b)]. In the variants where multiple robots are employed,
a single physical robot simulates several robots in the following
manner. When an action meant for robot 1 is received, the phys-
ical robot performs the action, and adds a small bias angle to
both the resulting left/right and forward/back tilt angle. The two
biases (one for left/right, the other for forward/back) are chosen
randomly from . When an action for robot 2 is received
by the physical robot, it again performs the action but now adds a
bias unique to robot 2, and so forth. This simulates several topo-
logically similar robots moving over differently tilted ground, or
with accrued biases in their motors or sensors. A small amount
of uniform noise is also added to each tilt angle returned by the
robot selected from . Rather than perform the al-
gorithm variants on the robot in real-time, each of the 36 ac-
tions were supplied to the robot and the resulting tilt angles
were recorded before any of the experiments were attempted.
For each “robot” involved in an algorithm variant, the 36 ac-
tion/result pairs were copied and the tilt angle biases for that
robot were added.

1) Combined Variant: This variant allows two robots to share
a common instance of the EEA, as shown in Fig. 3(a). Rather
than the testing phase outputting a single action, two actions are
output. During the first pass through the testing phase, two ac-
tions are chosen at random from the 36 and output; during the
second and subsequent passes, the action with highest , and
the one with the second-highest are output. The first robot ex-
ecutes the first action, and the second robot executes the second
action. The two actions, along with their results, are bundled and

Authorized licensed use limited to: IEEE Xplore. Downloaded on October 6, 2008 at 8:26 from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

6 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION

TABLE I
SUMMARY OF ALGORITHM VARIANTS

sent to the common modeling phase. In the base algorithm, the
first pass through the modeling phase optimizes models against
one action/result pair; during the th pass, models are optimized
against action/result pairs. In variant , two robots com-
bine results into a single base algorithm: the first pass through
the modeling phase optimizes models against two action/result
pairs; during the th pass through the modeling phase, they are
optimized against action/result pairs. In variant , three
robots combine results into a single base algorithm. The three
actions that best induce self-model disagreement are sent to the
three robots after each pass through the testing phase. During
the th pass through the modeling phase, self-models are opti-
mized against action/result pairs.

2) Swap Variant: Fig. 3(b) outlines Swap, in which two
robots maintain their own base algorithm. However, unlike the
base algorithm, when a pass through the self-modeling phase
in Swap finishes, the robot waits for a signal from the other
robot (or robots) that it has also finished a cycle of self-mod-
eling. At this point, they swap best self-models: the first robot
makes a copy of its best self-model and sends it to robot 2.
Conversely, robot 2 sends its best self-model to robot 1. Each
robot then deletes its worst self-model and replaces it with the
model received from the other robot. The robots then continue
on to the testing phase. The best self-model is defined as the
self-model among the current 15 candidate self-models with
lowest subjective error (1); the worst self-model is defined as
the self-model with the highest subjective error. In variant
two robots swap best self-models. In variant , three robots
swap best self-models: each robot sends its best self-model to
the other two robots, and overwrites its worst and second worst
self-model with the best self-models received from the other
two robots.

3) Mult Extension: An extension was applied to the Swap
variants in which robots swap not only their best self-model,
but multiple self-models. In variant , each robots sends
its best self-models to the other robot, and
overwrites its seven worst self-models with those received from
the other robot. In , each of the three robots sends its

best self-models to the other two robots. Each
robot overwrites its middle five self-models with those from the
first of the other two robots, and its worst five self-models with
those from the second of the other two robots.

4) Passup Extension: In the self-modeling phase,
self-models are optimized independently using a hill climber.
The PassUp extension introduces a method for propagating
genetic material from one self-model to another, without re-
ducing the variation in the self-model population. In an earlier
study [4], crossover was introduced to the base algorithm,
but the resulting algorithm variant performed worse. It was
observed that because crossover reduces the overall variation
in the self-model population, it is more difficult in the testing
phase to locate an action that induces disagreement among the
models. PassUp is a modification of the crossover operator, and
functions as follows. After each generation in the self-modeling
phase, the 15 child self-models are mutated normally. Then,
two of the child self-models are chosen at random, and each
row from in the worse of the two self-models is passed
up into and overwrites the corresponding row in the better
self-model with a 50% probability. The better self-model does
not contribute any genetic material to the worse self-model.
In this way, a self-model from one robot, when imported by
another robot, may have a relatively high subjective error
within the new self-model set. However, it may model a few
body parts correctly, such as the body parts that were tested in

Authorized licensed use limited to: IEEE Xplore. Downloaded on October 6, 2008 at 8:26 from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

BONGARD: ACCELERATING SELF-MODELING IN COOPERATIVE ROBOT TEAMS 7

Fig. 4. Relative modeling performance for the 14 algorithm variants. (a) The Swap and Combined variants are compared to the base algorithm; (b) the Swap
variants with trading of multiple self-models are compared against the base algorithm and Combined variants; (c) all variants with the PassUp extension are
compared; and (d) all variants with the PassUp extension are compared against the Swap variants with both the PassUp and Mult extensions. Runs that produced
models with statistically significant more accuracy than the base algorithm are marked with an asterisk. Error bars indicate one unit of standard deviation.

the other robot. Using PassUp, an imported self-model may
contribute well-modeled body parts up into the more accurate
self-models of the current set.

The PassUp extension was introduced into the base algorithm
, two robots combining results into a shared base algo-

rithm , two robots swapping best self-models ,
three robots combining results into a shared base algorithm

, three robots swapping best self-models , two
robots swapping multiple self-models (SMP2), and three robots
swapping multiple self-models (SMP3).

III. RESULTS

Thirty independent trials of the 14 algorithm variants were
conducted. Each trial was conducted for 18 cycles, with the ex-

Authorized licensed use limited to: IEEE Xplore. Downloaded on October 6, 2008 at 8:26 from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

8 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION

ception of the and variants, which were only run
for 12 cycles. Because these variants use up three actions at
each cycle, all 36 actions are executed by the robots after 12 cy-
cles. For each pass through the self-modeling phase of , the
self-models are optimized for only 100 generations, rather than
200 generations as in the other algorithm variants. In
generations of self-modeling optimization are performed. This
normalizes the amount of computational effort performed by all
algorithm variants to nearly 300 000 self-model evaluations per
independent trial.

For each trial, and after each pass through the modeling
phase, the self-model with the lowest was selected, and its
objective error was measured, given as

(5)

where is the horizontal position of body part on the robot
when it lies flat, is the horizontal position of body part on
the self-model, is the -position of body part on the robot,
and is the -position of body part on the self-model. The
objective error of a self-model is equal to the mean Euclidean
distance between the positions of the robot’s body parts, and the
self-model’s body parts. This metric then gives an indication of
how close the self-model is to the topology of the robot, inde-
pendent of the collected action/result pairs.

Fig. 4(a) reports the relative modeling abilities of the first
five algorithm variants, without the Mult and PassUp extensions.
Bars indicate the mean objective errors for that variant, for that
cycle. As can be seen, the objective errors of the self-models
decrease with increasing cycles, as expected, for all variants.
Despite a few, early sporadic improvements by the Combined
variant with three robots due to its threefold increase in the
number of action/result pairs it receives per cycle, no variants
outperformed the base algorithm.

Adding the Mult extension to the Swap variants (and
) does not improve these variants relative to the base al-

gorithm and Combined variants, as indicated by Fig. 4(b). How-
ever, adding the PassUp extension to all five variants does confer
a significant advantage to the Swap variant with three robots

, as indicated by Fig. 4(c); consistently generates
more accurate self-models than the base algorithm from cycle
12 onward. When both the Mult and PassUp extensions are inte-
grated into the Swap variant, SMP2 and SMP3 significantly out-
perform the base algorithm from cycle 12 onward [Fig. 4(d)].

A second performance metric for measuring self-model
quality was also applied to the algorithm variants. At the end of
each pass through the modeling phase, the self-model with the
lowest subjective error was extracted, and it was determined
whether it had the same topology as the robot. Fig. 5(a)–(f) re-
ports the topologies of the best self-models taken from cycle 10
of the first six trials of the base algorithm. As can be seen, none
of the self-models have the correct topology. However, four of
the first six trials for the SMP2 variant discovered the robot’s
true topology after ten cycles [Fig. 5(g)–(l)]. That is, all eight
body parts in the self-model are attached to the correct parent
body part. Five of the first six trials for SMP3 variant discovered

Fig. 5. Sample topologies of optimized self-models. Each panel displays the
best self-model extracted after ten passes through the modeling phase for the
first six trials of the base algorithmB 1; (a)–(f), the Swap variant using the Mult
and PassUp extensions for two robots SMP2; (g)–(l), and the Swap variant using
the Mult and PassUp extensions for three robots SMP3; (m)–(r). Topologically
correct models are boxed.

the robot’s true topology after 10 cycles [Fig. 5(g)–(l)]. As can
be seen, some of the topologically correct self-models may still
be relatively inaccurate in that their attachment positions are
skewed.

For the base algorithm and all of the Swap variants, the frac-
tion of trials that converged on a self-model with the correct

Authorized licensed use limited to: IEEE Xplore. Downloaded on October 6, 2008 at 8:26 from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

BONGARD: ACCELERATING SELF-MODELING IN COOPERATIVE ROBOT TEAMS 9

Fig. 6. Relative modeling performance of the base algorithm and Swap variants. Each marker indicates the fraction of independent trials that have discovered a
topologically correct self-model for that algorithm variant, by that cycle. (a) Modeling abilities of the base algorithm and Swap variants used by two robots. (b)
Modeling abilities of the base algorithm and Swap variants used by three robots. Comparative modeling abilities for two and three robots swapping self-models
without the Mult or PassUp extension (c); with only the Mult extension (d); with only the PassUp extension (e); and with both the Mult and PassUp extensions (f).

topology was computed, for each cycle. This metric indicates
how often, and how early, a given algorithm variant converges
on a topologically correct self-model. Fig. 6(a) compares the

four Swap variants, using two robots, against the base algo-
rithm. As can be seen, the base algorithm does not dis-
cover a topologically correct self-model until cycle 11, while

Authorized licensed use limited to: IEEE Xplore. Downloaded on October 6, 2008 at 8:26 from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

10 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION

Fig. 7. Illustration of how Mult and PassUp accelerate self-modeling. Correctly modeled body parts from robot 2 (parts 2 and 6) are sent to robot 1 via the Mult
variant, and are then integrated during model optimization into the best model generated by robot 1 via the PassUp extension.

the Swap variants begin discovering topologically correct self-
models after the fifth cycle. The SMP2 variant outperforms the
base algorithm and other Swap variants, in that it consistently
achieves a greater fraction of independent trials exhibiting topo-
logically correct self-models than the other algorithm variants
(shaded squares).

Fig. 6(b) compares the four Swap variants, using three robots,
against the base algorithm. Adding a third robot to the two col-
laborating robots does not reduce the number of cycles nec-
essary to achieve a topologically correct self-model: the Swap
variants still only discover such self-models after cycle 5. How-
ever, the Swap variant with both the Mult and PassUp extensions
(SMP3, shaded squares) outperforms the other Swap variants,
with the exception of cycles 11 to 14 (shaded triangles).

Fig. 6(c)–(f) indicate that three robots swapping self-models
outperform two robots, for all Swap variants except SMP3. Pre-
sumably, the Mult and PassUp extension empower SMP2 suffi-
ciently that there is no additional performance gain to be had by
adding a third robot.

IV. DISCUSSION

The results indicate that in general, two robots swapping
self-models synthesize accurate self-models using fewer ac-
tion-result data pairs than one robot operating alone, or two
robots sharing a common modeling algorithm. This is indicated
in Fig. 4(d), in which only the Swap variants that incorporate
the Mult and PassUp extensions produce significantly more
accurate self-models than both the base algorithm and the
Combined variants. The performance advantage realized by
the Swap variants can be explained as follows. When imported
by a recipient robot, a self-model (or set of self-models) may
be optimized to explain different body parts not yet tested
by the donor robot. When the improved self-model (or set of
self-models) is sent back, it may be further improved to explain
the new body parts just tested by the donor robot. Therefore
self-models are optimized against the body parts tested by
both robots. Further, self-models in the Swap variants need
only account for the biases of their current host robot: when

received, self-models may be adapted to account for the local
biases, and then adapted back to the original biases of the
donor when transferred back to it. In the Combined variants,
self-models must be adapted to explain all of the biases of the
contributing robots, which is not achievable.

Fig. 6(a) and (b) indicate that the Swap variants which in-
corporate the Mult and PassUp extensions outperform the other
Swap variants, indicating that both extensions confer some ad-
vantage compared to variants with only one or none of these ex-
tensions. Fig. 7 illustrates why this combination confers an ad-
vantage. Different robots perform different actions, and thereby
obtain indirect evidence about the positions of different body
parts. For instance in Fig. 7, the first robot obtains data about
the positions of the left-hand body parts (parts 4 and 8) while
the second robot obtains data about the right-hand and lower
body parts (parts 2 and 6, and 3, and 7, respectively). If the
first robot then obtains information about the right-hand body
parts, it may incorporate those parts from the best self-model
exported by the second robot using PassUp, without having to
model those parts ab initio. If on the other hand it obtains in-
formation about the lower body parts, it may incorporate those
parts from the second-best self-model exported by the second
robot using Mult (indicated by the dotted line in Fig. 7).

Fig. 6(c)–(f) indicates how three robots swapping self-models
improve over two robots. First, it can be seen that all algorithms
start to create topologically correct self-models only after five
actions have been performed. That is, teams of three robots do
not begin to discover correct models earlier than pairs of robots,
or robots working alone. This indicates that there is some hard
limit on the minimum number of actions required before topo-
logically correct self-models can be found. However, consistent
performance is more prevalent in teams of three robots than it
is in teams of two, or in independent robots: all Swap variants
relying on three robots discover more correct self-models, with
less actions, than Swap variants relying on two robots (or one
robot acting alone). This indicates that the more robots that share
self-models, the less actions (and attendant self-modeling) are
required for the majority of them to realize correct self-models.

Authorized licensed use limited to: IEEE Xplore. Downloaded on October 6, 2008 at 8:26 from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

BONGARD: ACCELERATING SELF-MODELING IN COOPERATIVE ROBOT TEAMS 11

V. CONCLUSION

In this paper, it has been shown that quadrupedal robots which
share experiences more rapidly synthesize models describing
their own body. More specifically, a series of alternatives for
sharing experiences were explored, and it was found that it is
more advantageous for quadrupedal robots to maintain indepen-
dent self-modeling algorithms, and swap their best self-models,
rather than combining experiences into a common modeling al-
gorithm. This is a particularly encouraging result as robots op-
erating in the field need only communicate with their peers in
order to swap experiences, rather than communicate back to a
central computational resource: For increasing numbers of inde-
pendent agents, peer-to-peer communication strategies are most
robust and scalable than many-to-one communication strategies.

Also, it has been shown how robots with a specific mor-
phology should share experiences. Each robot should maintain
not just a single self-model, but a set of candidate self-models,
and more accurate self-models should only import genetic ma-
terial from less accurate self-models. This constraint keeps the
self-model population from converging on seemingly correct,
but objectively incorrect self-models. Second, robots should
share several of their best self-models, rather than just the
currently best self-model, as often randomly selected genetic
material from a self-model with intermediate accuracy contains
correctly modeled body parts, and can be imported into the
self-models of another robot that has not modeled those parts
correctly yet. Previously, it has been shown that maintaining
multiple models provides a mechanism for extracting new
information from the system being modeled [33], [9]. The
current work provides another reason why it is beneficial for a
robot to maintain several, rather than a single self-model.

In previous work [9], it was demonstrated that a physical
robot that can autonomously model its own body can use that
self-model to recover from unanticipated situations, such as
body damage. By extension, robots that collaborate to accel-
erate self-modeling will, as a group, be capable of more rapid
recovery from unanticipated situations. More specifically, if one
robot diagnoses damage through self-modeling, and generates
a recovery strategy, it can communicate both the self-model and
recovery strategy to other robots. Other robots that then suffer
similar injury can rapidly diagnose the damage by matching
imported self-models against the new sensor data. The recovery
strategy associated with the best matching imported self-model
can then be executed, thereby greatly accelerating diagnosis
and recovery. This dynamic will be explored in future work.

It is interesting to note that a team with at least one dam-
aged robot would confer an even greater performance advan-
tage on the distributed approach to self-modeling (i.e., Swap), as
self-models exported by a damaged robot would simply be dis-
carded by intact robots and assimilated by similarly damaged
robots. The centralized approach to self-modeling (i.e., Com-
bined) would be forced to settle on self-models that fail to ac-
curately reflect either the damaged or intact robots.

In related work, we have recently shown how topological
modeling can be applied to other nonlinear, coupled systems in
addition to robots [8]. It was shown there how the time com-
plexity for model search can be reduced from exponential to
polynomial time. In future work, this simplifying mechanism

will be introduced to robots performing self-modeling. Also, the
approach will be applied to robots with different body plans and
greater degrees of freedom to determine the generality of the al-
gorithm.

For higher animals, language and imitation are the only con-
duits available for sharing experience: a human may tell an-
other human how to operate a new tool, or a parent may demon-
strate an action to a child. The form of communication demon-
strated between intelligent agents in this paper provides a direct
form of interaction: Agents can communicate information about
each other’s body directly, by sharing self-models. The field of
biorobotics [39], [19], [30] is concerned with instantiating bi-
ological structures or behaviors in robots. This work demon-
strates an additional mechanism by which artificial agents can
surpass biological agents: communicating self-knowledge di-
rectly with one another, rather than indirectly through language
or imitation.

Most collective robotics projects realize robot teams that
communicate with one another in order to establish cooperative
behaviors [2], [29], [34], synthesize global maps [13], [26],
or estimate object positions [35]. This work demonstrates
the utility of another form of collaboration: The sharing of
experiences for self-modeling, and eventually for accelerating
adaptation to and recovery from unanticipated situations,
which constantly challenge an autonomous robot operating in
unstructured environments.

ACKNOWLEDGMENT

The author would like to thank members of the Computa-
tional Synthesis Laboratory at Cornell University, as well as
staff of the Vermont Advanced Computing Center.

REFERENCES

[1] H. Andrew, “System identification using genetic programming,” in
Proc. 2nd Int. Conf. Adaptive Comput. Eng. Design Control, 1996, pp.
57–62.

[2] T. Balch and R. Arkin, “Communication in reactive multiagent robotic
systems,” Auton. Robots, vol. 1, no. 1, pp. 27–52, 1994.

[3] Y. Baram, R. El-Yaniv, and K. Luz, “Online choice of active learning
algorithms,” J. Mach. Learn. Res., vol. 5, pp. 255–291, 2004.

[4] J. Bongard, “Action-selection and crossover strategies for self-mod-
eling machines,” in Proc. Genetic Evol. Comput. Conf. (GECCO’07),
2007, pp. 198–205.

[5] J. Bongard, “Exploiting multiple robots to accelerate self-modeling,” in
Proc. Genetic Evol. Comput. Conf. (GECCO’07), 2007, pp. 214–221.

[6] J. Bongard and H. Lipson, “Active coevolutionary learning of deter-
ministic finite automata,” J. Mach. Learn. Res., vol. 6, pp. 1651–1678,
Oct. 2005.

[7] J. Bongard and H. Lipson, “Nonlinear system identification using co-
evolution of models and tests,” IEEE Trans. Evol. Comput., vol. 9, no.
4, pp. 361–384, Aug. 2005.

[8] J. Bongard and H. Lipson, “Automated reverse engineering of non-
linear dynamical systems,” Proc. National Acad. Sci., vol. 104, no. 24,
pp. 9943–9948, 2007.

[9] J. Bongard, V. Zykov, and H. Lipson, “Resilient machines through con-
tinuous self-modeling,” Science, vol. 314, pp. 1118–1121, 2006.

[10] J. C. Bongard and H. Lipson, “Automated robot function recovery after
unanticipated failure or environmental change using a minimum of
hardware trials,” in Proc. 2004 NASA/DoD Conf. Evolvable Hardware,
Seattle, WA, 2004, pp. 169–176.

[11] J. C. Bongard and H. Lipson, “Automating genetic network inference
with minimal physical experimentation using coevolution,” in Proc.
2004 Genetic Evol. Comput. Conf., Seattle, WA, 2004, pp. 333–345.

[12] D. Cliff, P. Husbands, and I. Harvey, “Evolving visually guided
robots,” in Proc. 2nd Int. Conf. Simulation of Adaptive Behavior, J.-A.
Meyer, H. Roitblat, and S. Wilson, Eds., Boston, MA, 1993, MIT
Press.

Authorized licensed use limited to: IEEE Xplore. Downloaded on October 6, 2008 at 8:26 from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

12 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION

[13] M. Di Marco, A. Garulli, A. Giannitrapani, and A. Vicino, “Simulta-
neous localization and map building for a team of cooperating robots:
A set membership approach,” IEEE Trans. Robotics Autom., vol. 19,
no. 2, pp. 238–249, Apr. 2003.

[14] D. Floreano and F. Mondada, P. Husbands and J.-A. Meyer, Eds.,
“Hardware solutions for evolutionary robotics,” EvoRobots, pp.
137–151, 1998.

[15] Distributed Autonomous Robotic Systems 7, M. Gini and R. Voyles,
Eds. New York: Springer, 2006.

[16] G. Gray, D. Murray-Smith, Y. Li, K. Sharman, and T. Weinbrenner,
“Nonlinear model structure identification using genetic programming,”
Control Eng. Practice, vol. 6, pp. 1341–1352, 1998.

[17] W. D. Hillis, “Co-evolving parasites improve simulated evolution as an
optimization procedure,” Physica D, vol. 42, pp. 228–234, 1990.

[18] A. Howard, G. S. Sukhatme, and M. J. Mataric, “Multi-robot mapping
using manifold representations,” Proc. IEEE—Special Iss. Multi-Robot
Syst., vol. 94, no. 7, pp. 1360–1369, 2006.

[19] A. Ijspeert, A. Crespi, D. Ryczko, and J.-M. Cabelguen, “From
swimming to walking with a salamander robot driven by a spinal cord
model,” Science, vol. 315, no. 5817, pp. 1416–1420, 2007.

[20] N. Jakobi, “Evolutionary robotics and the radical envelope of noise
hypothesis,” Adaptive Behavior, vol. 6, no. 1, pp. 131–174, 1997.

[21] D. Keymeulen, M. Iwata, Y. Kuniyoshi, and T. Higuchi, “Online evo-
lution for a self-adapting robotics navigation system using evolvable
hardware,” Artif. Life, vol. 4, pp. 359–393, 1998.

[22] B. Kouchmeshky, W. Aquino, H. Lipson, and J. C. Bongard, “Co-
evolutionary strategy for structural damage identification using min-
imal physical testing,” Int. J. Numer. Methods Eng., vol. 69, no. 5, pp.
1085–1107, 2006.

[23] J. Koza, Genetic Programming: On the Programming of Computers by
Means of Natural Selection. Boston, MA: MIT Press, 1992.

[24] C. Kube and E. Bonabeau, “Cooperative transport by ants and robots,”
Robotics Auton. Syst., vol. 30, no. 1–2, pp. 85–101, 2000.

[25] K. Lerman, C. Jones, A. Galstyan, and M. J. Mataric, “Analysis of
dynamic task allocation in multi-robot systems,” Int. J. Robotics Res.,
vol. 25, no. 3, pp. 225–242, 2006.

[26] R. Madhavan, K. Fregene, and L. Parker, “Distributed cooperative out-
door multirobot localization and mapping,” Auton. Robots, vol. 17, no.
1, pp. 23–39, 2004.

[27] A. Martinoli, K. Easton, and W. Agassounon, “Modeling of swarm
robotic systems: A case study in collaborative distributed manipula-
tion,” Int. J. Robotics Res., vol. 23, no. 4, pp. 415–436, 2004.

[28] S. Nolfi and D. Floreano, Evol. Robotics. Boston, MA: MIT Press,
2000.

[29] E. Pagello, A. D’Angelo, C. Ferrari, R. Polesel, R. Rosati, and A. Sper-
anzon, “Emergent behaviors of a robot team performing cooperative
tasks,” Adv. Robotics, vol. 17, no. 1, pp. 3–19, 2003.

[30] R. Pfeifer, M. Lungarella, and F. Iida, “Self-organization, embodi-
ment, and biologically inspired robotics,” Science, vol. 318, no. 5853,
p. 1088, 2007.

[31] J. B. Pollack, H. Lipson, S. Ficici, P. Funes, G. Hornby, and R.
Watson, “Evolutionary techniques in physical robotics,” in Evolvable
Systems: From Biology to Hardware, J. Miller, Ed. New York:
Springer-Verlag, 2000, pp. 175–186.

[32] J. Pugh and A. Martinoli, “Multi-robot learning with particle swarm
optimization,” in Proc. 5fth Int. Joint Conf. Auton. Agents Multiagent
Syst., 2006, pp. 441–448.

[33] H. S. Seung, M. Opper, and H. Sompolinsky, “Query by committee,” in
Proc. Fifth Workshop on Computational Learning Theory, New York,
1992, pp. 287–294, ACM.

[34] K. Støy, W. Shen, and P. Will, “A simple approach to the control of
locomotion in self-reconfigurable robots,” Robotics Auton. Syst., vol.
44, no. 3–4, pp. 191–199, 2003.

[35] A. W. Stroupe, M. C. Martin, and T. Balch, “Distributed sensor fusion
for object position estimation by multi-robot systems,” in Proc. IEEE
Int. Conf. Robotics Auton., 2001, vol. 2, pp. 1092–1098.

[36] R. Tedrake, T. Zhang, and H. Seung, “Learning to walk in 20 minutes,”
in Proc. Fourteenth Yale Workshop on Adaptive and Learning Systems,
New Haven, CT, 2005, Yale Univ..

[37] S. Thrun, W. Burgard, and D. Fox, Probabilistic Robotics. Cam-
bridge, MA: MIT Press, 2005.

[38] F. J. Valero-Cuevas, V. V. Anand, A. Saxena, and H. Lipson, “Beyond
parameter estimation: Extending biomechanical modeling by the ex-
plicit exploration of model topology,” IEEE Trans. Biomed. Eng., vol.
54, no. 11, pp. 1951–1964, Nov. 2007.

[39] B. Webb and R. Thomas, Biorobotics: Methods and Applications.
Cambridge, MA: AAAI Press/MIT Press, 2001.

Josh C. Bongard received the B.Sc. honors degree
in computer science from McMaster University,
Hamilton, ON, Canada, in 1997, the M.Sc. degree in
evolutionary and adaptive systems from the School
of Cognitive and Computing Sciences, University of
Sussex, Sussex, U.K., in 1999, and the Ph.D. degree
from the Artificial Intelligence Laboratory, Univer-
sity of Zurich, Zurich, Switzerland, for research in
the field of evolutionary robotics.

He joined the faculty of the Department of Com-
puter Science, University of Vermont, Burlington, in

2006. Prior to this appointment, he was a Postdoctoral Researcher in the Sibley
School of Mechanical and Aerospace Engineering, Cornell University, Ithaca,
NY.

Authorized licensed use limited to: IEEE Xplore. Downloaded on October 6, 2008 at 8:26 from IEEE Xplore. Restrictions apply.

