Adaptive Informative Sampling for Active Learning

Zhenyu Lu, Xindong Wu, Josh Bongard
University of Vermont, Department of Computer Science, Burlington, VT 05401
zlu@Quvm.edu; xwu@cems.uvm.edu; jbongard@uvm.edu

October 8, 2009

Abstract

Many approaches to active learning involve periodically
training one classifier and choosing data points with the
lowest confidence, but designing a confidence measure
is nontrivial. An alternative approach is to periodi-
cally choose data instances that maximize disagreement
among the label predictions across an ensemble of clas-
sifiers. Many classifiers with different underlying struc-
tures could fit this framework, but some ensembles are
more suitable for some data sets than others. The ques-
tion then arises as to how to find the most suitable en-
semble for a given data set. In this work we introduce a
method that begins with a heterogeneous ensemble com-
posed of multiple instances of different classifier types,
which we call adaptive informative sampling. The algo-
rithm periodically adds data points to the training set,
adapts the ratio of classifier types in the heterogeneous
ensemble in favor of the better classifier type, and op-
timizes the classifiers in the ensemble using stochastic
methods. Experimental results show that the proposed
method performs consistently better than homogeneous
ensembles. Comparison with random sampling and un-
certainty sampling shows that the algorithm effectively
draws informative data points for training.

1 Introduction

Classification is a technique that uses both features and
class label information to build predictive models from
data sets. In many real world applications, data sets are
presented with only feature information and acquiring
the labels is expensive. For example, an expensive or
time-consuming test may have to be conducted on a
physical object to determine which class it belongs to.
Active learning is a technique that selects a subset of
data points for labeling and training. The subset of
data points needs to be chosen carefully so that it is
informative enough for learning, but small enough to
keep the labeling cost manageable.

A common approach to active learning is to iter-
atively train one classifier and select the data points

using some confidence measure. Uncertainty sampling
[12] iteratively trains one classifier, and chooses the data
points that the classifier is most uncertain about. This
approach is intuitive, but designing confidence measures
without bias is nontrivial. For example, several criteria
for choosing data points [18] [6] have been suggested for
support vector machines (SVM) [8], with each perform-
ing well on different applications.

Another approach is to use an ensemble of classifiers
and choose data points according to the uncertainty of
the ensemble. Query by committee [19] suggests that
given a set of diverse but partially accurate classifiers,
the best data points are those that cause maximal dis-
agreement among the class predictions of the classifiers
when supplied without labels. However, the method for
finding such classifiers or such disagreement-inducing
data points is not specified. The estimation-exploration
algorithm [2](EEA) uses multiple stochastic optimiza-
tion algorithms to build on query by committee. A
stochastic optimization algorithm is used to optimize a
set of diverse models, and another stochastic optimiza-
tion algorithm is used to induce desired data points that
maximize disagreement among the models. As a result
of the interaction between these two optimization al-
gorithms, the EEA actively requests useful data points
and thereby accelerates modeling.

Informative sampling [13] applied the EEA as an ac-
tive learning method for classification. The algorithm
works by iteratively optimizing an ensemble of classifiers
based on the current training set and scanning a portion
of the whole data set to select the data point that causes
maximal disagreement among the label predictions of
the current classifiers. It has been shown to outperform
random sampling [21] and balanced sampling [11] for a
large unbalanced data set called the National Trauma
Data Bank (NTDB) !. Although artificial neural net-
works (ANN) [10] were chosen as the classifier type in
[13], informative sampling is a general algorithm that
could work with any classifier. Many types of classi-

Thttp://www.facs.org/trauma/ntdb.html

fiers exist in the literature, such as decision trees (DT)
[16], ANNs [10], and SVMs. Different types of classifiers
have different underlying structures, making them dif-
ferentially suitable for different data sets. For example,
the decision boundary formed by DTs consists of lines or
planes that are orthogonal to one of the features, which
makes DTs more suitable to a data set with decision
boundaries that are orthogonal to the features than an-
other data set that has highly nonlinear and continuous
boundaries. The question then arises as to how to find
the suitable classifier type for a given data set.

Many approaches have been suggested in the field
of ensemble learning [9][20][7] to construct ensembles
of heterogeneous classifiers, in which existing methods
such as C4.5 and SVM were used to train base classi-
fiers. These ensembles typically contain one instance of
each type, or obtain multiple instances from each type
by exploiting different parameters with existing train-
ing methods. One problem is that some methods such
as C4.5 are deterministic, which means that only one
classifier can be built on a given data set. In our case,
different individuals from the same classifier type are ex-
pected to be developed such that disagreement among
them indicates model uncertainty. Stochastic optimiza-
tion techniques are used here to develop multiple in-
stances from each classifier type. Therefore the ensem-
ble consists of diverse heterogeneous classifiers. In this
paper, an algorithm that builds on top of informative
sampling is introduced: adaptive informative sampling
(henceforth referred to as AIS). The major difference be-
tween AIS and informative sampling is that informative
sampling only works with ensembles with static combi-
nations of classifier types, whereas AIS adapts the ratio
of classifier types towards better accuracy. The algo-
rithm starts with multiple classifiers drawn from dif-
ferent classifier types and proceeds through two stages.
In the first stage, classifiers are trained and replaced
based not only on their classification error, but also on
their type, and data points are chosen and added to the
training set. The replacement aims to adapt the ratio
of classifier types in the ensemble so that the more suit-
able model type will eventually saturate the ensemble.
In the second stage, the classifiers in the ensemble are
optimized for a certain number of iterations.

The major contributions of this paper are: 1) empir-
ically proving that different classifier types are suitable
for different data sets with active learning; 2) introduc-
ing an algorithm framework that adapts the classifier
ratio for heterogeneous ensembles; 3) introducing an
adaptation strategy for AIS that outperforms random
sampling and uncertainty sampling.

In this work, ANNs and DTs were used as example
classifier types. At this stage, AIS only deals with

Figure 1: General form of the decision trees in this paper.

numeric data sets. Two sets of experiments were
conducted on two synthetic data sets and three data
sets from the UCI Machine Learning Repository [1].
The first set of experiments shows the effectiveness
of AIS to find the better classifier type on a given
data set. For all tested data sets, the suggested
algorithm performs better than or comparable to using
a homogeneous ensemble of the better classifier type,
because the better classifier type always saturates the
ensemble of classifiers automatically. The second set
of experiments compares AIS to uncertainty sampling
and random sampling, which shows that AIS draws
informative data points into the training set.

The following section introduces the adaptive infor-
mative sampling algorithm. Section 3 gives the experi-
mental results. Section 4 concludes the paper.

2 Methods

In this section, the structures and optimizing methods
for the ANNs and DTs are described, then the infor-
mative sampling algorithm is reviewed, and finally the
adaptive informative sampling algorithm is introduced.

2.1 Decision Trees The DTs optimized in this pa-
per take the form of binary trees, and has similar struc-
ture as the DTs described in GaTree [15]. An illustra-
tion is given in Figure 1. Each internal node is associ-
ated with a certain feature and a real number called the
split point. Each leaf node is associated with a class la-
bel. Given a trained decision tree and a data point for
prediction, the classification process works as follows:
1) starting from the root node, check the value of the
data point on the feature that corresponds to the cur-
rent node; 2) if the value is greater than the split point
on the current node, follow the right link to the next
node; otherwise, follow the left link; 3) repeat 1 and 2
until a leaf node is reached, and output the class label on
the leaf node. The class label on each leaf node is set to
be the majority label of the training subset that reaches
that node. To cover the case where splitting a feature
into more than two sub-ranges is necessary for accurate
classifications, a feature is allowed to be associated with

input layer

hidden layer output layer

Figure 2: General form of the ANNSs in this paper.

multiple nodes. In this way, the binary decision tree has
the same expressive power as any N-ary decision tree.

The optimization of a decision tree involves three
mutation operators: add, delete and change. When
an add mutation operator is applied, an internal node
is randomly selected, a new node with a randomly
generated feature and split point is inserted into the
tree at the position of the selected node, the subtree
with the selected node as the root is pushed down as
the left or right child of the new node, and a leaf node
is added as the other child. When a delete operator is
applied, an internal node is randomly selected, all its
children are deleted, and the node is changed into a leaf
node. When a change operator is applied, an internal
node is randomly selected, the feature associated with
it is changed into a random new one, and the split
point is changed to a random value. At the beginning
of the optimization for a decision tree, a random tree
is generated, with each internal node containing a
randomly chosen feature and split point. The number of
internal nodes for the random tree is set to be half of the
number of features for a given data set. This choice is
relatively arbitrary, as optimization may add or remove
nodes to obtain a better structure. However this initial
choice was made such that the initial DTs have similar
structural complexity compared to the ANNs. At each
optimization step, a copy of each DT is made, and one
of the three mutation operators is chosen randomly and
applied to each tree. A parallel hill climber [17] is used
to optimize the DTs: for each tree in the ensemble, if
the child tree is more fit than its parent in terms of
accuracy, the parent tree is replaced with it. Otherwise,
the parent is retained.

2.2 Artificial Neural Networks The ANNs used
in this paper are standard feed-forward neural networks
with three layers (input, hidden, output) [10]. The acti-
vation function is the sigmoid function. An illustration
is given in Figure 2. Nodes in two adjacent layers are

associated with links. The weight for each link has a
real value between -1 and 1. Each node in the input
layer corresponds to a feature that has been normalized
into a real value between 0 and 1, except for a bias node
with -1 as the value. The number of hidden nodes is set
to be half of the number of features, plus a bias node
with -1 as the value. For a two-class classification task,
there is one node in the output layer, which outputs a
real value between 0 and 1. For an output value that is
greater than 0.5, the ANN outputs 1 as the output; oth-
erwise, the output is 0. For a multi-class classification
task, the number of nodes in the output layer equals
the number of classes, and the index of the output node
with the largest value is used as the output.

Mutation of the ANNs involves randomly selecting
a weight and changing it to a random real value between
-1 and 1. The stochastic optimization algorithm is the
same as the DTs. At the beginning, random ANNs are
generated such that each weight of the ANN is a random
real value between -1 and 1. At each optimization step,
a copy of each ANN is made, and the mutation operator
is applied. If the child ANN is better, the parent is
replaced with it. Otherwise, the parent is retained and
the child is discarded.

Since the two classifier types work with each other
when both exist in an optimizing ensemble, a crucial
question arises as to how to exert a similar training
speed on both types, to ensure that one classifier type
does not die out simply because it learned more slowly
than the other type. In our framework, the number
of the hidden nodes in an ANN is set to be half of the
number of the inputs. For a data set that has 16 features
and 2 classes, an ANN has a total of 17 *9 + 9 * 1 =
162 weights. One mutation of an ANN therefore has
a structural impact of 1/162 on the classifier. For the
same data set, a randomly generated decision tree has
8 internal nodes. It is hard to determine the size of
the DTs without knowledge of the actual data set. We
assume the same probability for each mutation operator
to take effect. Under this assumption, the mean number
of internal nodes of a set of randomly generated DTs is
close to 8. Each node has two components. So one
mutation of a decision tree has a structural impact of
1/16 on the classifier. In order to make the impact of
mutation on the two classifier types more similar, in
this paper, when the ANN is evolved, a certain number
of consecutive iterations of optimizations are applied.
The number is set to be half of the number of input
nodes. While it is quite challenging to compare the
two classifier types in a perfectly fair manner because
of the different structures they have, the increased
mutation rate narrows the difference. For the data set
mentioned above, each new ANN experiences a 8/162 =

Table 1: The informative sampling algorithm

1 Initialization
Create a random ensemble of classifiers.
2 Stage 1
1) Exploration Phase
a) Pass a portion of the data set to the classifiers to
find a single training data point.
b) Fitness of a candidate data point is the amount
of disagreement it causes among classifiers.
¢) Data point that causes the most disagreement is
added to the training set.
2) Estimation Phase
a) Use a stochastic optimization algorithm to train
each candidate classifier; a parent classifier is
replaced if its child is more fit.
b) Fitness of a classifier is its predictive accuracy
on the current training set.
3) Repeat steps 2 and 3 for a certain number of
iterations to obtain a subset as the training set.
3 Stage 2
Optimize the ensemble for a certain number of
iterations using the obtained training set until the

classifiers achieve some termination criteria.

0.05 impact assuming independency between mutations,
compared to a structural impact of 1/16 = 0.06 that
one mutation has on a decision tree. This gives the
two classifier types a similar structural impact for each
iteration of optimization.

2.3 Informative Sampling The algorithm starts by
creating an ensemble of randomly created classifiers,
then it proceeds in two stages. The data set is divided
into subsets of size p using the original ordering of the
data set.

During each iteration of the first stage, two phases
are conducted: the exploration phase and the estima-
tion phase. The exploration phase runs before the es-
timation phase. At the outset of the algorithm, the
first data point to the pth data point are supplied to
the current set of initially random classifiers in a se-
quential manner. For each data point, class predictions
are made by the classifiers, and the variance across the

class predictions are calculated. A high variance indi-
cates that the numbers of predictions for each class are
similar, and that there is therefore disagreement among
the classifiers as to the true class of that data point. The
data point with the highest such variance is chosen and
added to the training set, along with its corresponding
label.

The exploration phase is followed by the estima-
tion phase. In this phase, the classifiers are trained by
stochastic optimization as described above. Each clas-
sifier is evaluated and potentially replaced once using a
hill climbing algorithm [17]. The fitness of a classifier
is defined as the accuracy on the current training set as
described in Section 3.1.

The algorithm then returns to the exploration
phase. This time, the (p + 1)th data point to the 2pth
data point are supplied to the models that were evolved
in the estimation phase. One data point again is se-
lected based on model disagreement and added to the
training set (which now contains two data points). The
estimation phase is run again after the exploration phase
on this updated training set. One iteration of the algo-
rithm consists of a single run of the exploration phase
followed by a single run of the estimation phase. The
algorithm executes several iterations to obtain a subset
of the whole data set as the training set.

In the second stage, the algorithm uses a parallel
hill climbing algorithm to optimize the set of classifiers
in the ensemble until certain termination criteria is met.

Several changes are made to the originally-proposed
EEA in order to apply it as a selective sampling method
for unbalanced data sets. In previous applications
[5][3][4], virtual data points are created as candidate
tests. This is legitimate for systems for which training
data can be generated on the fly and then labeled by
the system under study, but not for pre-existing data
sets. The solution to this is to use a portion of the data
set without their labels as candidate tests. Table 1 is
an outline of the informative sampling algorithm.

2.4 Adaptive Informative Sampling The adap-
tive informative sampling algorithm starts by creating
an ensemble of classifiers with equal numbers of ANNs
and DTs. In this paper, the ensemble size is 50, so there
are 25 ANNs and 25 DTs in the ensemble at the out-
set. The algorithm then randomly selects 50 data points
and adds them to the training set. The reason for this
is that DTs need a certain number of data points to
initialize the class labels on each leaf (see section 2.1).
The algorithm has two stages as the informative sam-
pling algorithm. The first stage of AIS also consists of
the exploration phase and the estimation phase. The
exploration phase is exactly the same as in the informa-

Table 2: The adaptive informative sampling algorithm

1 Initialization
a) Create a random ensemble of classifiers with
equal numbers of ANNs and decision trees.
b) Randomly select some data points, query their
labels, and add them to training set.
2 Stage 1
1) Exploration Phase

a) Pass a portion of the data set to the classifiers
to find a single training data point.

b) Fitness of a candidate data point is the amount
of disagreement it causes among classifiers.
c) Data point that causes the most disagreement is
added to the training set with the queried label.
2) Adaptation Phase
Update the ensemble of classifiers according to
a replacement strategy to adapt the ratio of two
classifier types in the ensemble.
3) Estimation Phase
a) Use a stochastic optimization algorithm to train
each candidate classifier; a parent classifier is
replaced if its child is more fit.
b) Fitness of a classifier is its predictive accuracy
on current training set.

4) Repeat steps 2 and 3 for a certain number of
iterations to obtain a subset as the training set.

3 Stage 2
Optimize the ensemble for a certain number of
iterationusing the obtained training set until the

classifiers achieve some termination criteria.

tive sampling algorithm.

In the adaptation phase, before each classifier is up-
dated using the hill climbing algorithm, a replacement
strategy is applied to update the relative number of the
two classifier types.

Two replacement strategies are explored in this
paper. The first replacement strategy does not consider
classifier type. Each replacement simply replaces the
worst classifier with a copy of the best one in the
ensemble, without considering whether they are of the

same type or not.

The second replacement strategy locates the worst
classifier in the ensemble and records its type (ANN or
DT). Then this type is punished by replacing it with a
copy of the best classifier of the other type. For example,
if in the current ensemble a decision tree has the highest
classification error, then a copy of the best ANN in the
ensemble is used to replace it. When all classifiers in
the ensemble have the same type, the worst classifier is
replaced by a new classifier of the other type. This new
classifier is generated by creating a random classifier
of the required type and performing the training as
was done for the rest of the classifiers in the ensemble.
For example, at the outset of the second pass through
the estimation phase, a new classifier is generated by
creating a random classifier and optimizing it once on
the 51 data points in the current training set (50 random
data points + 1 data point chosen in the exploration
phase). This is to cover the case that one classifier type
might have the potential to provide a better classifier
than the other type, but evolves slower during early
optimization and thus all instances of this type might be
prematurely removed from the ensemble. This strategy
explicitly considers both fitness and classifier type when
performing replacement.

The two replacement strategies were developed to
study if classifier type should be explicitly considered
when conducting replacement.

Then AIS proceeds the same ways as informative
sampling. Table 2 is an outline of the adaptive informa-
tive sampling algorithm.

3 Results

Two sets of experiments were conducted. The first aims
to study the effectiveness of AIS to adapt the ensemble
in favor of the better classifier type. The second
compares AIS to uncertainty sampling and random
sampling. In this section, the details of the data sets
and experimental settings are first introduced, then the
results are given.

3.1 Data sets and experimental settings Exper-
iments were conducted on five data sets, among which
two are synthetic, and the other three are drawn from
the UCI Machine Learning Repository [1].

The first synthetic data set, henceforth referred to
as S1, is an unbalanced data set with a highly nonlinear
decision boundary. It contains 20000 data points, of
which 2000 were randomly chosen as the testing set, and
the remaining 18000 were used as the pool for selecting
training data points. 50 data points were randomly
drawn into the training set at first, then 1 out of p
= 30 candidate training data points were chosen out

of the pool sequentially and added to the training set
during the first stage of the algorithm. The amount
of training data points supplied to the classifiers was
chosen to ensure reasonable performance for each data
set. For S1 the first stage of each run executed 550 such
iterations, such that there were 550 data points chosen
by the algorithm and 50 randomly chosen data points
in the training set. Each data point has 8 real-valued
features between 0 and 1 and one binary class label.
The class label of each data point is determined using
the following function:

(3.1)

0:2]%2
J

where f; is the value of the jth feature. If o is less than
2, the data point is assigned a label of 1, otherwise a
label of 0 is assigned. This highly nonlinear function
severs as the decision boundary for this data set.

The second synthetic data set is referred to as S2.
It is the same in every aspect as S1 described above
except for the decision boundary. The class label of a
data point in S2 is decided by the value of its 4th feature.
If it is less than 0.3, the data point is assigned a label of
0; otherwise a label of 1 is assigned. Thus, its decision
boundary is a plane orthogonal to the 4th feature.

The first data set from UCI to was the Spambase
Data Set?, henceforth referred to as Spam. The data. set
was first shuffled, then of the 4601 data points, 601 were
randomly selected as the testing set and the remaining
4000 data points served as the pool for potential training
data points. 50 data points were randomly drawn into
the training set at first, then 1 out of p = 10 data
points were chosen by the algorithm and added to the
training set in each iteration. There were 350 such
iterations, such that the final training set contains 400
data points. Fach data point has 57 features that have
been normalized to real values between 0 and 1. The
class label has two possible values: 1 represents “Spam”
and 0 represents “Non-Spam”. Class “Spam” has 1814
instances, the other 2787 instances have “Non-Spam”
labels.

The second data set from UCI to was the
Pen-Based Recognition of Handwritten Digits Data
Set3(henceforth referred to as Pendigit). Of the 10992
data points in the data set, 3498 were given as the test-
ing set and the remaining 7494 in the given training set
served as the pool for selecting training data points. 50
data points were randomly drawn into the training set
at first, then 1 out of p = 10 data points were chosen

Zhttp://archive.ics.uci.edu/ml/datasets/Spambase.

Shttp://archive.ics.uci.edu/ml/datasets/Pen-
Based+Recognition+of+Handwritten+Digits

and added to the training set in each iteration of the
first stage. There were 650 such iterations. The final
training set therefore contains 700 data points. Each
data point has 16 features that have been normalized
to real values between 0 and 1. There are 10 possible
values for the class label, with each corresponding to
one of the 10 digits.

The third data set from UCI was the Landsat
Satellite Data Set* (henceforth referred to as Landsat).
The data set has a total of 6435 data points, of which
2000 were given as the testing set, and the remaining
4435 served as the pool for choosing data points. There
were fifty randomly chosen data points in the training
set at first, and then 1 out of p = 5 data points were
chosen and added to the training set in each iteration of
the first stage. There were 750 such iterations. The final
training set contains 800 data points. Each data point
has 36 features, each of which has been normalized to
real values between 0 and 1. There are 6 possible values
for the class label.

A fitness function for computing the performance of
a classifier was suggested in [13] as:

(0 a
to tq

where ¢y is the number of correct predictions of class
0 on the training set, ¢y is the total number of class
0 data points in the training set, c¢; is the number
of correct predictions of class 1, and t; is the total
number of class 1 data points. This fitness function was
suggested to handle both balanced and unbalanced data
sets for 2-class classification tasks. It makes sense for 2-
class classification tasks because it forces the classifiers
to learn equally on both classes, but for multi-class
classification tasks, it might not be suitable because it
unfairly penalizes classifiers that are accurate for most
classes, but inaccurate for a few sparsely populated
classes. In this paper, equation (3) is used to calculate
the fitness of classifiers for the S1, S2 and Spam data
sets. For the Pendigit and Landsat data sets, the fitness
function is defined as the number of misclassifications on
the training set.

For each experiment, 200 iterations of optimization
were conducted in the second stage after the process of
choosing data points has finished, in order to provide the
ensemble more chances to learn from the whole chosen
data points, especially for the data points that have
been added to the training set during later iterations in
the first stage. 30 independent runs were conducted
on each of the five data sets. At the end of each
run, the most accurate classifier was evaluated on the

(3.2)

Thttp://archive.ics.uci.edu/ml/datasets/Statlog + (Landsat -+
Satellite)

301

—5—50 ANN
50 DT
—&=—replacement#1

25y —l— replacement#2

N
o
T

Error (%)

=
o
T

L }

Figure 3: Comparison on S1 with homogeneous ensembles

testing set by counting the number of misclassifications
on the testing set. In other words, the ensemble makes
predictions by selecting the best classifier and using it as
the prediction model. The mean and standard deviation
of the misclassifications across 30 runs were reported as
performance measure.

3.2 Comparison with Homogeneous Ensembles
This section reports the comparison between the het-
erogeneous and homogeneous ensembles. Three sets of
comparisons were made across each data set: a compar-
ison between informative sampling with 50 ANNs only
and the same algorithm with 50 DTs only; a compari-
son between adaptive informative sampling with the two
replacement strategies; and a comparison between AIS
and informative sampling. The experiments are to show
that with the right replacement strategy, AIS performs
consistently well through all five data sets. A homoge-
neous ensemble with all ANNs or DTs might do com-
parably well on some data sets, but significantly worse
on others.

Figure 3 reports the algorithm’s performances on
S1. S1 was constructed to have a highly continuous and
non-linear decision boundary, with the intuition that it
should be difficult for DTs to perform well. The result
confirms this intuition. For the first comparison (com-
pare line 1 to 2), informative sampling with 50 ANNs
has a mean of 171.97 misclassifications, which corre-
sponds to a predictive accuracy of 91.4%. The same
algorithm with 50 DTs has a mean of 503 misclassifica-
tions, which is an accuracy of 74.85%. When working
with informative sampling on S1, it is therefore shown
that ANNs produce significantly more accurate and gen-
eralized classifiers than DTs. For the second compari-
son (compare line 3 to 4), AIS with the first replace-
ment strategy has a mean of 276.57 misclassifications,

—5—50 ANN

50 DT
—&=—replacement#1
—¥— replacement#2

Error (%)

Figure 4: Comparison on S2 with homogeneous ensembles

241

—5—50 ANN

221 50 DT
—&=—replacement#1
—¥— replacement#2

201

Error (%)
5 &

N
N
T

=
N
T

=
o
¥

@

Figure 5: Comparison on ’Spam’ with homogeneous ensem-
bles

(2]
o
il

—S—50 ANN
60 50 DT
L —H—replacement#1
55 —¥— replacement#2
50+
~ L
§, 45
5 40f
=
W 35+
30+
25+
20 q:
15 :
1 2 3 4
Figure 6: Comparison on ’Pendigit’ with homogeneous
ensembles

which corresponds to an accuracy of 86.17%. The same
algorithm with the second replacement strategy has a
mean of 174.77 misclassifications, which is an accuracy

al
o
1

——50 ANN
45} 50 DT
—H—replacement#1
40} —#— replacement#2
=35
S
5 %
=
W)
. LI
15¢
10 ‘ ‘ ‘ ‘
1 2 3 4
Figure 7: Comparison on ’Landsat’ with homogeneous
ensembles
of 91.3%. The second replacement strategy shows a

smaller standard deviation. It is therefore shown that
adaptive sampling with the second replacement strat-
egy works better than the same algorithm with the first
replacement strategy on S1. For the third comparison,
adaptive sampling with the second replacement strat-
egy is marginally worse than informative sampling with
all ANNs (compare line 4 to 1) but comparable, and
the first replacement strategy is worse than the same
algorithm (compare line 3 to 1).

Figure 4 reports the results on S2. This data set
was constructed with a simple decision boundary that
is perpendicular to one of the features, which DTs
should handle well. For the first comparison (compare
line 1 to 2), informative sampling with 50 ANNs has
a mean of 74.9 misclassifications, which corresponds
to an accuracy of 96.26%. The same algorithm with
50 DTs has a mean of 6.63 misclassifications, which
is an accuracy of 99.67%. Using all ANNs is not
only noticeably worse, but also much less consistent,
as evidenced by the larger error bar. It is therefore
shown that using all DT's achieves a better performance
in this context, which is again consistent with our
intuition. For the second comparison (compare line
3 to 4), AIS with the first replacement strategy has
a mean of 6.8 misclassifications, which corresponds to
an accuracy of 99.66%. The same algorithm with
the second replacement strategy has a mean of 1.8
misclassifications, which is an accuracy of 99.91%. The
second strategy achieves a noticeably smaller standard
deviation. It is shown that the two algorithms perform
almost perfectly, and comparably, on S2, which is not
surprising for such a simple data set. For the third
comparison (compare line 2 to 3 and 4), AIS with either
strategy is slightly better than informative sampling
with all DTs.

Figure 5 gives the performance comparison on the
Spambase data set. For the first comparison (compare
line 1 to 2), informative sampling with 50 ANNs has a
mean of 78.63 misclassifications, which corresponds to
an accuracy of 86.92%. The same algorithm with 50
DTs has a mean of 119.13 misclassifications, which is
an accuracy of 80.18%. It is shown that for this data
set, using all ANNs achieves a better performance than
using all DTs. For the second comparison (compare line
3 to 4), AIS with the first replacement strategy has a
mean of 92.19 misclassifications, which corresponds to
an accuracy of 84.66%. The same algorithm with the
second replacement strategy has a mean of 63.3 misclas-
sifications, which is an accuracy of 89.5%. The second
strategy has a noticeably smaller standard deviation.
It is therefore shown that the second strategy is better
than the first one. For the third comparison, AIS with
the second strategy is slightly better than informative
sampling using all ANNs (compare line 4 to 1).

Figure 6 reports the results on Pendigit. For the
first comparison (compare line 1 to 2), informative sam-
pling with 50 ANNs has a mean of 1810.9 misclassifica-
tions, which corresponds to an accuracy of 48.23%. By
comparison, notice that this data set has a total of 10
classes, so that a random guess has a predictive accu-
racy of 10%. The same algorithm with 50 DTs has a
mean of 1026.8 misclassifications, which is an accuracy
of 70.65%. On this data set, using all DTs achieves a
better performance than using all ANNs. For the sec-
ond comparison (compare line 3 to 4), AIS with the first
replacement strategy has a mean of 684.27 misclassifi-
cations, which corresponds to an accuracy of 80.44%.
The same algorithm with the second replacement strat-
egy has a mean of 636.97 misclassifications, which is
an accuracy of 81.79%. In this case, the second strat-
egy is slightly better than the first strategy. For the
third comparison, AIS with either replacement strategy
is better than informative sampling using all decision
trees (compare lines 3 and 4 to 2).

The results of the on the Landsat data set are
reported in Figure 7. For the first comparison (compare
line 1 to 2), using 50 ANNs with informative sampling
has a mean of 720.2 misclassifications, which is an
accuracy of 64%. 50 DTs with informative sampling
has a mean of 482.33 misclassifications, which is a
predictive accuracy of 75.88%. It is therefore shown
that decision trees are more suitable for this data set
than ANNs when working with informative sampling.
For the second comparison (compare line 3 to 4),
AIS with the first strategy has a mean of 431.86
misclassifications, which corresponds to an accuracy
of 78.41%. And AIS with the second strategy has a
mean of 406.56 misclassifications, which is an accuracy

501
451

mean + std

of decision trees in the ensemble

300 400 500 550
Iteration

0 100 200

Figure 8: S1- Change in the number of decision trees in the
ensemble over iterations for the second replacement strategy

551
mean + std
mean

of decision trees in the ensemble

25
o

100 200 300

Iterations

400 500 550

Figure 9: S2- Change in the number of decision trees in the
ensemble over iterations for the second replacement strategy

of 79.67%. On this data set, the second strategy is
marginally better than the first strategy. For the third
comparison (compare lines 3 and 4 to 2), AIS with either
replacement strategy performs slightly better than using
all decision trees.

Of the five data sets, using ANNs with informa-
tive sampling works better than using all decision trees
on one synthetic data set and one data set from UCI,
and using all decision trees performs better on the other
three. In all cases, AIS with the second strategy per-
forms either better than or comparable to informative
sampling with the better classifier type. It has been
shown that AIS with the second strategy, where both
accuracy and classifier type information are considered,
performs consistently well on all five data sets. The
following results show the reason why the algorithm is
always comparably to informative sampling using the
better classifier type on a given data set.

mean + std

[mean - std
-5 I .
0 50 100

of decision trees in the ensemble

150 200 250 300 350

Iterations

Figure 10: Spam- Change in the number of decision trees
in the ensemble over iterations for the second replacement
strategy

551

mean, mean + std, mean - std

501

45} -

40

35

30

MM R I S

of decision trees in the ensemble

25 ‘ ‘ ‘ L
0 300 400 500 600 650
Iterations

100 200

Figure 11: Pendigit- Change in the number of decision trees
in the ensemble over iterations for the second replacement
strategy

On S1 and Spambase data sets, informative sam-
pling using all ANNs is better than using all DTs.
Figure 8 and Figure 10 show that ANNs saturate the
ensemble with AIS and the second strategy. On S2,
Pendigit and Landsat, DTs are better suited with in-
formative sampling, Figure 9, Figure 11 and Figure 12
show that decision trees saturate the ensemble with AIS
and the second replacement strategy. It is noticeable
from the five figures that the more suitable classifier
type does not always straightly saturate the ensemble.
On Figure 8 and Figure 10, the number of decision trees
in the ensemble goes up in the first several iterations,
then ANNs start to perform better. On Figure 9, the
ensemble first develops in favor of decision trees, then
ANNs performs better for a few iterations, and then de-
cision trees are better through the rest of the iterations.

60

mean + std
551

451
mean - std
40t
35

30

vTeseesdieses

of decision trees in the ensemble

25

300 400 500 600 700750

Iterations

0 100 200
Figure 12: Landsat- Change in the number of decision trees

in the ensemble over iterations for the second replacement
strategy

While on Figure 11 and Figure 12, the ensemble is di-
rectly saturated with decision trees. These results show
that each classifier type may exhibit different suitability
at different stages of optimization. These results shed
light on the reason why the second strategy does more
consistently than the first strategy. When the classifier
type information is not considered, the ensemble might
be prematurely saturated with a classifier type that per-
forms better at an early stage.

3.3 Comparison with Uncertainty Sampling

and Random Sampling In this section, AIS with the
second replacement strategy is compared against uncer-
tainty sampling and random sampling. For uncertainty
sampling, DTs, as one of the classifier types used in
ATS, were chosen as the classifier. The confidence mea-
sure is the ratio between the number of data points be-
longs to the majority class label and the total number of
data points in the leaf nodes of the trees. The training
method for decision trees was J48, an implementation
of C4.5 by Weka [22]. ANNs were not used with uncer-
tainty sampling because designing a confidence measure
for ANNs is a nontrivial task. Three training methods
were combined with random sampling for comparison
with AIS. In the first training method, random sampling
was implanted into the AIS algorithm. The exploration
phase of the algorithm was replaced by random sam-
pling, which means that instead of choosing the data
point that induces the maximal disagreement, a data
point was chosen randomly out of the current pool of
candidate data points. The other two methods working
with random sampling were J48 and Back-propagation
[10]. The Back-propagation algorithm was implemented
with the generalized delta rule and incremental training,

35,

——AIS

—&— random

30 C4.5 + uncertainty

—&—C4.5 + random
—H=— backP + random

N
ol

N
o
T

Error (%)

=
o
T

o oy 9

Figure 13: S1- Comparison with Uncertainty Sampling and
Random Sampling

357,

—k—AIS

301 —5— random

C4.5 + uncertainty
l| —e—C4.5 + random
== backP + random

N
o

Error (%)
= = N
al o a o

*
<
®

Figure 14: S2- Comparison with Uncertainty Sampling and
Random Sampling

the activation function was the sigmoid function. The
learning rate was 0.3 and the momentum was 0.9. The
number of hidden nodes was set to be half of the num-
ber of the input features. It is worth pointing out that
an increase of number of hidden nodes could sufficiently
increase the accuracy of Back-propagation. The num-
ber was chosen because the ANNs used by AIS have the
same number of hidden nodes. The Back-propagation
algorithm was allowed to train the ANNs for up to 2000
iterations. The number was relatively arbitrary, but it
is reasonable comparing with the number of iterations
that ANNs in AIS have been trained for. At the end of
2000 iterations of training, the iteration with the best
accuracy on the testing set was reported as the perfor-
mance of Back-propagation. For each of the comparing
method, the same amount of data points was chosen as
was by AIS, and 30 independent runs were conducted
to report the mean and standard deviation.

N
(=2
d

—k—AIS

[| =5—random

C4.5 + uncertainty
[| === C4.5 + random

| | = backP + random

N
i

N
N

N
o

Error (%)
5 &

L
o N >
T T
—_—

©

Figure 15: Spam- Comparison with Uncertainty Sampling
and Random Sampling

241
——AIS
237 —&— random
22t C4.5 + uncertainty
—5— C4.5 + random

21 —=— backP + random

201
19r
18r
17r
161
151
141
13

Error (%)

Figure 16: Pendigit- Comparison with Uncertainty Sam-
pling and Random Sampling

327

——AIS

—&— AIS + random
C4.5 + uncertainty

—5— C4.5 + random

=+~ backP + random

w
o
T

N
©
T

N
(=2
T

Error (%)
N

N
N
T

N
o
Eo——

18

Figure 17: Landsat- Comparison with Uncertainty Sam-
pling and Random Sampling

Of the five tested data sets, AIS with the second
strategy performs the best or among the best on four of
them. Figure 13 reports the results on S1, where AIS
achieves a mean of 91.3% accuracy as reported in Sec-
tion 3.2, which significantly outperforms C4.5 with un-
certainty sampling (mean accuracy 83.65%), C4.5 with
random sampling (mean accuracy 83.28%), and Back-
propagation with random sampling (mean accuracy
79.49%). AIS with random sampling is slightly worse
than AIS in mean accuracy (89.34%), but is marginally
better than AIS in standard deviation. On S2, as
shown by Figure 14, AIS (mean accuracy 99.91%), AIS
with random sampling (mean accuracy 99.72%), C4.5
with uncertainty sampling (mean accuracy 99.70%) and
C4.5 with random sampling (mean accuracy 99.84%) all
achieve near 100% accuracy, which is not surprising for
such a simple data set. Back-propagation performs the
worst with a mean accuracy of 78.67% and a noticeably
larger standard deviation. Figure 15 gives the results on
Spambase data set. It is shown that AIS outperforms
all competing methods with a mean accuracy of 89.5%,
which are AIS plus random sampling with a mean ac-
curacy of 84.79%, C4.5 plus uncertainty sampling with
a mean accuracy of 86.67%, C4.5 plus random sampling
with a mean accuracy of 87.17%, and Back-propagation
plus random sampling with a mean accuracy of 79.59%.
As shown by Figure 16, C4.5 with uncertainty sam-
pling achieves a mean accuracy of 84.52% and is slightly
better than the competing methods on Pendigit. C4.5
with random sampling and Back-propagation with ran-
dom sampling performs closely with mean accuracies of
82.42% and 82.3%. AIS (mean accuracy 81.79) performs
slightly better than AIS with random sampling (mean
accuracy 79.88%). Figure 17 reports the results of Land-
sat data set, on which AIS is slightly better than the
other methods by achieving a mean accuracy of 79.67%,
compared with AIS plus random sampling with 77.95%,
C4.5 plus uncertainty sampling with 77.39%, C4.5 plus
random sampling with 77.33%, and Back-propagation
plus random sampling with 77.82%.

4 Conclusions and Future Work

In this paper, evidence was provided to demonstrate
that different classifier types exhibit different perfor-
mances when incorporated into the informative sam-
pling algorithm, which indicates the requirement for a
heterogeneous ensemble because no one classifier type
does consistently well across the data sets. An exten-
sion of the informative sampling algorithm that adapts
the ratio of classifier types in a heterogeneous ensem-
ble of classifiers was introduced, which is referred to as
the adaptive informative sampling algorithm. Stochas-
tic optimization algorithms were used to develop mul-

tiple instances of each classifier type. This algorithm
starts with a combination of multiple classifier types
and updates the relative ratio of the classifier types in
the ensemble during each iteration. Of the two tested
replacement strategies, the one that takes not only the
accuracy but also the classifier type into account when
performing replacement is shown to have a better per-
formance. This suggests that in addition to accuracy,
active learning techniques that maintain an ensemble of
multiple classifier types should explicitly consider classi-
fier type when replacing members of the ensemble. AIS
that made use of this strategy achieves performances
better than the informative sampling algorithm when
using the better classifier type on the five data sets
studied in this paper. This allows the algorithm to per-
form consistently well across data sets, without having
to determine a priori a suitable classifier type. Ex-
periments were then conducted to show that AIS out-
performs random sampling and uncertainty sampling,
which indicates that the algorithm chooses informative
data points.

Although ANNs and decision trees were employed
here, AIS is a generalized algorithm that could work
with a wide range of classifier types. In previous work
[14], we introduced adaptive heterogeneous ensembles
(AHE), which utilizes existing training methods such
as Naive Bayes to form an ensemble. An important
extension of this work would be combining AHE with
AIS to construct ensembles consist of classifiers trained
with both existing training methods and stochastic
methods. Future work will also include applying the
algorithm to more real world data sets.

References

[1] A. Asuncion and D. Newman. UCI machine learning
repository, 2007.

[2] J. Bongard and H. Lipson. Automating genetic net-
work inference with minimal physical experimentation
using coevolution. In Proceedings of the Genetic and
Evolutionary Computation Conference, pages 333—-345,
2004.

[3] J. Bongard and H. Lipson. Active coevolutionary
learning of deterministic finite automata. Journal of
Machine Learning Research, 6:1651-1678, 2005.

[4] J. Bongard and H. Lipson. Nonlinear system identi-
fication using coevolution of models and tests. IEEE
Transactions on Evolutionary Computation, 9:361-384,
2005.

[5] J. Bongard, V. Zykov, and H. Lipson. Resilient
machines through continuous self-modeling. Science,
314:1118-1121, 2006.

[6] C. Campbell, N. Cristianini, and A. Smola. Query
learning with large margin classifiers. In Proceedings of

(7l

(8]

(10]

(1]

(12]

(13]

[14]

[15]

(16]

(17]

18]

(19]

20]

(21]

(22]

the 17th International Conference on Machine Learn-
ing, pages 111-118, 2000.

R. Caruana, A. Munson, and A. Niculescu-Mizil. Get-
ting the most out of ensemble selection. In Proceedings
of the Sizth International Conference on Data Mining,
pages 828-833, 2006.

N. Cristianini and J. S. Taylor. An Introduction
to Support Vector Machines and other kernel-based
learning methods. Cambridge University Press, 2000.
S. Dzeroski and B. Zenko. Is combining classifiers with
stacking better than selecting the best one? Machine
Learning, 54(3):255-273, 2004.

S. Haykin. Neuwral Networks: A Comprehensive Foun-
dation. Prentice Hall, Upper Saddle River, NJ, USA.
N. Japkowicz. Learning from imbalanced data sets: a
comparison of various strategies. In AAAI Workshop
on learning from Imbalanced Data Sets, pages 10-15,
2000.

D. D. Lewis and J. Catlett. Heterogeneous uncertainty
sampling for supervised learning. In Proceedings of the
11th International Conference on Machine Learning,
pages 148-156, 1994.

Z. Lu, A. I. Rughani, B. I. Tranmer, and J. Bongard.
Informative sampling for large unbalanced data sets. In
Proceedings of the Genetic and Evolutionary Compu-
tation Conference, Workshop on medical applications
of genetic and evolutionary computation, pages 2047—
2054, 2008.

Z. Lu, X. Wu, and J. Bongard. Active learning with
adaptive heterogeneous ensembles. In Proceedings of
the 9th IEEE International Conference on Data Mining
(ICDM 2009), Miami, FL, USA, December 6-9, 2009.
A. Papagelis and D. Kalles. Breeding decision trees
using evolutionary techniques. In Proceedings of the
18th International Conference on Machine Learning,
pages 393400, 2001.

J. R. Quinlan. C4.5: programs for machine learning.
Morgan Kaufmann, San Francisco, CA, USA, 1993.

S. Russell and P. Norvig. Artificial Intelligence: A
Modern Approach (2nd ed.). Prentice Hall, Upper
Saddle River NJ, 2003.

G. Schohn and D. Cohn. Less is more: active learning
with support vector machines. In Proceedings of the
17th International Conference on Machine Learning,
pages 839-846, 2000.

H. S. Seung, M. Opper, and H. Sompolinsky. Query by
committee. In Proceedings of the Fifth Workshop on
Computational Learning Theory, pages 287-294, 1992.
G. Tsoumakas, I. Katakis, and I. Vlahavas. Effective
voting of heterogeneous classifiers. In Proceedings of
the European Conference on Machine Learning, pages
465-476, 2004.

J. Waksberg. Sampling methods for random digit
dialing. American Statistical Association, 73(361):40—
46, March 1978.

I. H. Witten and E. Frank. Data Mining: Practical
machine learning tools and techniques. Morgan Kauf-
mann, San Francisco, 2005.

