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Abstract Embodied artificial intelligence argues that the body
and brain play equally important roles in the generation of adaptive
behavior. An increasingly common approach therefore is to evolve
an agentʼs morphology along with its control in the hope that
evolution will find a good coupled system. In order for embodied
artificial intelligence to gain credibility within the robotics and
cognitive science communities, however, it is necessary to amass
evidence not only for how to co-optimize morphology and control
of adaptive machines, but why. This work provides two new lines
of evidence for why this co-optimization is useful: Here we show
that for an object manipulation task in which a simulated robot
must accomplish one, two, or three objectives simultaneously,
subjugating more aspects of the robotʼs morphology to selective
pressure allows for the evolution of better robots as the number of
objectives increases. In addition, for robots that successfully evolved
to accomplish all of their objectives, those composed of evolved
rather than fixed morphologies generalized better to previously
unseen environmental conditions.

1 Introduction

Embodied cognitive science [20, 22, 15] and its sister discipline embodied artificial intelligence [13,
33, 32] stress the importance of the body and its interaction with the environment for achieving
adaptive behavior. This suggests that the body plan for an adaptive machine should be chosen care-
fully to increase the probability of finding an optimized controller such that they together produce
useful behavior. It has been argued that designing the mechanical structure for a machine is more
intuitive and therefore better left to human designers than designing the controller, this latter being a
non-intuitive process and therefore better shaped by automated optimization [30, p. 22]. However,
here we show that even a seemingly appropriate configuration for a robotic arm—an anthropo-
morphic design—is increasingly improved by placing more aspects of the body plan under evolu-
tionary control as the task that the robot must accomplish becomes more complex.

One approach to morphological design is to adopt body plans inspired by biological organisms [6,
44], but often the specific details of the robotʼs niche are subtly (or grossly) different from the niche
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of the organism and therefore not an ideal design choice. An alternative approach is to automate the
optimization of both morphology and controller simultaneously (e.g., [39, 25, 11]), thereby searching
for a coupled dynamical system (between the moving body parts and the updating controller ) that
matches the dynamics of the environment well to produce useful behavior [32, 5].

There is a growing body of work demonstrating different ways for how to optimize morphology
and control: direct methods in which each part of the genome corresponds to only one part of the
body plan or neural controller (e.g., [25, 8]), recursive methods in which each part of the genome
may correspond to one or more phenotypic components (e.g., [39, 43, 1, 23]), and more biologically
inspired methods in which morphology and control are shaped by simulations of biological growth
processes (e.g., [17, 19, 7, 11, 35, 41, 28]). Further, such approaches can be divided into those that
optimize parameters of a fixed body plan and those that optimize the body plan itself. The current
work falls into the former category.

However, there is relatively little evidence about why morphology and control should be co-
optimized, beyond the common, rather vague argument that evolution can find a better fit between
morphology and control if both are optimized together. It has been demonstrated that indirect
methods may produce phenotypes that grow in complexity without requiring a corresponding in-
crease in genotypic complexity [9], and that control can be simplified if an appropriate morphology is
found [29, 24]. More recently it has been shown that a careful choice of morphology allows parts of
the body to functionally specialize, rather than its being assumed a priori which parts of the body will
perform which functions [2].

Here we contribute two other lines of evidence about why coevolving morphology and control is
important: In the object manipulation task investigated here, evolving more aspects of the robotʼs
body plan along with control increased the probability of discovering a successful solution as the task
complexity increased. Also, among those robots that evolved to successfully perform the task, those
with more evolved morphological aspects were more robust than those with less.

The next section introduces the methods used to investigate how evolvability and robustness are
affected by evolving morphological aspects of a simulated robot. Section 3 reports results for various
experimental regimes in which an increasing amount of the robotʼs body plan is evolved. The final
section provides some discussion, concluding remarks, and directions for future research.

2 Methods

This section introduces the simulated robot and its task environment, which aspects of its morphol-
ogy and controller can be optimized and which are fixed, and finally the algorithm used to optimize
the robotsʼ object manipulation abilities.

2.1 Task Environment
The class of robot investigated here is an articulated arm and hand equipped with either three, four,
or five fingers (e.g., Figure 1).

The task is to manipulate a series of objects that are placed within the robotʼs reach. Object
manipulation is here defined as a general behavioral competence that may be composed of one
or more of the following objectives: grasping, lifting, and active categorical perception [3, 31, 42].
Task complexity in this work is therefore defined as the number of objectives that a robot must
accomplish simultaneously. Grasping requires the robot to minimize the distance between its fingers
and the object, lifting requires it to maximize the vertical displacement of the object, and active
perception requires it to interact with objects of different shapes in order to distinguish between
them. Object manipulation has been previously studied in robotics (e.g., [14, 27, 21, 46, 42]), and
methods for enabling a robot to perform multiple behaviors simultaneously and in sequence con-
stitute a popular area of study (e.g., [46]). Here, however, the goal is not to demonstrate that a ro-
bot can accomplish these tasks, but rather the task domain is used to show that there is a positive
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correlation between the likelihood of successfully performing complex tasks and the amount of the
robotʼs morphology placed under evolutionary control.

In the experiments described here, populations of robots are evolved to achieve one or more of
these objectives simultaneously when presented with different objects. Some of the objectives are
synergistic in the sense that an evolutionary improvement of one increases the likelihood of subse-
quent evolutionary improvement of another: For example, if the robot is evolved to grasp and lift
objects, evolutionary improvement in grasping will likely lead to better lifting in future generations.
Alternatively, some of the objectives are antagonistic: Improvement in one reduces the likelihood of

Figure 1. A sample evolved robot. This robot can successfully grasp, lift, and actively distinguish between spheres of differ-
ent sizes (a–d, radius r = 35 cm; e–h, r = 31.5 cm), cylinders of difference sizes (i–l, r = 35 cm, length l = 70 cm; m–p, r =
31.5 cm, l = 63 cm), and cubes of different sizes (q–t, l,w,h = 70 cm; u–x, l,w,h = 63 cm). Black and white indicate finger
segments in which the tactile sensor is on or off, respectively. White lines denote the range sensors. Videos of this and
other robots can be found at www.cs.uvm.edu/~jbongard.
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success at the other. For example, better grasping of different-shaped objects requires a uniformly
tight grip on all of them, which reduces sensory differences between the actions. This reduction in
sensory difference makes active perception of differences between objects more difficult.

Nevertheless, it was found that in these experiments robots sometimes evolve to simultaneously
achieve all three objectives. For example, the robot shown in Figure 1 evolved to successfully grasp,
lift, and actively distinguish between six different objects. The different trajectories of the arm (away
from the camera for the spheres and cylinders, and toward the camera for the cubes) and the dif-
ferential firing of the tactile sensors indicates visually that it is actively distinguishing between objects
of different shapes. Similar actions for objects of the same shape but different size indicate that it has
not learned to recognize specific objects, but rather to classify them based on one of their aspects
(shape) rather than another (size). Section 2.4 describes in more detail how these different objectives
were selected for.

2.2 Robot Morphology
The three-fingered robot is composed of 13 body parts with 15 degrees of freedom (DOFs). Each
DOF is composed of a rotational joint and an actuator: The actuator causes the two body parts to
rotate relative to one another through some predefined plane; the joint acts as the fulcrum. Two
exceptions are the shoulder joint (a two-DOF actuated rotational joint) and the wrist joint (a
three-DOF actuated rotational joint). If we define the robotʼs long axis to be the vector that passes
from its shoulder through its hand, then the shoulder becomes its posterior point and its hand its
anterior point. The sagittal plane is then the vertical plane that cuts through the length of the arm,
the coronal plane the horizontal plane that cuts through the length of the arm, and the transverse
plane a horizontal plane perpendicular to the sagittal and coronal planes. Details regarding the phys-
ical characteristics of the body parts and joints and provided in Table 1. The robots with four fingers
have 4 + 4 × 3 = 16 body parts and 6 + 4 × 3 = 18 DOFs; the robots with five fingers have 4 +
5 × 3 = 19 body parts and 6 + 5 × 3 = 21 DOFs.

In the experiments reported on here, zero to three aspects of the robotʼs body plan may be
evolved along with its controller. The first aspect is the length of the phalanges (finger segments):
Each phalange may be evolved away from the default length of 0.3 m to any value in the range [0.01 m,
0.6 m]. The second aspect is the phalange radii: Each phalange may be evolved away from its default
radius of 0.075 m to any value in the range [0.015 m, 0.3 m]. The third aspect affects the spacing
between the fingers: At the outset of each trial, all fingers are arrayed around the hand with uniform
spacing; if this aspect is evolved, the relative spacings between any pair of fingers i and i + 1 (where
i ∈ [0, 1] for the three-fingered hand, i ∈ [0, 2] for the four-fingered hand, and i ∈ [0, 3] for the
five-fingered hand) may change to any angle in [−k, k].

Each robot is equipped with three binary tactile sensors per finger (one for each phalange), and an
additional one in the hand. Each phalange is also equipped with a range sensor (indicated by the white
lines in Figure 1). A range sensor returns a value between zero and one commensurate with the length
of the ray emitted by the sensor. Clearly these range sensors detract from the anthropomorphic aspect of
the robot, but as the goal of the current work is to demonstrate the reasons for co-optimization of
morphology and control rather than evolve a realistic robot, this is a minor detail: As has been shown
previously [14, 27, 42], it is possible to evolve object manipulation for anthropomorphic robot arms
without range sensors. The shoulder contains a proprioceptive sensor that measures the sagittal rotation
of the arm: High positive values indicate the arm is raised, values near zero indicate the arm is horizontal,
and high negative values indicate the arm is rotated downward. In initial experiments more propriocep-
tive sensors were also used, but were not found to increase the evolvability of the robot (data not
shown). In the present experiments no noise was added to the sensors, motors, or task environment.

2.3 Robot Control
A continuous-time recurrent neural network [4] is used to control the robot. For the robot with
three fingers, there are 4 + 3 × 2 = 10 motor neurons controlling the 10 independent motors;
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Table 1. Physical parameters of the robot and the target objects.

Part Length (m) Height (m) Width (m) Mass (kg)

Large sphere [S] 0.35 1

Large cylinder [Y] 0.35 0.7 1

Large cube [C] 0.7 0.7 0.7 1

Small sphere [s] 0.315 1

Small cylinder [y] 0.315 0.63 1

Small cube [c] 0.63 0.63 0.63 1

Trunk [Tr] 0.05 2.0 1

Upper arm [Ua] 0.1 1.0 1

Fore arm [Fa] 0.1 1.0 1

Hand [Ha] 0.25 1

Proximal phalanges [Pp] 0.075 0.3 1

Intermediate phalanges

[Ip]

0.075 0.3 1

Distal phalanges [Dp] 0.075 0.3 1

Joint

Rotation angle

(deg)

Plane of rotationmin max

Shoulder [Tr][Ua] –30 30 Sagittal and coronal

Elbow [Ua][Fa] –30 30 Coronal

Wrist [Fa][Ha] –30 30 Sagittal, coronal,

and transverse

Metacarpophalangeal

[Ha][Pp]

–90 90 Relative to finger

Proximal interphalangeal

[Pp][Ip]

–60 60 Relative to finger

Distal interphalangeal

[Ip][Dp]

–60 60 Relative to finger
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for each finger, the intermediate and distal phalanges move synchronously (as they do in the human
hand). This is achieved by feeding the output from a single motor neuron to both phalanges. Other-
wise, all DOFs move independently. Controllers of the four-fingered and five-fingered robots con-
tain 4 + 4 × 2 = 12 and 4 + 5 × 2 = 14 motor neurons, respectively.

The value of each motor neuron is updated according to

Hi yi′ ¼ −yi þ
X

mð3Þ þ 2

j¼1

wjijð yj − uj Þ þ
X

s
ð3Þ
r þ s

ð3Þ
t

j¼1

nji rj ; ð1Þ

where Hi is the time constant associated with neuron i, yi is the value of neuron i, m(3) is the number
of motor neurons for the three-fingered robot (likewise m(4), m(5) for the four- and five-fingered
hands), the additional two hidden neurons are used for active perception as explained in the Sec-
tion 2, wji is the weight of the synapse connecting neuron j to neuron i, j(x) = 1/(1 + e−x ) is an
activation function that brings the value of neuron i back into [0, 1], uj is the bias of neuron j, sr

(3) is
the number of range sensors in the three-fingered hand, st

(3) is the number of tactile sensors in the
three-fingered hand, nji is the weight of the synapse connecting sensor j to neuron i, and rj is the
value of sensor j. In this formulation, each sensor may have a direct effect on every motor neuron.
However, this effect may be minimized or eliminated by low values for r, or by behaviors that cause
a motor neuron to saturate to extremal values. Hi can range in [0.0001, 1.0], wji in [−16, 16], ui in [−4,
4], and nji in [−16, 16]. The continuous-time recurrent neural network (CTRNN) architecture is
reported in Figure 2.

The virtual robot is equipped with a CTRNN; genetic modifications of its morphology may be
introduced, and it is then evaluated over a set number of simulation steps in a physical simulator.1 At
the outset of each step, the sensor values are retrieved from the physical simulator, one update of the
CTRNN is made, and the resulting values of the motor neurons are calculated. The values are scaled
to the minimum and maximum rotation angles of the corresponding joint (Table 1), forming the
desired angle for that joint. Torque is then applied to the joint, commensurate with the difference
between the jointʼs current angle and the desired angle. The positions and velocities of the objects in
the simulation are then updated using a step size of 0.003.

1 Open Dynamics Engine, www.opende.com.

Figure 2. Architecture of the robotʼs controller. Gray bars indicate body parts; black circles indicate actuated rotational
joints connecting them. For the three-fingered hand, 10 motor neurons (y1,…, y10) actuate the joints. Each motor neu-
ron is fully connected to every other with a weighted connection (wi, j). Each of the 20 sensors is also connected to every
motor neuron with a weighted connection (ni, j; R = range sensor; T = tactile sensor; P = proprioceptive sensor ). Each
distal and intermediate phalange is co-actuated by the same motor neuron (y8, y9, y10).
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2.4 The Optimization Process
In the following experiments robots are evolved to successfully perform one or more of the three
object manipulation objectives. This is accomplished using multi-objective optimization [16], in
which non-dominated solutions in the populations are retained from one generation to the next,
and dominated solutions are overwritten by mutated copies of the non-dominated solutions. A so-
lution is defined to be dominated if the value it obtains for each of the objectives is equal to or less
than the value of the corresponding objective attained by another solution in the population.

Each evolutionary trial begins with 200 randomly generated genomes. At each generation the
genomes that have not yet been evaluated are translated into robots and simulated, and a fitness
value is calculated for each of the objectives that the robot must accomplish. The population is then
scanned to find the non-dominated solutions; the dominated solutions are deleted; for each empty
slot in the population a non-dominated solution is chosen at random, copied, mutated, and stored in
the slot. The process is repeated until every empty slot is filled. This process continues for 300 gen-
erations, or until a robot evolves that can successfully manipulate all six objects.

The genome is defined as the tuple g = [t, w, q, n, LN, RD, SP] where the first four elements
define the robotʼs controller, LN is a matrix that specifies the phalangesʼ lengths, RD is a matrix that
specifies the phalangesʼ radii, and SP is a vector that specifies the k − 1 spacings between the k

fingers. If any of these morphological aspects is not evolved, it is not included in the genome. For
the three-, four-, and five-fingered hand robots in which all morphological parameters are evolved
along with the control parameters, there are 340, 507, and 706 free parameters, respectively.

When a genome is mutated, each value in each element of g has a probability 0.05 of being changed.
The value is replaced with a new random value chosen with a Gaussian distribution such that the
mean is equal to the original value and the variance is equal to the legal range for that parameter.
If the new value falls outside the legal range, it is thresholded to its minimum or maximum value.

2.4.1 The Fitness Functions
When a robot has been evaluated, its ability to grasp, lift, and/or actively distinguish between objects
is measured as a function of its recorded sensor values. These abilities are calculated as follows.
Grasping is evolved by selecting for robots that minimize the distance between their fingers and
the object. The fitness of grasping is thus defined as

f ðkÞg ′ ¼

Pt
i¼1

Psr
j¼1x

ðkÞ
ij

tsr
;

f ðkÞg ¼
0:95; f ðkÞg ′ > 0:95;

f ðkÞg ′ otherwise;

(

where k labels the kth object that the robot is attempting to grasp, t is the number of simulation time
steps, and xij

(k) is the sensor value obtained during time step i from sensor j when manipulating object k.
This measure therefore selects for robots that grasp objects as rapidly as possible and hold them firmly.
A robot is considered to have successfully grasped an object if fg

(k) is above a specific threshold. For
robots that were only selected for grasping (i.e., runs in which F = fg), robots were routinely evolved
that could achieve fg

(k) > 0.95 for all six objects. (The rationale for this thresholding will be explained
in the next section.) Therefore the fitness of a robot evolved to grasp o objects is defined as

fg ¼

Po
k¼1 f

ðkÞ
g

o
; ð2Þ

where o is the current number of objects that the robot must grasp.
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The fitness of lifting is defined as

f
ðkÞ
l ′ ¼

Pt
i¼1

Pst
j¼1x

ðkÞ
ij

� �

> 0
� �

x
ðkÞ
isp

t
;

f
ðkÞ
l ¼

0:69; f
ðkÞ
l ′ > 0:69;

f
ðkÞ
l ′ otherwise;

(

where sp is the value of the proprioceptive sensor in the shoulder. This function accumulates values
at each time step if one or more of the touch sensors is in contact with the object (determined by the
first term in the numerator ). Robots were routinely found that could lift all six objects such that
fl > 0.69 for each object. The fitness of a robot evolved to lift o objects is defined as

fl ¼

Po
k¼1 f

ðkÞ
l

o
: ð3Þ

The robot must also learn to classify objects by physically interacting with them rather than pas-
sively observing them, a competence known as active categorical perception [3, 31, 42]. In this work,
the robot evolves to consider objects of the same shape as belonging to the same class, and objects
of different shape as belonging to different classes. This is achieved using a technique adapted from
[42], in which values of hidden neurons are used to indicate the category of the current object being
manipulated. This is selected for using the fitness function

f ðk;l Þa ′ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

h
ðkÞ
0;t − h

ðl Þ
0;t

� �2
þ h

ðkÞ
1;t − h

ðl Þ
1;t

� �2
r

; l ¼ k þ 3;

1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

h
ðkÞ
0;t − h

ðl Þ
0;t

� �2
þ h

ðkÞ
1;t − h

ðl Þ
1;t

� �2
r

otherwise;

8

>

>

<

>

>

:

f ðk;l Þa ¼
0:8; f ðk;l Þa ′ > 0:8;
f ðk;l Þa ′ otherwise;

	

where hi,t
(k) is the value of the ith hidden neuron during the final simulation time step t when manip-

ulating object k. Since objects are shown to each robot in the sequence shown in Table 1, object l
has the same shape as object k + 3. This function therefore rewards the robot for attaining similar
hidden neuron values when presented with objects of the same shape, but different hidden neuron
values when presented with objects of different shape. Robots were routinely found that could ac-
tively distinguish between all six objects in that fa > 0.8 for each pair of objects. The fitness of a
robot evolved to actively categorize o objects is therefore defined as

fa ¼

Po−1
i¼1

Po
j¼iþ1 f

ði ;jÞ
a

oðo − 1Þ=2
: ð4Þ

Section 3 reports seven experimental regimes: In the first, second, and third regimes, the popula-
tion is only evolved to succeed at fg , fa , or fl , respectively; in the fourth regime, the population is
evolved to succeed at both fa and fl ; in the fifth regime, it is evolved to succeed at both fg and fl ; in
the sixth regime, both fg and fa ; and in the final regime the population is evolved to succeed at all
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three objectives fg , fa , and fl . It should be noted that multi-objective optimization is used to evolve
populations within each of these regimes, even though the first three contain only a single objective.
In these cases, there is only ever one non-dominated solution that produces mutated copies that
replace the other n − 1 solutions, thereby collapsing to a 1 + E evolution strategy [36] without
an adaptive mutation rate. In the fourth, fifth, and sixth regimes the non-dominated front is a line,
and in the seventh regime the non-dominated front is a two-dimensional surface.

2.4.2 Shaping
A common technique in AI, robot shaping [40, 18, 38, 34, 37, 26, 47], was originally adapted from
the concept of scaffolding in developmental psychology (e.g., [45]). Typically, the population of ro-
bots learn or evolve in a simplified environment. The environment is then gradually changed to
continuously challenge the robots. If done correctly, this provides a smoother learning gradient
and/or fitness landscape for the population to climb, and therefore more often leads to a satisfactory
solution. Shaping is employed here by initially exposing the robot population to the first object (large
sphere; see Table 1). Once one member of the population learns to manipulate the object success-
fully, the population is reevaluated against the first object and the second one (large cylinder ), and
evolution continues until a robot evolves that can successfully manipulate both objects. This process
is repeated until either 300 generations elapse or a robot evolves that can successfully manipulate all
six objects. Success is defined here as the ability of a robot to obtain the maximum value for all of
the objectives x that it must achieve (∀x ∈ { g, a, l} : fx = [0.9|0.69|0.8]).

2.4.3 Early Stopping
The main limitation of shaping methods is that they do not scale well: As the evolving population
accumulates many training or fitness instances, each solution takes longer to evaluate. Here we in-
troduce a modification to shaping that removes this scalability problem; we refer to this modification
as early stopping.

We begin by assuming that a robot population is currently evolving to manipulate k > 1 objects.
Each robot is evaluated against the training set of objects in reverse order: If k = 2, a new robot
would be evaluated against the large cylinder first and then the large sphere; if k = 3, a new robot
would first be evaluated against the large cube, and so on. After evaluating a new robot with its first
object, its fx values for each objective x that it must achieve are calculated using fx

(1), and fx
(max) for

the additional k − 1 objects. Its fx values are then compared with the corresponding fx values for all

Figure 3. Evolutionary trajectory that produced the robot in Figure 1. (a) Black, dark gray, and light gray lines indicate
ability to grasp, actively distinguish between, and lift objects, respectively. Thick lines indicate ability of the fittest robot;
thin lines indicate average ability across the population. Vertical dashed lines indicate successful manipulation of the
current set of objects; numbers next to lines indicate the new number of objects that must be manipulated. The robot
successfully evolved to manipulate all six objects at generation 84. (b) The mean number of objects evaluated per robot
during the same evolutionary run.
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the previously evaluated solutions using their fx
(1),… , fx

(k) values. If the current robot is dominated by
one other solution, it will remain dominated by that solution even if evaluated against the remaining
objects, because its fx values can only decrease, as they are currently set to fx

(max). Therefore, the
current genome can be tagged as dominated, and the remaining k − 1 evaluations canceled. If on the
other hand it is non-dominated, it is evaluated against the second object, and its fx values are recal-
culated using its fx

(1) and fx
(2) values, and the remaining fx

(3),… , fx
(k) values maximized. It is again tested

against the rest of the population for dominance, and if it is dominated, evaluation of the current robot
stops. This process continues, and is repeated up to k times for each new robot.

Using this approach, we can terminate the evaluation of a robot early if further evaluation cannot
allow it to escape dominance by another robot. Further, by evaluating a new robot against the train-
ing set of objects in reverse order, we increase the probability of early stopping, because a new robot
is more likely to manipulate objects worse than its parents did if the objects are newly added to the
training set than if they have been there for many generations.

The cost of early stopping is having to determine what the maximum value is for each objective.
Here this was done by performing runs in which only one objective was selected for, and shaping
was not used: Robots were evolved against all six objects. Because these task environments are
simpler, populations rapidly evolved robots capable of achieving high values for the objectives:
We performed three sets of runs with each of the single objectives, took the population with the
lowest mean fx from each, and set fx

(max) to the value obtained by the best robot in that population.
In future work we will investigate methods for overcoming this initial cost of early stopping.

3 Results

As mentioned above, seven experimental regimes were tested: In each regime, robots are evolved to
meet one, two, or all three of the object manipulation objectives. Within each regime, 8 × 50 = 400
evolutionary trials were performed: in the first set of 50 independent trials, only the controller was
evolved; in the second set, the controller and phalange lengths were evolved; in the third set, the
controller and phalange radii were evolved; in the fourth set, the controller and finger spacings were
evolved; in the fifth, six, and seventh sets, two of the three morphological aspects were evolved
along with the controller; and in the eighth set, the controller, phalange length, radii, and finger
spacings were evolved together. These regimes and sets of trials were replicated on robots with
three-, four-, and five-fingered hands, resulting in a total of 3 × 7 × 8 × 50 = 8400 trials.

Figure 1 shows the final successful robot from a trial conducted in the seventh regime and the
eighth set: The controller and all three morphological aspects of each robot were optimized so that
the robots evolved to successfully grasp, lift, and actively distinguish between all six objects. The evo-
lutionary trajectory for this trial is shown in Figure 3. During each generation of a trial, the best robot
in the population is found by collapsing the objective values for each robot to a single number using
f = fg fa fl (or a subset of these if not all three objectives are selected for), and finding max( f ) in the
population. Figure 3a reports the change in the best robotʼs ability to achieve all three objectives, as
well as the mean ability of the population to do so. It can also be observed that periodically a robot in
the population successfully manipulates the current set of objects (vertical dashed lines), and a new
object is added to the training set (the size of the set is indicated by the numbers next to the dashed
lines). The robot shown in Figure 1 was evolved in the 84th generation, causing the trial to terminate.

Figure 4. Mean evolutionary change in manipulation ability for the three-fingered (a–g), four-fingered (h–n), and five-
fingered hands (o–u). G,A,L = 0,1 indicate regimes in which grasping, active categorical perception, or lifting was not or
was selected for, respectively. LN,RD,SP = 0,1 indicate trial sets in which phalangesʼ lengths or radii or finger spacings
were not or were evolved, respectively. Thick lines indicate the mean number of objects in the training set; thin lines
indicate one standard error of the mean. Gray and black curves indicate the manipulation abilities of hands with fixed
morphologies and those in which all three morphological aspects were evolved, respectively. Vertical lines indicate the
mean number of generations until robots evolved to successfully manipulate all six objects.
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Figure 3b reports the mean number of objects manipulated by robots in the population during
that generation. As can be seen, when a new object is added to the training set, there is an increase
in the number of objects that are evaluated. This is expected, because most robots in the population
experience a drop in fitness across the objectives, and it is easier for a new robot to escape dom-
inance by those solutions on the non-dominated front. As the population evolves to better manip-
ulate the new object, the mean number of objects manipulated by the population drops, and the
simulation runs faster. This is due to the fact that the non-dominated solutions are now adept at
manipulating the objects in the set, and the probability that a new robot will be dominated early rises.
It can also be noted that as the number of objects in the training set rises, the mean number of
object manipulations does not: This indicates that the evaluation time per robot does not increase
with the size of the training set. This was found to be typical of the other runs (data not shown).

3.1 Task Complexity
Figure 4 reports the performance difference between sets of trials in which only the controller was
evolved (gray lines), and in which the controller and the three morphological aspects were evolved
for robots with three-, four-, and five-fingered hands (black lines). It is observed that when only one
objective is selected for, all three robot classes fail to perform significantly better when morphology
is evolved than when it is fixed (Figure 4a–c,h–j,o–q). Indeed, there is no benefit when only active
perception is selected for (Figure 4b,i,p): This is because these robots typically evolve a classification
strategy in which the objects are passively scanned by the range sensors without requiring physical
contact between the robot and the object; such strategies are not improved by allowing evolution to
shape hand morphology.

For robots evolved to achieve two objectives (Figure 4d–f,k–m,r–t), there is a larger improvement
in those regimes in which morphology was evolved. Two exceptions are when active perception and
lifting are selected for the four- and five-fingered hands (Figure 4k,r). Finally, the largest relative im-
provement between robots with fixed and evolved morphologies is observed in cases where all three
objectives are selected for, compared to the other seven cases in which one or two objectives are
selected for (Figure 4g,n,u). This indicates that as task complexity increases (where task complexity
is defined as the number of objectives that the robot must accomplish simultaneously), the benefit
of evolving morphology becomes increasingly important for discovering successful solutions.

Figure 5 reports the relative performance of all regimes and sets of runs for the three robot
classes. As can be seen, there is relatively little difference between the sets when two or fewer ob-
jectives are evolved. Exceptions are seen in Figure 5e,r, in which evolving the phalange radii and
finger spacings provides significant improvement; Figure 5f, in which evolving all three morpholog-
ical aspects helps considerably; and Figure 5t, in which evolving the phalange length and radii pro-
vides significant improvement. Finally, it can be observed that for the three-fingered hand, when
robots must accomplish all three objectives, it is significantly helpful to evolve either the phalange
radii and finger spacings, or all three aspects. For the four-fingered hand, significant improvement is
obtained when all three morphological aspects are evolved. For the five-fingered hand, evolving the
phalange radii provides significant improvement. This indicates that when selecting for three simul-
taneous objectives, performance is improved by placing more aspects of the robotʼs morphology
under evolutionary control. More specifically, placing any additional morphological aspect under
evolutionary control never significantly degrades performance, and often significantly improves it.

These observations are further supported by Table 2, in which the relative performance of the
sets of runs is compared for the regime in which all three objectives are selected for (G, A, L = 1). It
can be seen that runs in which phalange radius and finger spacings are evolved (LN = *, RD, SP =

1) significantly outperform all other sets of runs. This pattern is also observed for the robots with

Figure 5. Mean evolutionary change in manipulation ability for robots in which different aspects of morphology are
evolved. For details regarding this figure, refer to Figure 4.
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four-fingered (Table 3) and five-fingered (Table 4) hands. However, on comparing the mean num-
ber of generations until run termination for robots with four-fingered hands, it is observed that the
runs finished significantly earlier when all three morphological aspects were evolved than when only
the phalange radii and finger spacings were evolved (Table 5). For the robots with three- and five-
fingered hands, there is no significant difference between ending times for the two conditions (data
not shown). This provides additional evidence that for the regime in which all three objectives must
be met, placing all three morphological aspects under evolutionary control significantly improves
performance.

It seems possible that the superiority of evolving morphology is due to a poor choice of the
default morphological settings in the cases in which one or more of the morphological aspects is
fixed. If this were so, one would expect to observe evolution consistently drag the morphological
parameters away from these default settings. However, Figure 6 reports the mean evolved values for
all morphological parameters in which they were evolved. It can be seen that the mean values are all
close to the original default settings (indicated by the dashed lines). The one exception is that the
phalange radii for the fourth fingers typically are larger than the default settings (right-hand bars in
Figure 6e–h). The fourth finger is typically the one closest to the forearm, and supplies the most
pressure when the object is lifted; we hypothesize that this broadening helps with lifting.

The proximity of the evolved settings to the default settings indicates that there are no universally
superior parameter settings for any of the morphological aspects far from the default settings.
Rather, evolution benefits by being able to tune the relative dimensions of the morphological param-
eters within a single robot. For example, the intermediate phalanges of the robot in Figure 1 are
narrower than its proximal and distal phalanges, allowing the tactile sensors on the intermediate
phalanges to fire when its grasps spheres or cylinders (Figure 1d,h,l,p), but not when it grasps cubes
(Figure 1t,x). This presumably aids in active categorical perception for this robot.

3.2 Robustness
The ability of robots to continue operation in unexpected situations through adaptation remains one
of the major challenges for artificial intelligence, but progress is being made [10, 12]. To ascertain the
effect of evolving morphology on robustness, robots that evolved to successfully manipulate all six
objects were extracted and subjected to unseen task environments.

First, each robot was exposed to spheres, cylinders, and cubes with sizes different than those
experienced during evolution. 400 spheres with radii in [0.75 m, 0.76 m,… , 1.15 m]; 400 cylinders
with radii in [0.75 m, 0.76 m,… , 1.15 m] and lengths in [1.5 m, 1.52 m,… , 2.3 m]; and 400 cubes with
side lengths in [0.75 m, 0.76 m,… , 1.15 m] were presented to each robot in triplets: The robot was
evaluated against a single sphere, cylinder, and cube of the same size index, and its ability to grasp, lift,
and/or actively distinguish between them was calculated, based on the regime from which the robot
was drawn. The percentage drop in performance (performance impact) for each triple evaluation was
then calculated as

p ¼

P400
i¼1

P3
j¼1 f

ðmaxÞ
j − f

ðiÞ
j

� �

1200f ðmaxÞ
j

� 100%;

where fj
(max) is the maximum attainable value for objective j, and fj

(i ) is the performance of a robot
when confronted with triplets of objects with size index i and required to achieve objective j. For
robots drawn from regimes in which two or fewer objectives were selected for, the summation over
j is reduced. p was then calculated for all successful robots within each regime, averaged across those
robots with zero, one, two, or three evolved morphological aspects, and is reported in Figure 7a. It
can be seen that as the number of evolved morphological aspects increases, the robots become in-
creasingly robust when confronted with objects of previously unseen size.
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A similar procedure was then repeated with the same robots, in which a single range or tactile
sensor in each robot was systematically disabled:

p ¼

Psrþst
k¼1

P3
i¼1

P3
j¼1 f

ðmaxÞ
j − f

ðk;iÞ
j

� �

9ðsr þ stÞ f
ðmaxÞ
j

� 100%;

where fj
(k,i ) is now the performance of the robot for objective j when manipulating object i with

sensor k disabled. p was again averaged across the robots and grouped into regimes in which zero or

Figure 6. Mean evolved values for morphological parameters of the four-fingered hand. (a–d) Evolved phalange lengths
for the regimes in which phalange lengths were evolved. (e–h) Evolved phalange radii for the regimes in which phalange
radii were evolved. (i–l) Evolved finger spacings for the regimes in which finger spacings were evolved.
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more morphological aspects were evolved, and is reported in Figure 7b. Here there is nonsignificant
increase in robustness as the number of evolved morphological aspects increases. The procedure
was again repeated with the same robots, but each pair of sensors was systematically disabled,
and the drop in performance measured using

p ¼

Psrþst−1
l¼1

Psrþst
k¼lþ1

P3
i¼1

P3
j¼1 f

ðmaxÞ
j − f

ði ;k;l Þ
j

� �

4:5ðsr þ stÞðsr þ st − 1Þ f ðmaxÞ
j

� 100%;

where fj
(i,k,l ) is now the performance attained by the robot on objective j when manipulating object i

with its kth and lth sensors disabled. p was again averaged across regimes in which zero or more
morphological aspects were evolved, and is reported in Figure 7c. It can be seen that there is a
greater impact on performance than that due to disabling a single sensor, and that now the robust-
ness increases significantly with the number of evolved morphological aspects.

4 Conclusions

Here we have evolved simulated robots to meet one or more object manipulation objectives, and
measured whether and how much evolving morphology along with control improves the evolvability

Figure 7. Performance impacts for the evolved four-fingered hands when confronted with novel environments. (a) Mean
performance impacts when confronted with target objects of previously unseen sizes, grouped into regimes in which
zero, one, two, or all three morphological aspects were evolved. (b) Mean performance impacts when a single sensor
fails. (c) Mean performance impacts when pairs of sensors fail.
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of the population as the number of objectives that the robots must accomplish increases. It was
found that performance generally degraded as the number of objectives increased, as was to be ex-
pected: Evolution must carefully tune the robotʼs phenotype so that an increase in performance for
one objective does not overly degrade performance on another.

It was found that for one (or in some cases two) objectives, there was little or mild improve-
ment in performance as more aspects of the robotʼs body plan were placed under evolutionary con-
trol. However, when all three objectives were selected for, there was a distinct advantage among
the robots in which all morphological aspects were evolved. This demonstrates that choosing the
appropriate morphology for an adaptive machine is not always intuitive. Even for seemingly ap-
propriate designs, such as the anthropomorphic arm-and-hand system used here, there were an
increasing number of morphological improvements that could be made as the task became more
challenging. In addition it was found that among robots that evolved to successfully meet all objec-
tives for all objects, those with more evolved morphological aspects were more robust in the face
of two unanticipated conditions: objects of novel size, and sensor failure. Both of these observa-
tions provide two additional lines of evidence for why morphology should be optimized along with
control when evolving adaptive machines: Evolving more aspects of the machineʼs body plan be-
comes more useful as task complexity increases, and the resulting evolved body plans are more
robust than those with fixed morphologies. In future work we plan to investigate whether this cor-
relation between evolved morphology, task complexity, and robustness holds in other task environ-
ments, and methods for formulating which aspects of morphology should be evolved based on the
task at hand.

In order for embodied artificial intelligence to gain credibility within the robotics and cognitive
science communities, it is necessary to amass evidence not only about how to co-optimize the phys-
ical as well as neural components of adaptive machines, but also about why. This work has provided
two more such reasons.
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