
Accelerating Human-Computer Collaborative Search
through Learning Comparative and Predictive User Models

Gregory S. Hornby
University of California Santa Cruz

NASA Ames Research Center, MS 269-3
Moffett Field, CA USA

gregory.s.hornby@nasa.gov

Josh C. Bongard
Department of Computer Science

University of Vermont
Burlington, VT USA

josh.bongard@uvm.edu

ABSTRACT

Interactive Evolutionary Algorithms (IEAs) are one of the
few systems in which a human user and a computer algo-
rithm are collaboratively working on a problem. To turn
a basic IEA into the start of a Human-Computer Collab-
orative Computational system we have developed a system
called The Approximate User (TAU). With TAU, as the user
interacts with the IEA a model of the user’s preferences is
constructed and continually refined and it is this user-model
which drives search. Here two variations of a user-modeling
approach are compared to determine if this approach can
accelerate IEA search. The two user-modeling approaches
compared are: 1. learning a classifier which correctly deter-
mines which of two designs is better; and 2. learning a model
which predicts a fitness score. Rather than having people
do the user-testing, we propose the use of a simulated user
as an easier means to test IEAs. Both variants of the TAU
IEA are compared against a basic IEA and it is shown that
TAU is up to 2.7 times faster and 15 times more reliable at
producing near optimal results.

Categories and Subject Descriptors

I.2.6 [Artificial Intelligence]: Learning

General Terms

Algorithms, Design

Keywords

Evolutionary Design, Interactive Evolutionary Algorithm,
Preference Learning, User Fatigue, User Modeling

1. INTRODUCTION
Interactive Evolutionary Algorithms (IEAs) are one of the

few systems in which a human user and a computer algo-
rithm are collaboratively working on a problem. An IEA
is an interactive search algorithm that utilizes human input
to make subjective decisions on potential problem solutions
[9, 5, 13, 14]. In traditional interactive evolution, a human

Copyright 2012 Association for Computing Machinery. ACM acknowl-
edges that this contribution was authored or co-authored by an employee,
contractor or affiliate of the U.S. Government. As such, the Government re-
tains a nonexclusive, royalty-free right to publish or reproduce this article,
or to allow others to do so, for Government purposes only.
GECCO’12, July 7–11, 2012, Philadelphia, Pennsylvania, USA.
Copyright 2012 ACM 978-1-4503-1177-9/12/07 ...$10.00.

user is presented with one or more candidate individuals be-
ing evolved for selection. The human user directly performs
selection and then the favored individuals are selected for
propagation of offspring into the next generation. Current
examples of this work on the Web are Picbreeder [12] and
EndlessForms [7], both of which are based on using neural
networks to encode 2D images (Picbreeder) or 3D shapes
(EndlessForms).

Reliance on human input, however, induces a couple of
major challenges. First, users suffer user fatigue: the qual-
ity and accuracy of human input greatly degrades with re-
peated prompts for input [14]. In addition, for typical non-
interactive EAs, tens of thousands of evaluations are neces-
sary to achieve interesting results, which is orders of mag-
nitude more evaluations then can be expected from a single
user. Finally, humans are generally far slower at evaluating
designs than computer software is. To make IEAs viable,
some method must be developed for overcoming these limi-
tations of human users.

Given the limited number of human interactions possi-
ble with an IEA, the IEA must strive to make the most
of what little data the user has provided. The approach
we are analyzing is that of learning a model of the human
user and using this model as the fitness function to drive
the IEA. This idea came from the Estimation-Exploration
Algorithm [2, 3], and was first applied to IEAs by Schmidt
and Lipson [11]. The system we have developed is called
TAU, for The Approximate User. Two different methods
of user-modeling are described and compared: 1. learning a
classifier which correctly determines which of two designs is
better; and 2. learning a model which predicts a fitness score.
Since the implementation used in this work is still in its pre-
liminary stages, we hope that demonstrating a speedup on
one domain is sufficient to show that it has potential. In
addition, this work is a step toward turning an IEA into a
truly Human-Computer Collaborative Search system where
the strengths of each system are better utilized.

TAU is also a step toward a long term goal of making a
human-computer collaborative search system. Traditionally,
either a person does all the work or a computer search or
optimization algorithm does all the work. With IEAs, a hu-
man is doing all the evaluations and the software is deciding
what to be evaluated. We are working toward a system in
which a human user is using their intelligence and experi-
ence to guide a search algorithm, taking advantage of the
computer’s speed to perform most of the evaluations on its
own.

The rest of this paper is organized as follows. In Section 2
we review related work in IEAs and user-modeling, followed
by a description of the TAU algorithm in Section 3. To
demonstrate that TAU algorithm can accelerate IEA search
we use a simulated human user, which is described in Sec-
tion 4. The setup for the experiments is described in Sec-
tion 5. Then in Section 6 we present experimental results
which show that fitness-predictive user modeling accelerates
IEAs over that of a basic IEA, although are not as fast as an
IEA accelerated with comparative user modeling. Finally,
we present our conclusions in Section 7.

2. BACKGROUND
Quite recently there has been promising initial work to-

ward addressing the user fatigue problem. One approach
that has been used is to hardcode mathematical heuristics
of aesthetics, and this has found some success for the in-
teractive evolution of jewelry [15]. This system has several
heuristics of beauty built in and reduces the amount of feed-
back needed from the user by two orders of magnitude. It
can be thought of as a hybrid approach in which evalua-
tions are partially done by an encoded fitness function – the
heuristics of aesthetics – and partially done by the human
user. Limitations of this approach are that it still requires
a hard-coded fitness function and that results are somewhat
dependent on it. Of interest are approaches in which there
is no such dependence on a hard-coded fitness function.
An alternative to hard-coding heuristics is to build a model

of the user’s preferences with ideas from statistical Machine
Learning. One system is to treat user feedback as inputs to a
traditional parameter estimation system [1]. This leverages
the speed of existing statistical machine learning systems
but is limited to parameterized design spaces. To move be-
yond parameterized encodings, another approach is to learn
weights on grammatical rules for constructing a design [6].
While allowing for search through a topological space of de-
signs, this does not scale to systems with large sets of rules,
or which require large derivation trees to produce a design,
or in which multiple sets of rules can produce acceptable
solutions.
Our approach is to build a model of what the user wants

to drive search, and to continuously learn and refine this
model of the user’s preferences concurrent with the design
process. The idea behind our approach comes from prior
work with the Estimation-Exploration Algorithm [2, 3], in
which a coevolutionary system is used to evolve an esti-

mation population, which evolves improvements to models
of the hidden system, given pairs of input/output data ob-
tained from the physical model(s) being approximated; and
an exploration population, which evolves intelligent tests to
perform on the hidden target system using the best models
so far. In this case, the “hidden system” is the human user,
of whom the computer is trying to build a model.
By having a computer model of the human’s desires, this

model can be used tirelessly to perform thousands or mil-
lions of evaluations and thereby circumvent the limitations
of having human users act as the fitness function. Already
a version of this approach has been tried on IEAs and it
seemed to work well [11]. We have implemented our own
variant, which we have called The Approximate User (TAU),
with two ways of modeling the user and here we are perform-
ing a more rigorous comparison of this approach against a
basic IEA.

BA

Figure 1: A simple relations graph showing that de-
sign A is preferred over design B.

3. OVERVIEW OF TAU
The TAU algorithm differs from a Basic IEA in that it uses

a model of the user to perform its fitness evaluations rather
than having the user manually evaluate each candidate so-
lution. A user-model is built from a relations graph, which
is a directed graph which stores every preference provided
as input by the user. From this relations graph, modern ma-
chine learning techniques are used to train a model which
can accurately match the user’s preferences stored in this
graph. This model of the user is then used as the evaluation
function for a traditional optimizer to create a new set of
solutions. Once a new set has been produced, a subset of
them are presented to the user and the process repeats until
a satisfactory result is produced.

An initial version of The Approximate User (TAU) algo-
rithm for user-modeling has been implemented and an IEA
augmented with TAU operates as follows:

1. Use the existing User Model to generate a set of candi-
date designs to present to the user. If the User Model
is empty, generate random designs. This set of designs
should be both good and diverse.

2. After the user has indicated their preference, update
the relations graph by inserting the designs which were
presented along with the user’s preferences.

3. Do one of 3a (Comparator) or 3b (Fitness-Predictor):

3a. Create a newer User Model by training a classifier
to correctly predict each relation in the relations
graph.

3b. Sort the designs into layers of preferences, assign
a fitness to each layer and then create a newer
User Model by training a function approximator
to match this.

4. Quit if a satisfactory solution has been produced.

For Step 1, we have implemented an Evolutionary Algo-
rithm (EA) to create a set of designs using the User Model
from Step 3 to either rank (3a) or score (3b) individuals. The
EA used is configured to have a population size of 5 times
the size of the grid shown to the user and a generational
EA is run for 25 generations. Individuals are selected us-
ing tournament selection, with a tournament size of 2. New
individuals are created using either mutation (65% of the
time) or recombination (35% of the time) and are inserted
into the population using Deterministic Crowding [10] to
maintain genotypic diversity.

The data structure from which user models are built is
the relations graph. The relations graph (Step 2) is a di-
rected graph in which each node represents a design which
has been shown to the user and each edge represents a user
preference. For example, if a user is shown designs A and B

and indicates that s/he prefers design A, then the relations

Better−than
(confidence value)

Worse−than
(confidence value)

Feature n

Feature 2
Feature 1

Feature n
...
Feature 2
Feature 1

Design
CriteriaModel

User

...

Feature Extraction

Train

Candidate 1

Candidate 2

Figure 2: The basic structure of a Comparator user
model. Features are extracted from two candidate
designs and are fed into the Comparator, which then
uses these features to predict which one is better.

graph will have two nodes, A and B, and a directed edge from
A to B (Figure 1). The difference between the two variants of
TAU is in how this relations graph is used to model a user.
The first variant of TAU models a user with a Comparator

(Step 3a.), which takes the features of two designs as inputs
and as an output it indicates which design is preferred (Fig-
ure 2). This user model is trained on the relations in the
relations graph to predict, for any pair of designs, which
one is better. In determining dominance from the relations
graph, it is assumed that the dominance relation is transi-
tive. Consider a population of candidate solutions (called
individuals by those in the field of Evolutionary Computa-
tion) indA, indB and indC . If indA is better than indB ,
and indB is better than indC , it is assumed that indA is
also better than indC .
Thus two key advantages of the Comparator approach are

that more relations can be derived from the graph than there
are elements in the graph, and the number of relations grows
faster than the size of the graph. For example, the relations
graph in Figure 3(a) contains six individuals (A through F)
and represents a subset of the entire relations graph that
might exist after a couple of prompts to the user. There
are nine relations that can be derived from this graph –
indicating the user’s preference from past queries – with the
first five relations being the arrows that are shown. The rest
are: A is better than E; A is better than F; C is better than
E; and C is better than F. If, after being presented with new
designs G and H and previously seen designs B and C, the
user indicates that s/he prefers B and G (Figure 3(b)), then
two new nodes and four edges are added to the relations
graph (Figure 3(c)). In addition to this, four additional
relations can be derived: G is preferred over D, E and F, and
A is preferred over H. It is this set of relations which can
be derived from the relations graph which the Comparator
user-model is trained to match.
The comparator user-model used here is quite similar to

that of Schmidt and Lipson [11] with a few key differences.
In Schmidt and Lipson’s implementation, a population of
ANNs was evolved using EAs, and the Estimation-Exploration
Algorithm was used to determine a pair of designs to present
to the user to evaluate and indicate their preference. Here,
an ensemble of ANNs is trained using backpropagation and
several designs are presented to the user with designs se-
lected by using the ensemble to identify the better candi-
dates in the population.

A C

DB

E F

(a)

C

H

B

G

User Interface

User selects B and G
(b)

D

E F

A

H C

G B

(c)

Figure 3: An example of how an update of the re-
lations graph works: (a) shows the current relations
graph consists of candidate solutions A through F;
(b) two of these “old” candidates are shown to the
user as well as two new ones, G and H, of which
the user selects B and G; (c) based on the user’s
selection, the relations graph is now updated.

The other approach to user modeling is that of fitness
prediction (Step 3b.). With this approach, the nodes in
the relations graph are organized into layers of dominance,
a fitness value is assigned to the nodes in each layer, and
function approximator is trained to match the features of
the designs to the appropriate fitness value. To put nodes
into layers, all nodes which are not dominated by any other
nodes are put into a layer and removed from the graph.
This step of removing all non-dominated nodes to create a
layer is repeated until all the nodes are removed from the
relations graph. Applying this method to the relations graph
in Figure 3(c) produces the layers in Figure 4.

To implement both user models the Fast Artificial Neural
Network (FANN) library is used. ANNs are used because
they have robust regression power with excellent interpola-
tion and extrapolation characteristics [8]. Their classifica-
tion output also corresponds to their statistical confidence
in their prediction. In other words, noisy samples or con-
flicting samples reduce prediction confidence but in general
maintain prediction accuracy [4]. The basic structure of a
comparator neural net is shown in Figure 2. To improve
performance, we are using an ensemble of three ANNs to

A

B

G

C

D

E F

H

Level 3:

Level 4:

Level 2:

Level 1:

Level 0:

Figure 4: The result after taking the relations graph
in Figure 3(c) and assigning levels to each node.

P3

A0
A1

A2

P1

P2

P0

P4

Figure 5: An example drawing that is scored for its
closeness to a square.

create a User Model. Each ANN in the ensemble has a sin-
gle hidden layer of 7 hidden units, a 40% connection density
of the available, with weights randomly selected in the range
of -0.1 to 0.1. Each ANN is trained using backpropagation
for at most 50 iterations through the training data or until
the training error is less than 0.001.

4. SIMULATING A HUMAN USER
Instead of performing comparison studies with real people,

in this work a simulated person is used to drive the IEAs.
The advantage of a simulated person is that comparisons
between different versions of the TAU IEA and the Basic
IEA can be done as often as desired. The simulated person is
implemented as a combination of a scoring function for how
well candidate designs match a target shape and a method
for using this to drive the IEA. This scoring function could
be used as a fitness function in a regular EA but in this case
it is used as the target function which the TAU algorithm is
trying to learn. Since it is not directly used to drive the EA
we choose not to call it a fitness function to avoid confusion.
Here, designs are constructed from a contiguous sequence

of connected line segments. The design-scoring function
used by the simulated human user takes as input the end-
points of these line-segments – P0, P1, P2, . . . – and com-
putes how close these line segments are to the target shape.

For these experiments, the test problem used is that of cre-
ating a square out of a sequence of four connected line seg-
ments. The four line segments are contiguous and are en-
coded as a real-valued vector with five x and y coordinates
for the 5 end points, P0, P1, . . . P4, Figure 5. This scoring
function has three distinct components: a score on the gap
between P0 and P4; a score on how similar in length each line
segment is to each other; and a score on how similar each
of the three angles, A0, A1 and A2 is to a right angle. Each
of these three scoring-components has a range of 0 to 1 and
the overall score is a product of these three sub-functions.

When creating a square from the five points which specify
four contiguous line segments the first and last points, P0

and P4, must be the same. To score for this result the gap
score function, Sgap, divides the distance between points P0

and P4 by the sum of the lengths for each of the four line
segments:

Sgap = 1−
distance from P0P4

sum of the length of all line segments
(1)

Another characteristic of a square is that all four sides
have the same length. The score for this, the sub-function
Slengths takes the length of each line segment and divides
this by the average length of the four line segments. The
ratio of the length of each side to the average length, Li, is
compared against the desired ratio, Ldesired. For a square
Ldesired is 1 for all line segments. To create a value between
0 and 1, the smaller of these two values is divided by the
larger. This is done for each line segment and all four of
these values are multiplied together:

Slengths(Ldesired) =

4
∏

i=0

{

|Ldesired|
|Li|

if Li > Ldesired

|Li|
|Ldesired|

otherwise

(2)

The third characteristic that is scored for is to score for
the angles being right angles using the sub-function Sangles.
Here, each angle Ai is compared against the desired angle,
Adesired and a value between 0 and 1 is computed similar to
with Slengths. For a square Adesired is either −π/2 for all
three angles or +π/2 for all three angles. The result for all
three angles is multiplied together and returned:

Sangles(Adesired) =
2
∏

i=0

|Adesired|

|Ai −Adesired|+ |Adesired|
(3)

The overall score for how well a given shape matches the
target shape is a product of the previous three sub-functions.
For a square, the two options are for all line segments to have
the same length and all three angles must be positive 90◦

turns (π/2) or they must all be negative 90◦ turns (−π/2):

S = SgapSlengths(1)max
(

Sangles(−π/2), Sangles(π/2)
)

(4)

This approach to scoring how well a given shape matches
a target shape is generic and can be used for scoring for
different shapes by supplying the desired line-segment ratios
and angles for the target shape. Because of symmetries,
there are often multiple ways of producing a given shape
from a sequence of line segments so the function returns the
maximum of the different options.

In addition to the scoring function, the simulated user has
a simple algorithm for driving the IEA to try and produce
a desired drawing. The user interface for the IEA allows
the user to: select and de-select designs; create a new set

of candidate designs based on the current selections; discard
all of the existing designs and create a new set of candidate
designs based on the previous selections; and back-track to
the previous set of designs. Roughly, the algorithm for the
simulated human user requests a set of randomly generated
designs until it finds one that scores higher than 0.25. It
then iterates over selecting the top design, along with up
to 2 other drawings which have a score within 10% of the
top drawing. If the top drawing is not as good as the best
drawing from the previous iteration, the algorithm requests
an alternative set of candidates. If after three tries a new
best drawing is not found, it backs up a level and tries again.
More precisely, the algorithm for the simulated user is as

follows:

1: Level = 0
2: Set existing best to 0.
3: repeat ⊲ Starting with randomly generated designs.
4: Request new random designs.
5: Score each design.
6: until Best score is > 0.25
7: repeat
8: if New best > previous best. then
9: Level = Level + 1
10: Tries[Level] = 0
11: Select the best design.
12: Select next 2 best with score within 10% of best.
13: Submit selections and request new designs.
14: Score each design.
15: continue.
16: else
17: Tries[Level] = Tries[Level] + 1.
18: if Tries[Level] > 3 then
19: Go back to previous generation.
20: Level = Level - 1
21: if Level = 0 then
22: Goto line 1. ⊲ Move to initial state.
23: end if
24: end if
25: Request an alternative set of design.
26: Score each design.
27: end if
28: until Best score is 1.

5. EXPERIMENTAL SETUP
To demonstrate that concurrent construction of a user-

model can accelerate search we compare the TAU algorithm
– using both the Comparator (TAU-C) and Fitness Pre-
dictive (TAU-FP) approaches to user modeling – against a
Basic IEA. The Basic IEA has the designs selected by the
user being the parent designs for creating the next set of
designs to present to the user. The configuration of TAU
was described in Section 3, and both types of user modeling
were tested. All of these IEAs are driven by the simulated
human user described in Section 4.
An example of the application with a 3x5 grid of designs

is shown in Figure 6. This has a sequence of pages shown
to the user in interactively designing a square. The top
page (Figure 6(a)) shows an initial set of randomly gener-
ated line drawings along with the simulated user’s selections
(in green). The next three images (Figures 6(b) to 6(d))
show the subsequent iterations of presenting the [simulated]
user with new designs and their selections. In this exam-

(a)

(b)

(c)

(d)

Figure 6: A sequence of pages in interactively de-
signing a square using the TAU Fitness Predictive
user-modeling system.

ple the TAU algorithm is used with the fitness predictive
user-modeling system.
An important point to note is that with TAU, the features

being used to build and utilize user-models are different from
the features used by the simulated human user to score de-
signs. For the TAU IEAs, the features for a given design
have the ratio of the length of each line segment to the av-
erage length of line segments in that design and the angle
between each line segment. Also, the angle of the first line
segment to the horizon is included to indicate the overall
orientation of the design and the size of the average line seg-
ment is included to provide an indicator for the overall size
of the drawing.

6. EXPERIMENTAL RESULTS

(a) (b)

Figure 7: The two test problems tried are to interac-
tively evolve an equilateral triangle (a) and a square
(b).

For these experiments 250 trials were run with each of the
Basic IEA, and TAU with both the Comparator (TAU-C)
and the Fitness Predictive (TAU-FP) user models on grid
sizes of 3x3, 3x4 and 3x5. These were tried on two test prob-
lems: 1. producing an equilateral triangle; and 2. producing
a square (Figure 7). Results of our experiments for the 3x3
and 3x5 grid sizes are shown graphically in Figure 8 and also
in tabular form for the 3x5 grid in Table 1. Results for the
3x4 grid are not shown, but for all three systems these fall
roughly in between results for the 3x3 and for the 3x5.
The graphs in Figure 8 show that all variants of IEAs per-

form better with a larger grid size and do better on the easier
problem (creating a triangle out of three lines) than on the
harder problem (creating a square out of four lines). The
left set of graphs shows the frequency (out of the 250 trials)
in which a given IEA reached a given degree of optimality
in the design problem. In all cases TAU-C had the great-
est likelihood of success, and only had a steep dropoff after
the 95% range. The TAU-FP approach was not as reliable
and tended to have a moderate dropoff in likelihood to suc-
ceed starting at around the 35% range, with a steep dropoff
happening around 90% to 95%. Both variants of TAU were
able to achieve 100% designs (75% of the time with TAU-
C and 33% of the time with TAU-FP). The least reliable
is the Basic IEA which, while more reliable than TAU-FP
up to around 85%, then had a large drop in reliability and
struggled to make even 98% of optimal with any regularity.
The set of graphs on the right side of Figure 8 show

another important difference between TAU and the Basic
IEA. With the Basic IEA, the number of selection iterations
needed to achieve a given level of optimality seems to be
growing at a polynomial rate. Combine this with the Basic

IEA’s rapidly decreasing success rate and it suggests that
the Basic IEA will not be able to scale to achieving good
results on more challenging problems. In contrast, with the
TAU IEA it seems that a few selection rounds are needed
for the algorithm to learn a reasonable model of what the
user wants and, after this, it has a fairly flat, linear growth
in the number of selection rounds needed to achieve a given
level of design optimality. Here, TAU-C is about twice as
fast as TAU-FP, and both have a slight upward inflection in
the number of search iterations to get the last few percent of
optimality. Overall, both variants of TAU show accelerated
search over the basic IEA.

7. CONCLUSION
In this paper the method of accelerating IEAs through

user-modeling was analyzed with The Approximate User
(TAU) algorithm. With TAU, a relations graph of the user’s
preferences is updated after each interaction and this rela-
tions graph is used to build either a Comparative or Fitness
Predictive model of the user. It is these user models which
are used to drive an EA, thereby accelerating search by al-
lowing many search evaluations to take place much more
rapidly than by a human user.

To validate the effectiveness of TAU, we developed an ar-
tificial human user to drive search using a basic IEA and
with the TAU IEA. Experiments were run comparing a Ba-
sic IEA against both variants of TAU. Overall, TAU was
up to 15 times more reliable at achieving near optimal re-
sults and and more than 75 times more reliable at achieving
optimal results. In addition to being more reliable, TAU
achieved near-optimal results up to 2.7 times faster. In the
best case, some trials with the TAU IEA achieved an opti-
mal designs in 4-8 selection iterations. With a much a higher
success rate at finding good solutions and the ability to find
these solutions faster, the TAU algorithm has considerable
promise in overcoming user fatigue.

We expect that by developing better approaches to mod-
eling a human user’s preferences that the TAU IEA can be
made faster and able to scale to more difficult problems. In
addition, this work is a step toward turning an IEA into a
truly Human-Computer Collaborative Search system where
the strengths of both the human and the computer are bet-
ter utilized.

Acknowledgments.

This research was supported in part by the NSF Creative-IT
grant 0757532 and DARPA M3 grant W911NF-1-11-0076.
In addition, thanks to Grace Lin for her work on an early
prototype.

8. REFERENCES
[1] G. J. Barnum and C. A. Mattson. A computationally

assisted methodology for preference-guided conceptual
design. Journal of Mechanical Design, 132, 2010.

[2] J. Bongard and H. Lipson. Nonlinear system
identification using coevolution of models and tests.
IEEE Transactions on Evolutionary Computation,
9:361–384, 2005.

[3] J. Bongard and H. Lipson. Automated reverse
engineering of nonlinear dynamical systems.
Proceedings of the National Academy of Sciences,
104:9943–9948, 2007.

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

 0 20 40 60 80 100

%
 o

f r
un

s

% of optimal

Designing a Square (Grid Size: 3x5)

TAU-C 3x5
TAU-FP 3x5

Basic 3x5

(a)

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

 0 20 40 60 80 100

se
le

ct
io

n
ite

ra
tio

n

% of optimal

Designing a Square (Grid Size: 3x5)

Basic 3x5
TAU-FP 3x5
TAU-C 3x5

(b)

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

 0 20 40 60 80 100

%
 o

f r
un

s

% of optimal

Designing a Square (Grid Size: 3x3)

TAU-C 3x3
TAU-FP 3x3

Basic 3x3

(c)

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

 0 20 40 60 80 100

se
le

ct
io

n
ite

ra
tio

n

% of optimal

Designing a Square (Grid Size: 3x3)

Basic 3x3
TAU-FP 3x3
TAU-C 3x3

(d)

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

 0 20 40 60 80 100

%
 o

f r
un

s

% of optimal

Designing a Triangle (Grid Size: 3x5)

TAU-C 3x5
TAU-FP 3x5

Basic 3x5

(e)

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

 0 20 40 60 80 100

se
le

ct
io

n
ite

ra
tio

n

% of optimal

Designing a Triangle (Grid Size: 3x5)

Basic 3x5
TAU-FP 3x5
TAU-C 3x5

(f)

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

 0 20 40 60 80 100

%
 o

f r
un

s

% of optimal

Designing a Triangle (Grid Size: 3x3)

TAU-C 3x3
TAU-FP 3x3

Basic 3x3

(g)

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

 0 20 40 60 80 100

se
le

ct
io

n
ite

ra
tio

n

% of optimal

Designing a Triangle (Grid Size: 3x3)

Basic 3x3
TAU-FP 3x3
TAU-C 3x3

(h)

Figure 8: This figure shows graph which have plots of the performance of the Basic IEA and TAU using both
a Comparator user-model (TAU-C) and a Fitness-Predictive user-model (TAU-FP). The graphs on the left
show the probability of reaching a given percentage of optimal and the graphs on the right are the expected
number of iterations to reach a given degree of optimality. This shows that the Comparator user models are
better than the Fitness-Predictive ones, and both are better than the Basic IEA.

Square
Basic IEA TAU Fitness-Predictive TAU Comparator

% of Optimal Prob Success Avg Iterations Prob Success Avg Iterations Prob Success Avg Iterations
80 0.896 32.317 ± 19.8847 0.876 30.9726 ± 24.3431 0.968 16.4339 ± 15.2793
90 0.728 46.544 ± 19.4014 0.808 35.604 ± 25.29 0.968 19.2727 ± 17.2324
95 0.44 62.7455 ± 20.1492 0.704 42.8182 ± 27.6687 0.964 22.971 ± 19.9527
98 0.112 73.5357 ± 16.8907 0.54 45.7111 ± 29.7705 0.904 24.7522 ± 22.3901
99 0.028 68.5714 ± 12.6867 0.456 46.2632 ± 30.6672 0.836 24.8612 ± 23.7368

100 0.008 74 ± 22.6274 0.328 41.5732 ± 30.1236 0.756 22.3704 ± 21.6112

Triangle
Basic IEA TAU Fitness-Predictive TAU Comparator

% of Optimal Prob Success Avg Iterations Prob Success Avg Iterations Prob Success Avg Iterations
80 1 6.084 ± 4.54042 1 4.2 ± 4.04294 1 3.672 ± 3.07151
90 1 10.836 ± 6.15864 1 5.46 ± 4.76352 1 5.084 ± 3.74554
95 1 19.452 ± 10.1443 1 6.896 ± 5.3283 1 6.168 ± 4.0105
98 0.952 41.0252 ± 20.315 0.996 9.42972 ± 7.0628 1 7.828 ± 4.81531
99 0.696 57.431 ± 22.2958 0.996 13.2008 ± 9.83287 1 9.4 ± 5.88579

100 0.012 70.6667 ± 11.9304 0.732 43.8525 ± 25.7719 0.908 32.37 ± 25.087

Table 1: Summary of results for evolving a square on the 3x5 grid using the Basic IEA and the TAU algorithm
with both Fitness-Predictive user-modeling and Comparative user-modeling. The top shows the results on
interactively evolving a square, and the bottom are results on evolving a triangle. Both variants of TAU are
more than 15 times more likely to reach 99% of optimal than the Basic IEA and up to 2.7 times faster.

[4] J. Bridle. Probabilistic interpretation of feedforward
classification network outputs, with relationships to
statistical pattern recognition. In Fogelman-Soulie and
Herault, editors, Neurocomputing: Algorithms,

Architectures and Applications, NATA ASI Series.
Springer, 1990.

[5] C. Caldwell and V. S. Johnston. Tracking a criminal
suspect through ’face-space’ with a genetic algorithm.
In R. K. B. L. B. Booker, editor, Proc. of the Fourth

Intl. Conf. on Genetic Algorithms, pages 416–421, San
Mateo, CA, 1991. Morgan Kaufmann.

[6] M. I. Campbell, R. Rai, and T. Kurtoglu. A stochastic
graph grammar algorithm for interactive search. In
14th Design for Manufacturing and the Life Cycle

Conference, pages 829–840. ASME, 2009.

[7] J. Clune and H. Lipson. Evolving three-dimensional
objects with a generative encoding inspired by
developmental biology. Lecture Notes in Computer

Science, 2011.

[8] G. Cybenko. Approximations by superpositions of a
sigmoidal function. Math. Contrl., Signals, Syst.,
2:303–314, 1989.

[9] R. Dawkins. The Blind Watchmaker. Harlow
Longman, 1986.

[10] S. W. Mahfoud. Crowding and preselection revisited.
In R. Männer and B. Manderick, editors, Parallel
Problem Solving from Nature, 2, pages 27–36.
North-Holland, 1992.

[11] M. Schmidt and H. Lipson. Actively probing and
modeling users in interactive co-evolution. In M. K.
et al., editor, Proc. of the Genetic and Evolutionary

Computation Conference, GECCO-2006, pages
385–386, Seattle, WA, 2006. ACM Press.

[12] J. Secretan, N. Beato, D. B. D. Ambrosio,
A. Rodriguez, A. Campbell, J. T. Folsom-Kovarik,
and K. O. Stanley. Picbreeder: A case study in

collaborative evolutionary exploration of design space.
Evolutionary Computation, 2011.

[13] K. Sims. Artificial Evolution for Computer Graphics.
In SIGGRAPH 91 Conference Proceedings, Annual
Conference Series, pages 319–328, 1991.

[14] H. Takagi. Interactive evolutionary computation:
fusion of the capabilities of EC optimization and
human evaluation. In Proceedings of the IEEE, pages
1275–1296, 2001.

[15] S. Wannarumon, E. L. J. Bohez, and K. Annanon.
Aesthetic evolutionary algorithm for fractal-based
user-centered jewelry design. Artificial Intelligence for

Engineering Design, Analysis and Manufacturing,
22:19–39, 2008.

