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The automated design,  construction, and deployment 
of autonomous and adaptive machines is an open 
problem. Industrial robots are an example of 
autonomous yet nonadaptive machines: they execute 
the same sequence of actions repeatedly. Conversely, 
unmanned drones are an example of adaptive yet 
non-autonomous machines: they exhibit the adaptive 
capabilities of their remote human operators. To date, 
the only force known to be capable of producing fully 
autonomous as well as adaptive machines is biological 
evolution. In the field of evolutionary robotics,9 one 
class of population-based metaheuristics—evolutionary 
algorithms—are used to optimize some or all aspects of 
an autonomous robot. The use of metaheuristics sets 
this subfield of robotics apart from the mainstream 
of robotics research, in which machine learning 
algorithms are used to optimize the control policya of a 
robot. As in other branches of computer science the use 
of a metaheuristic algorithm has a cost and a benefit. 
The cost is that it is not possible to guarantee if (or 
when) an optimal control policy will be found for a given 
robot. The benefit is few assumptions must be made

a	 A control policy is some function that transforms a robot’s sensor signals into  
commands sent to its motors.

about the problem: evolutionary algo-
rithms can improve both the parame-
ters and the architecture of the robot’s 
control policy, and even the shape of 
the robot itself.

Because the trial-and-error nature 
of evolutionary algorithms requires a 
large number of evaluations during 
optimization, in many evolutionary 
robotics experiments optimization is 
first carried out in simulation. Typi-
cally an evolutionary algorithm gener-
ates populations of virtual robots that 
behave within a physics-based simu-
lation.b Each robot is then assigned 
a fitness value based on the quality of 
its behavior. Robots with low fitness 
are deleted while the robots that re-
main are copied and slightly modified 
in some random manner. The new ro-
bots are evaluated in the simulator and 
assigned a fitness, and this cycle is re-
peated until some predetermined time 
period has elapsed. The most-fit robot 
may then be manufactured as a physi-
cal machine and deployed to perform 
its evolved behavior.

To illustrate the distinction between 
mainstream and evolutionary robotics, 
consider two experiments drawn from 
the two fields. Legged locomotion—

b	 Interested readers may download and perform 
their own evolutionary robotics experiments 
at http://www.uvm.edu/~ludobots.
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Taking a biologically inspired approach to  
the design of autonomous, adaptive machines.
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 key insights

 � �Manual design of a mobile robot  
that is autonomous and adaptive is  
extremely difficult.

 � �As an alternative, computers can ‘evolve’ 
populations of robots in a simulator 
to exhibit useful behavior and then 
manufacture physical versions of the best 
ones, very much like how farmers breed 
crops for high yield. This approach is 
known as evolutionary robotics.

 � �This evolutionary approach changes 
the way we view robotics: rather than 
machine-learning techniques improving 
behaviors for a hand-designed robot, 
focus shifts to creating an evolutionary 
system that continuously designs and 
manufactures different robots with 
increasing abilities.
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optimizing a control policy that allows 
a two, four, or six-legged robot to move 
over rugged terrain—is a popular area 
of study in robotics. In mainstream ro-
botics, machine-learning algorithms 
can now optimize walking behavior for 
a physical two-legged robot in a matter 
of minutes.7 Alternatively, a recent in-
vestigation in simulation has shown if 
robots are evolved to move over rough 
terrain, robots will eventually evolve 
from amorphous shapes into robots 
exhibiting the rudiments of append-
ages (Figure 1b).1

The former experiment can enable 
walking behaviors for a certain kind 
of robot; the latter experiment can 
continuously produce different robots 
adapted to different environments. 
Put differently, mainstream robotics 
aims to continuously generate better 
behavior for a given robot, while the 
long-term goal of evolutionary robot-
ics is to create general, robot-generat-
ing algorithms.

History
The goal of artificial intelligence, since 
its beginnings, has been to reproduce 
aspects of human intelligence (such 
as natural language processing or de-
ductive reasoning) in computers. In 
contrast, most roboticists aim to gen-
erate noncognitive yet adaptive behav-
ior in robots such as walking or object 
manipulation. Once these simpler 
behaviors are realized successfully in 
robots, it is hoped the behavior-gener-
ating algorithm will scale to generate 
ever more complex behavior until the 
adaptive behavior exhibited by a given 
robot might be characterized by an 
observer as intelligent behavior. This 
operational definition of intelligence 
bears a resemblance to the Turing 
Test: if a robot looks as if it is acting 
intelligently, then it is intelligent.

Note the emphasis in robotics on 
“behavior:” the action of a robot gen-
erates new sensory stimulation, which 
in turn affects its future actions. This 
differs from non-embodied AI al-
gorithms, which have no body with 
which to affect, or be affected by the 
environment. In non-embodied AI, in-
telligence is something that arises out 
of introspection; in robotics, the belief 
is that intelligence will arise out of ever 
more complex interactions between 
the machine and its environment. This 

Evolutionary biorobotics. In bioro-
botics, investigators implement ana-
tomical details from a specific animal 
in hardware and then use the resulting 
robot as a physical model of the ani-
mal under study. Although much work 
in this area has been dedicated to non-
human animals (see supplemental 
material available in the ACM Digital 
Library; http://dl.acm.org), many ro-
boticists choose to model the human 
animal: a humanoid robot is more 
likely to be able to reach a doorknob, 
climb steps, or drive a vehicle than a 
wheeled robot or one measuring only 
a few inches in length. The humanoid 
form, however, requires mastery of 
bipedal locomotion, a notoriously dif-
ficult task. As an example, Reil et al.30 
evolved a bipedal robot in simulation 
that first mastered walking and then 
evolved the ability to walk toward a 
sound source.

In short, bioroboticists attempt to 
model, in robot form, the products of 
evolution: individual organisms. Evo-
lutionary roboticists in contrast at-
tempt to re-create the process of evolu-
tion, which generates robots that may 
or may not resemble existing animals.

Evolutionary biorobotics is a 
blend of these two approaches: inves-
tigators build robots that resemble 
a particular animal, and then evolve 
one aspect of the robot’s anatomy 
to investigate how the correspond-
ing aspect in the animal might have 
evolved. For example Long and his 
colleagues19 have evolved the stiff-
ness of artificial tails attached to 
swimming robots: robots with tails 
of differing stiffness have differing 
abilities to swim fast or turn well. 
This provides a unique experimental 
tool for investigating how backbones 
originally evolved in early vertebrates.

Developmental robotics. The field of 
developmental robotics22 shares much 
in common with evolutionary robot-
ics. Practitioners of developmental ro-
botics draw inspiration from develop-
mental psychology and developmental 
neuroscience: how do infants gradu-
ally mature into increasingly complex 
and capable adults? Like evolutionary 
robotics, work in developmental robot-
ics tends to have either a scientific or 
an engineering aim. Developing robots 
can be used as scientific tools: they can 
serve as physical models for investigat-

idea that intelligence is not just some-
thing contained within the brain of the 
animal or control policy of a robot but 
rather is something that emerges from 
the interaction between brain, body, 
and environment, is known as embod-
ied cognition.27

The very first experiments in evolu-
tionary robotics9 began to shed light 
on embodied cognition. In one set of 
experiments a robot equipped with a 
camera had to move toward certain 
shapes and away from others. Based on 
the way the robot evolved to move, the 
control policy of the robot often only 
made use of two small pixel patches 
rather than the entire video stream. In 
other words, the robot evolved the abil-
ity to recognize objects through a com-
bination of motion and sensation. This 
approach is non-intuitive to a human 
designer, who might implement ob-
ject-recognition algorithms that draw 
on all of the pixels in the video stream.

Applications
Evolutionary algorithms have been ap-
plied in several branches of robotics 
and thus evolutionary robotics is not 
strictly a subfield of robotics. When 
applied well, an evolutionary ap-
proach can free the investigator from 
having to make decisions about every 
detail of the robot’s design. In many 
cases the evolutionary algorithm dis-
covers solutions the researcher might 
not have thought of, especially for 
robots that are non-intuitive for a hu-
man to control or design. For example 
it is often difficult to see how best to 
control a soft robot (Figure 1j) using 
traditional machine learning tech-
niques, let alone determine the best 
combination of soft and rigid materi-
als for such a robot.

Moreover, ideas can flow not just 
from biology to robotics but back 
again: evolved robots that exhibit 
traits observed in nature—such as 
a robot swarm that evolves coop-
erative rather than competitive ten-
dencies—often provide new ways 
of thinking about how and why that 
trait evolved in biological popula-
tions. In this way evolutionary robot-
ics can give back to biology (“Why did 
this trait evolve?”) or more cognitively 
oriented fields such as evolutionary 
psychology (“Why did this cognitive 
ability evolve?”).



review articles

august 2013  |   vol.  56  |   no.  8  |   communications of the acm     77

ing biological development. Alterna-
tively, engineers can draw on insights 
from biological development to build 
better robots.

Evo-devo-robo. Developmental ro-
botics tends to focus on post-natal 
change to a robot’s “body” and “brain” 
as the robot learns to master a particu-
lar skill. Evolutionary robotics experi-
ments on the other hand generate ro-
bots that become more complex from 
generation to generation, but typically 
each individual robot maintains a fixed 
form while it behaves.

Biological systems however exhibit 
change over multiple time scales: in-
dividual organisms grow from infants 
into adults, and the developmental 
program that guides this change is in 
turn altered over evolutionary time. 
This process is known as the evolution 
of development, or evo-devo. This bio-
logical phenomenon has recently been 
exploited in evolutionary robotics:3 At 
the outset of evolution, robots change 
from a crawling worm into a legged 
walking machine over their lifetime. As 
evolution proceeds, this infant form is 
gradually lost until, at the end of evolu-
tion, legged robots exhibit the ability to 
walk successfully without the need to 
crawl first. It was found this approach 
could evolve walking machines faster 
than a similar approach that does not 
lead robots through a crawling stage.

In the initial experiments of evo-
devo-robo,34 the genetic instructions 
were encoded as a specific class of 
formal grammars known as Linden-
mayer systems, or L-systems.c L-sys-
tems were initially devised to model 
plant growth: their recursive nature 
can produce fractal or otherwise 
symmetric forms. Hornby12 dem-
onstrated that robots evolved using 
such grammars do indeed produce 
repeated forms (Figure 1a). He also 
showed this repetition can make it 
easier for evolutionary algorithms to 
improve such robots, compared to 
robots lacking in genetically deter-
mined self-similarity.

The evolution of robot bodies 
and brains differs markedly from all 
other approaches to robotics in that 
it does not presuppose the existence 

c	 Sims’ work had a large impact on the comput-
er graphics community and L-systems remain 
a popular technique within that field.

of a physical robot. Rather, the user 
provides as input a metric for mea-
suring robot performance along with 
a simulation of the robot’s task envi-
ronment, and the algorithm produces 
as output the body plan and control 
policy for a robot capable of perform-
ing the task. This can then be used 
to manufacture a physical version of 
the evolved robot. Such an algorithm 
could, in principle, continually re-
ceive new desired behaviors and task 
environments and continuously gen-
erate novel robots.

In this way, the roboticist can make 
fewer assumptions about the final 
form of the robot and have greater 
confidence the final evolved robot is 
better adapted to the environment in 
which it must operate. For example, 
there is often a debate about whether 
a wheeled or legged robot is more ap-
propriate for moving over a given sur-
face. Although not yet demonstrated, 
an evolutionary robotics algorithm 
should generate wheeled robots if 
supplied with a simulation of flat ter-
rain and legged robots if supplied 
with a simulation of rugged terrain. 
Recent work in mainstream robotics 
has demonstrated the possible advan-
tage of combining wheels and legs in 
the same robot: an evolutionary sys-
tem should rediscover this manually 
devised solution if it is indeed supe-
rior to either wheels or legs alone.

Another advantage of this ap-
proach over mainstream robotics is 
its potential for better scalability: by 
genetically encoding assembly in-
structions rather than the blueprint 
of a robot, more complex machines 
can be evolved with little or no in-
crease in the amount of information 
encoded in the genome. For example, 
consider an approach in which ro-
bots are specified by a formal gram-
mar such that the invocation of a 
rewrite rule replaces one part of the 
robot with two or more parts. Thus 
the more times a given set of rewrite 
rules are invoked, the more complex 
the resulting robot becomes. If evolu-
tion increases the number of rewrite 
rule invocations, then simple robots 
can evolve into more complex robots 
with no increase in the information 
content of the underlying genomes 
describing those robots.

Despite the promise of this ap-

The evolution  
of robot bodies 
and brains differs 
markedly from  
all other 
approaches 
to robotics in 
that it does not 
presuppose  
the existence of  
a physical robot.
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Figure 1. A sampling of representative work in evolutionary robotics.

Evolutionary robotics often involves optimizing 
not only the controller of a robot but also its 
body plan. Formal grammars (a12) and algo-
rithms that simulate development (b1) have 
been used to optimize robots in simulation. 
Additive manufacturing has been employed to 
build physical versions of evolved simu-
lated robots semiautomatically (c,d18). Once 
deployed as physical machines, evolutionary 
algorithms have been used to allow damaged 
robots to recover from injury (e4) as well as 
ease the transferral of newly evolved control-
lers from simulation to the physical robot (f16). 
In addition to locomotion, researchers have 
evolved more cognitively demanding behaviors 
such as discriminating between differently 
shaped objects by manipulating them (g35) or 
physically demanding tasks like aerial swarm-
ing (h11). Behaviors have also been evolved for 
robots with non-traditional body plans such as 
tensegrity robots (i;26 robot built by S. Fivat), 
soft robots (j32), modular robots (k39) and robot 
swarms (l33).
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the danger of failure may make desig-
nating one robot as the leader a diffi-
cult or risky proposition.

Evolutionary approaches have been 
used to optimize individual behaviors 
within a robot swarm. In the first such 
work,29 control policies for homoge-
neous robots evolved that allowed 
them to move in concert, despite the 
lack of a leader. Repeatedly evaluating 
large numbers of candidate control-
lers on groups of physical robots plac-
es severe demands on the underlying 
hardware, so much work in this area 
has relied on simulations of robot 
swarms. This has enabled researchers 
to investigate more complex group be-
haviors, such as group hunting.20 Such 
experiments require an understand-
ing of co-evolution: one group’s abil-
ity to overcome a second group makes 
it likely the second group will evolve 
to defend against the original group. 
This in turn exerts pressure for the 
original group to evolve a new strat-
egy, and so on.

Co-evolution requires competition 
between groups, but also cooperation 
between individual group members. 
Evolutionary robotics has been used 
to investigate the conditions under 
which cooperation will arise, and how 
communication may evolve to sup-
port it. In an early study communica-
tion evolved in groups of “male” and 
“female” simulated robots so that 
female robots could call out to and 
attract males for mating.36 It was ob-
served that different dialects would 
evolve and compete with one another. 
More recent work with populations of 
simulated robots has demonstrated 
how distinct communication strate-
gies can arise and that there are evolu-
tionary advantages to more complex 
strategies.38 These and other studies 
may provide unique tools for study-
ing the evolution of biological com-
munication strategies in general, and 
human language in particular. Such 
work could also provide a physical 
substrate on which to test hypotheses 
from game theory that involve decep-
tion, cooperation, and competition.

Modular robotics. Advancing tech-
nology has now made modular ro-
botics feasible: Individual robots, or 
modules, may dynamically attach and 
detach from one another to create a 
robot with a constantly changing form 

proach, only a handful of such al-
gorithms have yet been developed. 
There are five main reasons for this. 
First, implementing such an algo-
rithm is extremely difficult, as it re-
quires a robust physics-based simu-
lator that can accurately simulate 
complex mechanical constructs of 
arbitrary topology. Second, even with 
today’s available computing power it 
can be computationally prohibitive 
to evaluate the thousands or millions 
of candidate robots required to gen-
erate one of sufficient quality. Third, 
an evolutionary algorithm must be 
devised that is expressive enough to 
encode diverse robot forms and evolv-
able in the sense that successive slight 
mutations lead to successively more 
complex and capable robots. Fourth, 
building a physical copy of the often 
complex virtual robots produced by 
such systems can be prohibitive. And 
finally, such systems have yet to au-
tomatically generate a robot that is 
more complex and capable than those 
designed and built manually. Over-
coming these challenges remains a 
strong focus in the field.

Swarm robotics. One of the major 
challenges in swarm robotics is devis-
ing a control policy that, when execut-
ed by all members of the swarm, gives 
rise to some desired global behavior 
(Figure 1l). For example, if one wishes 
to program a group of robots to move 
collectively in a way similar to biologi-
cal herds, flocks, or schools of fish, it 
has been shown31 that each robot must 
balance attraction toward its local 
neighbors with repulsion away from 
neighbors that are too close.d However, 
if attraction is weighted too heavily, the 
swarm can contract into a traffic jam; if 
repulsion is weighted too strongly the 
group disperses.

This approach to controlling groups 
of robots is based on the principle of 
self-organization observed at many 
levels of biological systems: biological 
elements such as cells or organisms 
often form into cohesive patterns 
without a central control signal. This 
approach is desirable in robotics, in 
which communication limitations or 

d	 This basic algorithm has since become the 
cornerstone of computer graphics algorithms 
which simulate the movement of animal or 
human groups.

(Figure 1k). It has been shown that 
evolutionary algorithms can be used 
to optimize behaviors for a modular 
robot in a fixed form (for example, see 
Zahadat40). More recently evolution-
ary methods have been used to enable 
modular robots to self-assemble from 
their constituent parts or reconfigure 
into different functional forms (for 
example, see Meng23). Continuously 
evolving novel forms and associated 
behaviors appropriate for a newly en-
countered environment remains an 
open problem in this area.

Soft robotics. With the exception of 
wheeled vehicles, robots are typically 
constructed from jointed collections 
of rigid parts, mirroring the skeletal 
linkages of higher animals and hu-
mans. Advances in materials science, 
however, have made non-traditional 
robot body plans possible. As one 
example, the evolution of behaviors 
for tensegrity robots was reported in 
Paul26 (Figure 1i). Tensegrity struc-
tures are collections of rigid and elas-
tic links attached in a particular way 
that provide several advantages over 
traditional robots, such as the ability 
to automatically revert to their default 
form if perturbed.

Soft robots are emerging as a new 
class of machine that combines dis-
crete rigid parts with continuous, 
soft materials (Figure 1j). Such ma-
chines could “squeeze through holes, 
climb up walls, and flow around ob-
stacles.”32 Controlling such devices is 
non-trivial, as motion at one location 
of the robot can propagate in unantic-
ipated ways to other parts of the body. 
Despite this, Rieffel et al.32 success-
fully evolved locomotion for a soft ro-
bot such that it exploited rather than 
fought against the synergies within 
its body. Evolving the architectures of 
such discrete and continuous devices 
demands new kinds of optimization 
methods. Coupled with the sudden 
recent interest in this field13 there are 
many contributions that computer 
scientists interested in optimization 
could make in this area.

Formalisms
Evolutionary robotics is a mostly 
empirical endeavor, although three 
formalisms—the nature of computa-
tion, dynamical systems theory, and 
information theory—are beginning to 
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control policies for the robot that ex-
ploited, rather than fought against 
the weight of the batteries. These con-
trol policies would cause the robot to 
move such that the battery pack swung 
forward under the robot’s body before 
it changed hand holds. This would 
cause the robot’s center of mass to 
move forward, thus requiring much 
less force to release contact with the 
beam and grasp it further forward. 
This mimics the way primates exploit 
the weight of their bodies like a pen-
dulum to bring them into reach of a 
new tree limb. It is also reminiscent 
of the energy-saving passive dynam-
ics of bipedal locomotion (see more 
details in the supplemental material).

However, if robots are optimized in 
a simulator, artificial evolution may 
exploit simplifications or inaccura-
cies in how physics is simulated. Such 
evolved control policies may then fail 
to reproduce the desired behavior 
when transferred from simulated to 
physical robots. For example, if there 
is no noise in the simulator, a control 
policy may evolve to generate behavior 
based on a very narrow range of sen-
sor values. If this control policy is then 
transferred to a physical robot with a 
sensor that registers a wider range of 
values due to limitations in its elec-
tronics or mechanics, the physical ro-
bot may not behave as intended. This 
failure of evolved solutions to “cross 
the gap” from simulation to reality is 
known as the “reality gap” problem15 
and is one of the major challenges 
facing the field. However, a number 
of solutions have been proposed and 
significant progress is being made in 
this area.

In early work, sampling of the physi-
cal sensors was conducted and used 
to simulate the robot’s sensors during 
evolution.24 Alternatively, noise can be 
added to different aspects of the robot 
and its interaction with the environ-
ment: noise can be added to the sen-
sors, to the effects of the motors, or the 
position of the robot itself.15 This keeps 
evolution from exploiting artifacts of 
the simulation.

However, neither of these approach-
es scale well. If the robot must interact 
with increasingly complex and asym-
metric objects, more samples must 
be taken from the sensors that detect 
the object: the sensor must be polled 

provide a theoretical foundation for 
the field.

Morphological computation. As 
noted earlier, evolutionary robotics 
builds on the concept of embodied 
cognition, which holds that intelli-
gent behavior arises out of interac-
tions between brain, body, and en-
vironment.27 An important corollary 
of embodied cognition is that, given 
the right body plan, a robot (or ani-
mal) can achieve a given task with 
less control complexity than an-
other robot with an inappropriate 
body plan. For example, a soft ro-
bot hand can grip a complex object 
simply by enclosing it: the inner 
surface of the hand passively con-
forms to the object. A robot hand 
composed of hard material must 
carefully compute how to grasp the 
object. It has been argued that the 
physical aspect of a robot—its mor-
phology—can actually perform com-
putations that would otherwise have 
to be performed by the robot’s con-
trol policy if situated in an unsuit-
able body plan. This phenomenon 
of morphological computation25 
cannot be completely abstracted 
away from the physical substrate that 
gives rise to it in the way a Turing Ma-
chine can. Practitioners in this area 
would greatly benefit from the aid 
of theoretical computer scientists to 
formalize this concept.

Dynamical systems theory. Dynam-
ical systems theory is increasingly a 
useful tool for creating controllers 
for autonomous robots.2 Often these 
controllers take the form of artificial 
neural networks that have their own 
intrinsic dynamics: they exhibit com-
plex temporal patterns spontaneous-
ly. Evolutionary algorithms can then 
be used to shape the parameters of 
these networks such that they can be 
pushed by incoming sensor stimuli to 
fall into desired attractor states. For 
example, a neural network that falls 
into a periodic attractor may gener-
ate a rhythmic gait in a legged robot. 
However, it has been demonstrated 
that a one-to-one mapping between a 
basin of attraction in a neural network 
and a distinct robot behavior may be 
overly simplistic,14 indicating there is 
much work to be done at the interface 
of dynamical systems theory and evo-
lutionary robotics.

Information theory. Typically in an 
evolutionary robotics experiment, the 
“fitness” of a robot is measured based 
on its ability to perform a given be-
havior, such as how far it can walk or 
how well it can grasp an object. Sur-
prisingly, it has been found that maxi-
mizing certain information-theoretic 
measures within the neural network 
of evolving robots can lead to useful 
behavior.28 Why information maxi-
mization produces desired behaviors 
rather than useless, random, or unin-
teresting behavior remains mostly un-
resolved, although some progress has 
been made in this direction.8

In addition to helping with the syn-
thesis of behavior, information theory 
can also be used to analyze evolved be-
haviors. Williams et al. have recently 
shown37 that information flow—the 
transfer of information from one vari-
able to another—can be employed 
to measure how behaving robots 
“offload” computed information to 
their body and/or their environment. 
This technique therefore holds prom-
ise for formalizing the concept of mor-
phological computation.25

Challenges
There are a number of challenges cur-
rently facing the field, including trans-
ferring evolved robots from simula-
tion to physical machines; scalability 
issues; and the difficulty of defining 
appropriate fitness functions for auto-
matically measuring behavior.

The Reality Gap Problem. Both 
biological and artificial evolution are 
notorious for exploiting the poten-
tial relationship between the animal 
(or robot) and its environment to 
produce new behaviors. For instance 
the lightweight property of feathers, 
which are thought to have originally 
evolved for heat regulation, was later 
exploited for flight.e

As an example of the exploitative 
tendencies of evolutionary algo-
rithms applied to robots, a robot was 
initially designed to brachiate along 
a suspended beam.10 The robot was 
composed of a main body slung un-
der two arms, and a heavy battery pack 
attached to the main body. Gradually, 
the evolutionary algorithm discovered 

e	 This tendency of evolution to repurpose traits 
is known as “exaptation.”
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at many more distances and positions 
relative to the object because there are 
more unique views of the object from 
the standpoint of the sensor. If noise 
is added to the simulation, each con-
trol policy must be evaluated several 
times such that controllers evolve to 
be robust to the noise in the simula-
tion. For more complex robots, noise 
must be added to greater numbers and 
types of sensors and actuators. This re-
quires even more evaluations to evolve 
robustness against this larger number 
of noise sources.

In more recent work the typically 
unidirectional approach of transfer-
ring evolved control policies from sim-
ulated to physical machines has been 
replaced with bidirectional approach-
es in which optimization alternates 
between simulation and reality.4,16 For 
example, in Bongard et al.4 three dif-
ferent evolutionary algorithms were 
employed. The first optimized a popu-
lation of physical simulators to better 
reflect reality: The fitness of a simula-
tor was defined as its ability to predict 
the behavior of the physical robot 
(Figure 1e).

The second evolutionary algorithm 
optimized exploratory behaviors for 
the physical machine to perform. 
These behaviors were assigned a high 
fitness if, when executed by the physi-
cal machine, they extracted the most 
new information about the way in 
which the robot could interact with its 
environment. This new information 
then became new training data for the 
first evolutionary algorithm. Gradual-
ly, after several alternations between 
these two optimization methods, a 
physical simulation would automati-
cally emerge that was adapted to the 
details of the quadrupedal physical 
robot that was used in the experi-
ment. The third evolutionary algo-
rithm then uses this highly fit simu-
lator to evolve control policies for the 
physical robot, and it was found that 
many such evolved behaviors trans-
ferred successfully from simulation 
to reality.

This approach turned out to have 
an added advantage over previous 
attempts to cross the reality gap: 
the robot could recover from physi-
cal damage such as the mechanical 
separation of one of its four legs. If 
the robot experienced such damage 

while behaving, the robot could not 
directly sense the damage but there 
would be an inevitable change in the 
incoming sensor values. This change 
would be automatically incorporated 
by the first evolutionary algorithm 
into new simulations: simulations of 
a three-legged robot would gradually 
replace simulations of a four-legged 
robot. These new simulations would 
then be used to evolve new control pol-
icies for the damaged robot that would 
allow it to automatically compensate 
for its injury.

Future work in this area would ben-
efit from collaborations with develop-
ers of physical simulation such that 
evolution could alter the physical con-
stants of the simulation itself, such as 
those used to model friction, collision, 
as well as aero- and hydrodynamics.

Koos et al.16 recently proposed a 
different approach to the reality gap 
problem. Control policies evolved in 
simulation are transferred to a physical 
machine (Figure 1f), and the disparity 
between the behavior observed in sim-
ulation and reality is measured. This is 
done for several controllers, and the re-
sulting disparity measures are used to 
create a model that predicts the dispar-
ity of control policies that have yet to 
be validated on the physical machine. 
A multi-objective optimization is then 
employed to maximize the desired be-
havior in simulation and to minimize 
predicted disparity: control policies 
are sought that generate the desired 
behavior in the simulated robot and 
are likely to reproduce that behavior in 
the physical robot.

This work attempted to address 
a seeming trade-off between behav-
ioral efficiency and transferability: 
the more efficient the robot is at ex-
hibiting a desired behavior the less 
likely it is to transfer to the physical 
machine. For example if fast-legged 
locomotion is selected for in simula-
tion, running is more desirable than 
walking. However, running requires 
the robot’s control policy to carefully 
manage its center of mass to avoid 
falling. If the mass distributions of 
the simulated and physical robot are 
slightly different, running behaviors 
may fail when transferred. This failure 
is less likely for walking behaviors in 
which the robot’s mass distribution is 
less important.

It was identified 
early on that the 
time required to 
evaluate a single 
robot might grow 
exponentially with 
the number of 
parameters used 
to describe its task 
environment.
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Most of the work on the reality gap 
problem has assumed that only the 
control policy of robots will be trans-
ferred. Lipson and Pollack,18 however, 
integrated an evolutionary robotics 
simulation with rapid prototyping 
technology to automate robot manu-
facture as well as robot design (Figure 
1c, 1d). They first evolved the body 
plans and control policies for robots 
composed of linked assemblages of 
linear actuators. Then, the 3D archi-
tectures of the best of these evolved 
robots were printed out of plastic; mo-
tors, circuitry, and batteries were then 
added by hand. Many of these auto-
matically designed and manufactured 
robots were able to successfully repro-
duce the locomotion patterns original-
ly evolved in the simulator.

Combinatorics of evaluation. It was 
identified early on that the time re-
quired to evaluate a single robot might 
grow exponentially with the number 
of parameters used to describe its task 
environment.22 For example, consider 
a robot that must grasp m different 
objects under n different lighting con-
ditions. Each robot must be evaluated 
for how well it grabs each object under 
each lighting condition, requiring mn 
evaluations per robot. If there are p pa-
rameters describing the task environ-
ment and each parameter has s differ-
ent settings, then each robot must be 
evaluated sp times.

This is a serious challenge in the 
field that has yet to be resolved. How-
ever, one possible solution to this 
challenge may be addressed using 
co-evolution. Consider a population 
of robots and a second population of 
task environments competing against 
one another. The robots evolve to suc-
ceed when exposed to environments 
drawn from the pool of evolving envi-
ronments, and environments evolve 
to foil the abilities of the evolving ro-
bots. This is not unlike prey evolving 
to elude predators, while the predators 
evolve to catch prey. This approach 
could, in the future, be used to evolve 
robots that successfully generalize 
against a subset of task environments 
they might encounter when manufac-
tured and deployed.

Evolvability. Evolving all aspects of 
a complex machine such as a robot is 
a daunting, high-dimensional optimi-
zation problem. Biological evolution 

faces the same challenge yet seems to 
have addressed it by a process known 
as the evolution of evolvability. A spe-
cies with high evolvability is defined 
as one that can more rapidly adapt to 
changes in its environment than a sim-
ilar species with lower evolvability.

One goal in evolutionary robotics 
in particular, and the field of evolu-
tionary computation in general, is to 
create increasingly evolvable algo-
rithms. Rather than independently 
optimizing individual parameters of 
a candidate solution, such algorithms 
should rapidly discover useful aggre-
gate patterns in candidate solutions 
and subsequently elaborate them. It 
has been shown, for example, that ge-
nomes that encode formal grammars 
produce robots with regular struc-
ture, and that such genomes are more 
evolvable than genomes that do not 
produce regular structures.12

Similarly, when an evolutionary 
algorithm biased toward producing 
regular patterns was used to evolve 
artificial neural networks for robots it 
was found, again, that such networks 
more rapidly discover desired behav-
ior compared to other evolutionary 
methods that do not generate such 
regularity.6 Auerbach and Bongard1 
have expanded the reach of this evolu-
tionary algorithm to shape robot body 
plans as well.

Despite these recent advances, little 
is known about how to design evolu-
tionary algorithms that reorganize 
genetic representations to maximize 
evolvability and thus automatically 
generate adaptive complex machines 
in a reasonable amount of time.

Fitness Function Design. The origi-
nal and continued goal of evolution-
ary robotics is to make as few assump-
tions about the final form of the robot 
or the kind of behavior that should 
be generated. However, designing a 
fitness function that rapidly discov-
ers desirable solutions without bias-
ing it toward particular solutions is 
notoriously difficult. For this reason 
there have been efforts in the field to 
eliminate the usage of a fitness func-
tion altogether. One recent example 
is novelty search, which begins with 
simple candidate solutions and gradu-
ally creates more complex solutions as 
optimization proceeds.17 The fitness of 
any given solution is simply how much 

One goal in 
evolutionary 
robotics in 
particular, and  
the field of 
evolutionary 
computation  
in general, is  
to create 
increasingly 
evolvable 
algorithms.



review articles

august 2013  |   vol.  56  |   no.  8  |   communications of the acm     83

PECASE-0953837, and by the Defense 
Advanced Research Projects Agency 
(DARPA) under grants W911NF-11-1-0076 
and FA8650-11-1-7155.	

References
1.	A uerbach, J.E. and Bongard, J.C. On the relationship 

between environmental and morphological complexity 
in evolved robots. In Proceedings of the 2012 Genetic 
and Evolutionary Computation Conference, 521–528.

2.	B eer, R.D. The dynamics of brain-body-environment 
systems: A status report. Handbook of Cognitive 
Science: An Embodied Approach (2008), 99–120.

3.	B ongard, J. Morphological change in machines 
accelerates the evolution of robust behavior. In 
Proceedings of the National Academy of Sciences 108, 
4 (2011), 1234.

4.	B ongard, J. Zykov, V. and Lipson, H. Resilient machines 
through continuous self-modeling. Science 314 (2006), 
1118–1121.

5.	C heney, N., MacCurdy, R., Clune, J. and Lipson, H. 
Unshackling evolution: Evolving soft robots with 
multiple materials and a powerful generative 
encoding. In Proceedings of the Genetic and 
Evolutionary Computation Conference. ACM, NY, 2013. 

6.	C lune, J., Beckmann, B.E., Ofria, C. and R.T. Pennock, 
R.T. Evolving coordinated quadruped gaits with the 
hyperneat generative encoding. IEEE Congress on 
Evolutionary Computation (2009), 2764–2771.

7.	C ollins, S., Ruina, A., Tedrake, R. and Wisse, M. Efficient 
bipedal robots based on passive-dynamic walkers. 
Science 307, 5712 (2005), 1082–1085.

8.	E dlund, J.A., Chaumont, N., Hintze, A., Koch, C., Tononi, 
G. and Adami, C. Integrated information increases 
with fitness in the evolution of animats. PLoS 
Computational Biology 7, 10 (2011).

9.	F loreano, D. and Mattiussi, C. Bio-Inspired Artificial 
Intelligence: Theories, Methods, and Technologies. 
MIT Press, Cambridge, MA, 2008.

10.	F rutiger, D.R., Bongard, J.C. and Iida, F. Iterative 
product engineering: Evolutionary robot design. In 
Proceedings of the Fifth International Conference 
on Climbing and Walking Robots. P. Bidaud and F.B. 
Amar, eds. Professional Engineering Publishing, 2002, 
619–629.

11.	H auert, S., Zufferey, J.C. and Floreano, D. Evolved 
swarming without positioning information: 
An application in aerial communication relay. 
Autonomous Robotics 26 (2009), 21–32.

12.	H ornby, G.S. and Pollack, J.B. Creating high-level 
components with a generative representation for body-
brain evolution. Artificial Life 8, 3 (2002), 223–246.

13.	 Iida, F. and Laschi, C. Soft robotics: Challenges and 
perspectives. Procedia Computer Science 7 (2011), 
99–102.

14.	 Izquierdo, E. and Buhrmann, T. Analysis of a 
dynamical recurrent neural network evolved for 
two qualitatively different tasks: Walking and 
chemotaxis. Artificial Life XI: Proceedings of the 
11th International Conference on the Simulation and 
Synthesis of Living Systems. MIT Press, Cambridge, 
MA, 2008, 257–264.

15.	 Jakobi, N., Husbands, P. and Harvey, I. Noise and the 
reality gap: The use of simulation in evolutionary 
robotics. Advances in Artificial Life (1995), 704–720.

16.	K oos, S., Mouret, J.-M. and S. Doncieux, S. The 
transferability approach: Crossing the reality gap 
in evolutionary robotics. IEEE Transactions on 
Evolutionary Computation (2012); doi: 10.1109/
TEVC.2012.2185849.

17.	L ehman, J. and Stanley, K.O. Abandoning objectives: 
Evolution through the search for novelty alone. 
Evolutionary Computation 19, 2 (2011), 189–223.

18.	L ipson, H. and Pollack, J.B. Automatic design and 
manufacture of artificial lifeforms. Nature 406 (2000), 
974–978.

19.	L ong, J. Darwin’s Devices: What Evolving Robots Can 
Teach Us about the History of Life and the Future of 
Technology. Basic Books, 2012.

20.	L uke, S. and Spector, L. Evolving teamwork and 
coordination with genetic programming. In 
Proceedings of the First Annual Conference on 
Genetic Programming. MIT Press, Cambridge, MA, 
150–156. 

21.	L ungarella, M., Metta, G., Pfeifer, R. and Sandini, G. 
Developmental robotics: A survey. Connection Science 
15, 4 (2003), 151–190.

22.	M ataric, M. and Cliff, D. Challenges in evolving 

it differs from previously generated 
solutions. This approach was found to 
produce walking in simulated bipedal 
robots, a notoriously difficult problem 
in robotics.

Conclusion
Since its founding in the early 1990s, 
evolutionary robotics has remained a 
small but productive niche field. Al-
though the field has yet to evolve a ro-
bot that is superior to one produced 
using mainstream optimization meth-
ods such as reinforcement learning, 
the field has produced a wider variety 
of robots automatically. Depending on 
how one counts, roboticists have man-
ually designed and built a few hundred 
different kinds of robots with human-
oid or legged or snakelike body plans. 
Evolutionary methods, on the other 
hand have produced millions of differ-
ent kinds of robots that can walk (for 
example, Figure 1a–d), swim, or grasp 
objects.33 It is hoped that by explor-
ing all the different ways that robots 
achieve these basic competencies we 
might gain unique insight into how to 
scale robots up to perform more com-
plex tasks, like working safely along-
side a human.

Moreover, several recent advances 
in fields outside of robotics are pro-
viding opportunities to showcase 
the advantages of this evolutionary 
approach. Advances in materials 
science are making soft robots and 
modular robots a reality, yet manu-
ally designing and controlling such 
robots is much less intuitive than 
traditional rigid and monolithic ro-
bots. Advances in automated fabri-
cation are bringing the possibility of 
continuous and automated design, 
manufacture, and deployment of ro-
bots within reach. State-of-the-art 
evolutionary algorithms and physical 
simulators are making it possible to 
optimize all aspects of a robot’s body 
plan and control policy simultane-
ously in a reasonable time period. 
And finally, new insights from evo-
lutionary biology and neuroscience 
are informing our ability to create 
increasingly complex, autonomous, 
and adaptive machines.

Acknowledgments
This work was supported by the National 
Science Foundation (NSF) under grant  

controllers for physical robots. Robotics and 
Autonomous Systems 19 (1996), 67–84.

23.	M eng, Y., Zhang, Y. and Jin, Y. Autonomous self-
reconfiguration of modular robots by evolving a 
hierarchical mechanochemical model. Computational 
Intelligence Magazine 6, 1 (2011). IEEE, 43–54.

24.	M iglino, O., Lund, H.H. and S. Nolfi, S. Evolving mobile 
robots in simulated and real environments. Artificial 
Life 2, 4 (1995), 417–434.

25.	 Paul, C. Morphological computation: A basis for the 
analysis of morphology and control requirements. 
Robotics and Autonomous Systems 54, 8 (2006), 
619–630.

26.	 Paul, C., Valero-Cuevas, F.J. and Lipson, H. Design 
and control of tensegrity robots for locomotion. IEEE 
Transactions on Robotics 22, 5 (2006), 944–957.

27.	 Pfeifer, R. and Bongard, J. How the Body Shapes the 
Way We Think: A New View of Intelligence. MIT 
Press, Cambridge, MA, 2006.

28. Polani, D., Sporns, O. and Lungarella, M. How 
information and embodiment shape intelligent 
information processing. In 50 Years of Artificial 
Intelligence, Springer, 2007, 99–111.

29.	 Quinn, M. Smith, L., Mayley, G. and Husbands, P. 
Evolving controllers for a homogeneous system 
of physical robots: Structured cooperation with 
minimal sensors. Philosophical Transactions of the 
Royal Society of London. Series A: Mathematical, 
Physical and Engineering Sciences 361, 1811 (2003), 
2321–2343.

30.	R eil, Y. and Husbands, P. Evolution of central pattern 
generators for bipedal walking in a real-time physics 
environment. IEEE Transactions on Evolutionary 
Computation 6, 2 (2002), 159–168.

31.	R eynolds, C.W. Flocks, herds and schools: A 
distributed behavioral model. In ACM SIGGRAPH 
Computer Graphics 21 (1987), 25–34.

32.	R ieffel, J., Saunders, F., Nadimpalli, S., Zhou, H., 
Hassoun, S., Rife, J. and Trimmer, B. Evolving soft 
robotic locomotion in PhysX. In Proceedings of the 
11th Annual Conference Companion on Genetic and 
Evolutionary Computation Conference: Late Breaking 
Papers. ACM, NY, 2009, 2499–2504.

33.	R ubenstein, M., Ahler, C. and Nagpal, R. Kilobot: A low-
cost scalable robot system for collective behanviors. 
In Proceedings of 2012 IEEE International 
Conference on Robotics and Automation. IEEE, 
3293–3298. 

34.	 Sims, K. Evolving 3D morphology and behaviour by 
competition. Artificial Life. Rodney A. Brooks and 
Pattie Maes, eds, (2009), 28–39.

35.	T uci, E., Massera, G., and Nolfi, S. Active categorical 
perception of object shapes in a simulated 
anthropomorphic robotic arm. IEEE Transactions on 
Evolutionary Computation 14, 6 (2010), 885–899.

36.	 Werner, G.M. and Dyer, M.G. Evolution of 
communication in artificial organisms. In Proceedings 
of the Second International Conference of Artificial 
Life. D. Farmer, C. Langton, S. Rasmussen, and C. 
Taylor, eds, (1991), 659–687.

37.	 Williams, P. and Beer, R. Information dynamics 
of evolved agents. In Proceedings of the 11th 
International Conference on Simulation of Adaptive 
Behavior. S. Doncieux, B. Girard, A. Guillot, J. Hallam, 
J.-A. Meyer, and J-B. Mouret, eds. Springer, 2010, 
38–49.

38.	 Wischmann, S., Floreano, D. and Keller, L. Historical 
contingency affects signaling strategies and 
competitive abilities in evolving populations of 
simulated robots. In Proceedings of the National 
Academy of Sciences 109, 3 (2012), 864–868.

39.	Y im, M., Shen, W.M., Salemi, B., Rus, D., Moll, M., 
Lipson, H., Klavins, E. and Chirikjian, G.S. Modular 
self-reconfigurable robot systems (grand challenges 
of robotics). Robotics & Automation Magazine 14, 1 
(2007). IEEE, 43–52. 

40.	Zahadat, P., Christensen, D., Schultz, U., Katebi, S. and 
Stoy, K. Fractal gene regulatory networks for robust 
locomotion control of modular robots. In Proceedings 
of the 11th International Conference on Simulation of 
Adaptive Behavior. S. Doncieux, B. Girard, A. Guillot, J. 
Hallam, J.-A. Meyer, and J-B. Mouret, Eds. Springer, 
2010, 544–554.

Josh C. Bongard (josh.bongard@uvm.edu) is director of 
the Morphology, Evolution and Cognition Laboratory in 
the Department of Computer Science at the University of 
Vermont. He is also a member of the Vermont Advanced 
Computing Core and the Complex Systems Center.

Copyright held by Owners/Author(s).




