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ABSTRACT
The original mechanism by which evolutionary algorithms
were to solve problems was to allow for the gradual discovery
of sub-solutions to sub-problems, and the automated com-
bination of these sub-solutions into larger solutions. This
latter property is particularly challenging when recombina-
tion is performed on genomes encoded as trees, as crossover
events tend to greatly alter the original genomes and there-
fore greatly reduce the chance of the crossover event be-
ing beneficial. A number of crossover operators designed
for tree-based genetic encodings have been proposed, but
most consider crossing genetic components based on their
structural similarity. In this work we introduce a tree-based
crossover operator that probabilistically crosses branches based
on the behavioral similarity between the branches. It is
shown that this method outperforms genetic programming
without crossover, random crossover, and a deterministic
form of the crossover operator in the symbolic regression
domain.

Categories and Subject Descriptors
I.2 [Computing Methodologies]: Artificial Intelligence

General Terms
Experimentation, Algorithms, Performance

Keywords
homologous crossover, crossover operators, schema theory

1. INTRODUCTION
Genetic programming [10] refers to a family of algorithms

that employ various data structures to represent candidate
solutions to a given problem. These genotypes either pro-
duce behavior directly that is then selected, or are directly
or indirectly transformed into a phenotype that in turn ex-
hibits behavior which is subjugated to selection pressure.
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The choice of genetic encoding, the genotype to phenotype
mapping, and the variation operators have a significant im-
pact on the system’s evolvability [18], or ability to continu-
ally improve solutions.

The choice of variation operators is of particular interest
in that they significantly affect how the population moves
through the search space. Mutation operators are designed
to discover better variants of a single genotype; crossover op-
erators on the other hand should, when implemented prop-
erly, combine useful genetic substructure from multiple geno-
types. Because most genetic programming instantiations are
tree-based, crossover typically involves swapping subtrees
between two parent trees, and this structural change often
has a large phenotypic effect on the resulting genotypes. As
originally articulated by Fisher [5], the magnitude of the
phenotypic effect of a genetic perturbation is inversely pro-
portional to the probability of that perturbation being ben-
eficial. For this reason it is often observed that random
subtree crossover can adversely affect the performance of a
genetic programming system. It may favor gradual increase
in the size of genotypes over evolutionary time without pro-
viding any fitness benefit, a problem known as bloat [11],
and/or it may slow search by producing offspring that are
less fit than their parents.

Several crossover operators have been proposed in the
GP literature to improve their ability to combine useful ge-
netic substructure from several parent genotypes. Headless
chicken crossover [9] crosses subtrees between two GP trees
in which one tree has survived selection while the second is
created randomly in an attempt to introduce fresh genetic
material into the population. Size fair crossover [12] crosses
subtrees between parent trees with a probability that is pro-
portional to the size similarity between the selected subtrees.
Homologous crossover refers to a family of crossover opera-
tors that attempt to preserve the context of the two crossed
subtrees within their parent trees. D’haeseleer [4] has de-
scribed deterministic and Langdon [12] probabilistic homol-
ogous crossover operators that swap subtrees based on the
similarity of their positions within their parent trees. Other
homologous crossover operators based on syntactic similar-
ity [16, 14] have met with limited success.

Several researchers have argued that genetic material should
be combined based on its semantic, rather than syntactic
or structural similarity. Semantic crossover [1] uses stan-
dard (random) crossover between two trees and then re-
tains the resulting trees only if they differ semantically from
their parents. In enzyme genetic programming [13], geno-
types are composed of independent elements that attach to



one another based on their input and output characteris-
tics. Crossover is accomplished by injecting elements from
a donor into an existing genotype; the donated components
will only be incorporated into the new genotype if they can
connect to existing components.

In this paper we introduce a probabilistic crossover opera-
tor that swaps subtrees based on their functional (semantic)
rather than structural (syntactic) similarity, in an attempt
to reduce the magnitude of the phenotypic effect of the
cross. A deterministic version of this operator was reported
in [3]. The next section describes both a deterministic and
probabilistic form of this functional crossover operator and
its application to symbolic regression. Section 3 contrasts
these two crossover operators with standard crossover and
no crossover, section 4 analyzes why the probabilistic form
of the operator out-competes these other algorithm variants,
and section 5 provides some concluding remarks.

2. METHODS
This section describes the functional crossover (FXO) con-

cept as it relates to genetic programming, in both its previously-
published deterministic form (D-FXO, [3]) and its proba-
bilistic form, the latter which is explored in this paper.

2.1 Deterministic Functional Crossover
The primary difference between functional crossover and

previously-described recombination operators is that func-
tional crossover swaps genetic material between parents based
on the behavioral rather than structural similarity of the
crossed material. In the symbolic regression task explored
here, genetic programming is used to automatically evolve a
model of a hidden function. Thus, the behavior of any node
in a GP tree can be defined as the range of values that it
propagates upward while the tree is evaluated.

As a tree is evaluated against each datum in a training
set, the minimum and maximum value computed by each
node is recorded at the node. If a terminal node encodes a
floating-point value: the minimum and maximum values are
equal, and are equal to the constant. If the node encodes
a dependent variable, the node records the minimum and
maximum value of that dependent variable in the training
set. If a non-terminal node roots the branch (×)(2)(x0),
then that node’s minimum and maximum value will be equal
to twice the minimum and maximum value returned by the
dependent variable x0 during evaluation, and so on.

Thus after evaluation, each node in a tree has a range
associated with it. In deterministic functional crossover (D-
FXO), when two parent trees are to be crossed, a node i is
chosen at random in the first parent. The second parent is
then scanned to find the node k that has the closest range
to that of the chosen node in the first parent using

dij =
1

2
(|maxi − maxj | + |mini − minj |), (1)

where dij is the behavioral distance between nodes i and
j, and mini and maxi is the minimum and maximum value
computed by node i during evaluation, respectively. Once
both nodes have been determined, the branches rooted at
those nodes (along with the nodes themselves) are swapped
as in standard GP crossover, the ranges are erased from each
node in the two trees, and the two new trees are evaluated.

The results of using this operator for evolving sets of or-
dinary differential equations to describe both simulated and

physical systems was reported in [3]. Although the results
were promising, this operator suffers from the limitation
that many crosses are neutral: if the selected node in the
first parent roots a branch that is structurally identical to
a branch that exists in the second parent (or can be alge-
braically re-arranged into such a structure), those branches
will be swapped and the overall behavioral effect on the new
trees will be zero.

Such neutral crosses become more common as optimiza-
tion proceeds and the trees become larger, because the prob-
ability of choosing a terminal node (or a non-terminal node
high depth) increases for larger trees, and there is thus a
greater probability of finding a structurally identical branch
in the second parent because the branch itself contains one
or only a few nodes. Such a neutral cross triggered by the
selection of the first node often occurs even though there is
a behaviorally similar but not behaviorally identical branch
in the second parent that would be reduced the error of the
first parent. By choosing the second node deterministically,
this useful other branch will never be chosen.

2.2 Probabilistic Functional Crossover
In order to combat this pathology, a probabilistic form of

the functional crossover operator (P-FXO) was developed,
and is explored in this paper. In P-FXO each node in a tree
is labeled with its minimum and maximum value as in D-
FXO. Also, when two trees are chosen for crossing, a node is
chosen at random in the first parent. The distance between
the selected node and each node j in the second parent is
then computed using eqn. 1. The resulting distances are
then normalized so that the distances as a whole represent
a probabilistic density function:

d
′
ij =

dij∑s

k=1 dik

(2)

where d′
ij is the normalized distance and s is the number

of nodes in the second parent. These normalized values are
then inverted and re-normalized so that the greater the dis-
tance between node i and j, the less chance there is of node
j being chosen as the second cross point:

pij =
1 − d′

ij∑s

k=1(1 − d′
ik)

(3)

where pij now represents the probability that node j will
be selected as the second cross point. Once node j in the
second parent is selected, the branches are swapped in the
normal manner, the range at each node for both new trees
is erased, and the two new trees are evaluated.

3. RESULTS
Five hundred independent runs were conducted for four

experimental regimes. Each run was initially seeded with
random trees grown by adding a terminal or non-terminal
node if the current depth is less than five; otherwise, a ter-
minal node is added. Throughout the run, if a mutation and
crossover event creates a tree with a depth greater than five,
the new tree is discarded and the event is repeated until a
tree with depth of at most five is created. An additional
500 × 4 = 2000 runs were performed in which trees had a
maximum depth of six, and a third set of 2000 runs were
performed with a maximum depth of seven.

Valid operator nodes were four algebraic operators (+,
−, ×, div), two trigonometric operators (sin(), cos()) and



a null operator with an arity of one (values arriving from
the child are passed up unchanged to the node’s parent).
Operand nodes could refer one of the two dependent vari-
ables x0 or x1; an additional binary parameter encoded at
the node indicates which dependent variable that node refers
to. An operand node may also encode a constant value, rep-
resented as a random floating-point value in [−1000, 1000].
During initial tree construction, each operator and operand
type had an equal probability of being selected.

At the outset of each run, the target function was created
as follows. A randomly-generated tree was created (not ex-
ceeding the maximum depth) and used as the hidden func-
tion to model. 21 × 21 = 441 values for the dependent
variables x0 and x1 were generated in a uniform sequence
across the interval [−1, 1]. This produced tuples in the se-
quence (−1,−1), (−1,−0.9) , . . . (−1, +1), (−0.9, +1), . . .

(+1, +1), which were stored in a vector x. Each tuple was
used to evaluate the target function, resulting a results vec-
tor y of length 441. The tuple (x,y) is therefore the training
set for the run.

A second set of test data was generated by creating 20 ×
20 = 400 test cases with x0 and x1 varying uniformly over
the interval [−0.95,−0.85, . . . , +0.95]. This ensured that
each test datum differed from any point in the training set.
The resulting 400 tuples were stored in the vector x′. The
target function was again run against each test point to gen-
erate a test results vector y′; the tuple (x′,y′) therefore
forms the testing set. No noise was added to either the
training or testing set.

Each run was initially seeded with 1000 randomly-generated
trees, and was run for 10000 generations. In the first gener-
ation, each tree i is evaluated on both the training set and
the testing set using the error function

e =

∑441|400
i=1 |y

(t)
i − y

(m)
i |

441|400
,

where y
(t)
i indicates the result of training (or testing) point

i returned by the target function, and y
(m)
i indicates the

result of the model for the same point. er is henceforth used
to denote the tree’s error on the training set, and et on the
testing set.

The solutions in the population were then sorted in de-
creasing order according to er, and the lowest 1% (100 trees)
were discarded. This very high level of elitism was adopted
so that there would a large amount of different genetic ma-
terial for the crossover operators to draw on. The empty
100 slots were then filled by randomly selecting and copying
from the remaining 990 trees, with replacement (i.e. a tree
could be chosen twice).

Each of the newly-created trees underwent mutation with
a probability of 50%. When a tree was mutated, one of
its nodes was chosen at random. This node and its child
branches were deleted, and replaced with a random node. If
the targeted node had less than the maximum depth one of
the operator or operand node types was selected at random
with each type being selected with a uniform probability.
If the node was at the maximum depth one of the operand
node types was selected at random. If an operator node was
created, its descendent nodes were created in the same man-
ner. When a dependent variable node was created it was set
to either x0 or x1 with equal probability. If a constant-value
node was created its value was selected from [−1000, 1000]

with uniform probability. It is noted that this is a simple yet
weak mutation operator: As the focus of this work was on
the crossover operators introduced here, no effort was put
into improving the mutation operator.

In the first of the four experimental regimes, no crossover
operator was employed; evolution proceeds solely through
mutation. In the second through four regimes, crossover is
applied: in the second regime random crossover is applied;
in the third regime D-FXO is applied; and in the fourth
regime P-FXO is applied. At the end of each generation in
those regimes that employ crossover, each of the 100 newly-
generated trees are paired up randomly, and each pair is
crossed with a probability of 50%. In the next generation
the 100 possibly mutated, crossed, or mutated and crossed
trees are evaluated, and the run continues in this manner to
completion.

Fig. 1 reports the mean error of the trees in the population
for all four experimental regimes. As can be seen, there
is relatively little difference in error reduction across the
four regimes, with the possible exception of the higher rate
of error reduction at the outset of the run for the P-FXO
regime when the maximum tree depth is five or six. Also,
the D-FXO regime performs significantly better than the
other regimes when the maximum depth is seven.

Fig. 2 reports the mean performance of the four regimes,
but measures their mean errors on the unseen testing set
(et). This figure depicts a very different story. It can be
seen that the regimes with random or D-FXO perform very
poorly on the unseen data, indicating that these evolved so-
lutions have overfit the data. In fact these two crossover op-
erators are deleterious in these experiments, as they perform
significantly worse than an equivalent experimental regime
in which no crossover is employed (dark gray lines). How-
ever, the regime that employs P-FXO performs significantly
better than the other three regimes when maximum depth is
six, and is substantially (yet not significantly better) better
than other regimes for the two maximum depths.

Fig. 3 reports the mean sizes of the evolved trees across
the three maximum depths and four experimental regimes.
As can be seen, despite the fact that the regimes with ran-
dom crossover and D-FXO overfit the data such that they
perform poorly on the unseen data, these size of the solu-
tions in these regimes do not grow rapidly. Indeed, they are
generally smaller than the actual size of the target function
(as evidenced by the light gray lines falling far below the
dotted lines in Fig. 3). Conversely, evolved solutions in the
regimes that employ no crossover or P-FXO tend to grow
much larger than the target function. Despite this however,
they encode accurate, robust models of the target function,
especially when P-FXO is employed. This suggests that in
the no crossover and P-FXO regimes, significant compres-
sion could be performed on these solutions, or mutation op-
erators designed to reduce the size yet maintain the accuracy
of the solutions could be employed [2].

4. ANALYSIS
The observation that only the probabilistic functional crossover

operator does better than using no crossover at all warrants
some analysis. To do this, data was collected from each so-
lution that underwent crossover. The testing error (et) of
each parent solution that imported external genetic mate-
rial was recorded, as was the testing error of the resulting
solution after evaluation. Also, the size of importing par-
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Figure 1: Training errors averaged across the four
experimental regimes. Thick lines indicate the mean
for that experimental regime. The thin lines brack-
eting each mean report one unit of standard error
from the mean.

ent solution was recorded. For each such crossover event, it
was determined whether the crossover event was beneficial
in the sense that the child’s error was lower than its par-
ent (Ec < Ep); the event was phenotypically neutral in the
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Figure 2: Testing errors averaged across the four
experimental regimes.

sense that both errors are equal (Ec = Ep); or the event was
detrimental to the child (Ec > Ep).

It should be noted that newly-generated trees may have
undergone both mutation and crossover, so that a change in
error from parent to child may not be due to the crossover
event alone. However, the analysis only compares the means
rates of beneficial, neutral and detrimental crossover be-
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Figure 3: Size of evolved solutions averaged across
the four experimental regimes. The dotted line re-
ports the mean size of the target functions for each
of the three maximum tree depths.

tween experimental regimes, all of which have a constant
rate of mutation. Therefore, any observed differences be-
tween these rates across regimes can be attributed to the
effect of the different kinds of crossover operators employed
in those regimes.
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Figure 4: Percentage of solutions that underwent
crossover that achieved less error (top row of each
panel), the same error (middle row), or greater er-
ror (bottom row). Percentages compared across the
three regimes that employed crossover.

Fig. 4 reports the percentage of beneficial, neutral and
detrimental effects caused by all of the crossover events in
the regimes that used random crossover (left column), de-
terministic functional crossover (middle column) and prob-



abilistic functional crossover (right column). As expected,
the majority of crossover events are detrimental (lowest row
in each panel). However, the regime that employed D-FXO
tends to have a significantly1 lower rate of detrimental crossover
events, but a much higher rate of neutral crossover events.
This can be explained by the fact that if a D-FXO event se-
lects a branch for crossover that is semantically identical to
a branch that exists in the second parent (for example x0 or
×(x0)(x1)), this other branch will be selected for crossover
by definition. Because both branches compute the same
function, the crossover event will have a neutral effect on
the new solutions’ error.

The regime employing probabilistic functional crossover
however demonstrates a rate of beneficial crossover events
that is significantly higher than the other two regimes (com-
pare the black bar in the upper row of each panel against
the other two bars). Despite this significant difference how-
ever, the total percentage difference is relatively low: about
2% more of the crossover events in the P-FXO regime are
beneficial compared to the other two regimes.

Nevertheless this slight difference is sufficient to ensure
consistently better performance in this regime; fig. 5 pro-
vides evidence to suggest why this is the case. It reports
the percentage of beneficial crossover events as a function of
size (in nodes) of the parent tree when it imported genetic
material (its new size after the crossover event is ignored).
It can be seen that there is a correlation between the size of
the importing tree and the percentage of beneficial crossover
events, across the three experimental regimes that employed
crossover, and for all three of the maximum tree depth ex-
periments.

This is to be expected, as in essence larger trees are buffered
against genetic alteration. The ratio of terminal nodes to in-
ternal nodes increases in larger trees, so that terminal nodes
(or at least deeper nodes) are selected more often than in-
ternal (or shallower nodes). Crosses at leaf nodes or deep
nodes tend to have less overall behavioral effect on the new
tree, and it has often been observed in biological [5] and
computational [2] studies that the probability of a genetic
perturbation being beneficial is inversely proportional to its
phenotypic effect.

For smaller trees, the percentage of beneficial crossover
events is therefore quite low. However, when the maxi-
mum tree depth is six or seven (Fig. 5b,c), the regime that
employs probabilistic functional crossover achieves signifi-
cantly higher rates than the other two regimes. For larger
trees, there is little difference in the beneficial crossover
rates across the three regimes. As can be seen in Fig. 3,
smaller trees are rapidly replaced by larger trees during the
early stage of optimization. Together with Fig. 5 this sug-
gests that in the regime that employs probabilistic functional
crossover, there are many crosses between small, relatively
inaccurate trees that give rise to larger, more accurate trees.

This suggests that P-FXO is achieving one of the original
and (remaining) primary goals of evolutionary computation
(at least in this domain), which is to support the automated
combination of genetic building blocks [8, 6, 16, 15]: P-FXO
combines complementary genetic material to create larger,
more accurate trees. Further work is warranted however to

1Fig. 4 does not report any error bars because the error
margins are infinitesimal due to the large sample size: 0.5
probability of mutation × 100 possible mutation events per
generation × 10000 generations gives n = 500000.
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Figure 5: The percentage of beneficial crossover
events as a function of the size of solution under-
going crossover. Sizes report the original size of the
solution before crossover. Light gray, dark gray and
black dots represent crossover event results from the
experimental regime employing random crossover,
D-FXO, and P-FXO, respectively.

prove this result in more rigor, and to demonstrate it on
other domains besides symbolic regression.



5. CONCLUSIONS
This paper has introduced a new recombination opera-

tor that significantly increases the probability of a beneficial
recombination event. This is accomplished by probabilis-
tically weighting the nodes in the genome based on their
behavioral rather than structural similarity. In the symbolic
regression task demonstrated here, the minimal and max-
imal values propagated up through each node in a genetic
programming tree are a proxy for the behavior of the branch
rooted at that node. Behavioral similarity is thus regarded
as the similarities between the ranges defined by these min-
imal and maximal values.

It was shown that this recombination operator, referred to
as probabilistic functional crossover (P-FXO), consistently
out-competes random crossover on this task, as well as an
equivalent regime in which no crossover is employed, and an-
other regime in which nodes are exchanged deterministically
based on their range similarities.

It is noted that comparing ranges between nodes is a
crude approximation of the branch behaviors rooted at those
nodes. In future work we plan to create probability den-
sity functions (PDFs) at each node during the evaluation
of a tree, and probabilistically compare the resulting PDFs
when choosing crossover points. In this work a large elitism
percentage was used (90%) so that there was a lot of varia-
tion in the population to draw on during crossover. We also
plan to investigate whether considering behavioral similar-
ities across nodes and over multiple trees further improves
the recombination power of P-FXO.

Finally, by altering the kurtosis of the PDF at each node
using a single parameter such that low values of the param-
eter produces a more uniform distribution than the original
PDF and a high value produces a more peaky distribution
than the original PDF, it would become possible to tune the
magnitude of the behavioral effect of a probabilistic func-
tional crossover event. A peakier PDF would ensure that
there is a greater probability of behaviorally similar (or iden-
tical) branches being crossed to compared to more dissim-
ilar branches, thereby tuning down the behavioral effect of
a crossover event. Conversely, a shallower PDF would in-
crease the probability that behaviorally dissimilar branches
were crossed, therefore increasing the average behavioral ef-
fect of a crossover event.

These strategy parameters could then travel with the nodes
they are associated with during evolution, and in turn be
mutated in the same manner that strategy parameters in
evolutionary strategies [17, 7] control the mutation step size,
and allow for adaptive mutation rates. This approach, ported
to genetic programming via P-FXO, could pave the way to
a more principled (i.e. less random) approach to altering
data structures that do not take the form of a vector during
evolution.
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