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Abstract

Whether, when, how, and why increased complexity evolves in biological populations is a longstanding open question. In
this work we combine a recently developed method for evolving virtual organisms with an information-theoretic metric of
morphological complexity in order to investigate how the complexity of morphologies, which are evolved for locomotion,
varies across different environments. We first demonstrate that selection for locomotion results in the evolution of
organisms with morphologies that increase in complexity over evolutionary time beyond what would be expected due to
random chance. This provides evidence that the increase in complexity observed is a result of a driven rather than a passive
trend. In subsequent experiments we demonstrate that morphologies having greater complexity evolve in complex
environments, when compared to a simple environment when a cost of complexity is imposed. This suggests that in some
niches, evolution may act to complexify the body plans of organisms while in other niches selection favors simpler body
plans.
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Introduction

The ‘‘arrow of complexity’’ hypothesis [1] posits that the most

complex products of open-ended evolutionary systems tend to

increase in complexity over evolutionary time. Whether such

a tendency exists is a long standing open question [2–6]. While

it seems evident that more complex organisms exist today than

at the advent of life, simple (single-celled) organisms continue

to persist in large numbers, so it is clear that evolution does

not guarantee complexity must increase. Moreover, loss of

complexity has been observed in many species [7–9]. This begs

the question: under what circumstances will complexity increase or

decrease over evolutionary time? It is likely that particular

environmental conditions are more likely to select for increased

complexity than others, especially if this complexity comes at a

cost.

As argued by proponents of embodied cognition, intelligent

behavior emerges from the interplay between an organism’s

nervous system, morphology, and environment [10–14]. There-

fore, if the ecological niche of a species remains constant and its

body plan is evolutionarily constrained, then the neural system

must adapt in order to succeed under this particular set of

circumstances. This may be investigated experimentally through

the use of evolving robots [15,16] which stand in for biological

organisms. For instance, it has been demonstrated [11,17] that the

complexity of an evolved neural system depends on the particular

morphology it is controlling: in a given task environment certain

morphologies can readily succeed with simple neural systems,

while other morphologies require the discovery of more complex

neural systems, or may prevent success altogether.

Another corollary of embodied cognition is that different

environments will impose different selection pressures on the

nervous systems and/or morphologies of organisms evolving in

them. This can be studied by observing how organisms evolve in

different environments. For instance, Passy [18] demonstrated that

the morphological complexity of benthic colonial diatoms

(measured as their fractal dimension) is significantly correlated

with the variability of the environmental niches in which they are

found. However, the biological evidence for a correlation between

environmental and morphological complexity is sparse. This is in

part because it is difficult to isolate systems where this may be

studied effectively and to develop metrics that quantify morpho-

logical and environmental complexity. Ideally, it would be

desirable to perform controlled investigations in which environ-

mental complexity is under experimental control. Given enough

time and resources it may be possible to carry out these

investigations directly on living organisms. However, by perform-

ing experiments in silico, it is possible to do so with much greater

speed and more precise control over experimental conditions.

Specifically, by evolving virtual organisms [19] in physically

realistic simulations, it is possible to faithfully model the relevant

interactions between organisms and their environments.

Previously, the evolution of complexity has been investigated in

silico using an alternative computational model [20]. In that work,

populations of computer programs competed among themselves

for the energy required to execute their instructions and gained
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energy by executing specific logic functions. With their system,

Lenski et al. were able to demonstrate how complex functional

features may evolve and how these features depend on the

programs’ environment. However, in that system the programs did

not have bodies with which to physically interact with their

environment. On the contrary, the evolutionary model employed

here evolves embodied virtual organisms with evolutionarily

determined body plans in physically realistic simulation environ-

ments. This provides a testbed for investigating how environment

may influence the complexity of evolving physical morphologies.

Using in silico evolution to act on both the morphologies and

nervous systems of simulated organisms or robots was first

demonstrated by Sims [19], and has since been followed by a

number of other studies (e.g. [21–32]). These studies employed a

variety of experimental techniques, including different genetic

encodings, morphological systems (such as branching structures or

cellular aggregations), and evolutionary models. However, by

constructing morphologies out of a relatively small number of

geometric primitives, all of these studies were severely limited in

the complexity of the morphologies which they could evolve, and

therefore do not offer good test beds for investigating morpholog-

ical complexity.

Recently, we introduced a new method for evolving virtual

organisms that is capable of producing a greater diversity of

morphologies than previous systems [33]. By using it to evolve

organisms with restricted nervous systems in a variety of

environments it was possible to demonstrate how such a system

could be used for investigating the relationship between environ-

mental and morphological complexity. Here, the results of [33] are

refined and extended to demonstrate that selection for locomotion

tends to induce selection pressures favoring more complex

morphologies than would be expected solely due to random

chance, and is therefore a driven rather than passive trend

[3,6,34]. In subsequent experiments we employ a multi-objective

selection mechanism to select for simplicity in addition to

behavioral competency. This selection mechanism filters out

morphological complexity that arises due to biases in the

underlying evolutionary model or because of genetic drift, and

only allows for complexity that confers a selective advantage on

the simulated organism. Moreover, this selection mechanism acts

to impose a cost on complexity as is thought to occur in biological

organisms [35,36]. Under this regime complex environments tend

to induce selection for greater morphological complexity when

compared to a simpler environment. This result supports the

hypothesis that the environment plays an active role in determin-

ing morphological complexity.

In this work organisms are evolved in a variety of simulated

environments in order to better understand the role of

the environment in shaping morphological complexity. While

inspired by the above mentioned studies in which the morphol-

ogies and controllers of virtual organisms were also evolved

[19,21–32], the system presented here has several advantages

which make it better suited for studying the evolution of

morphological complexity.

The first advantage relates to the task environments

within which organisms evolve. The majority of the studies

mentioned above were restricted to evolving for locomotion

over flat terrain. While investigating this task has yielded

interesting results, it suffers from its simplicity: simple morphol-

ogies composed of just a few cuboids or spheres are all that

are needed to be successful. Even when more challenging

task environments have been explored (e.g. those investigated

in [37]), they employed morphologies composed of a small

collection of cuboids and therefore the maximum complexity of

their evolved morphologies was severely limited. In the current

work, a variety of task environments with interesting properties are

investigated, and morphologies with greater geometric detail are

used, so it is possible to study the evolution of morphological

complexity.

Another advantage of the current system is the way in which the

genetic material that the evolutionary model acts on is encoded. As

has been demonstrated in the past [25,26], genetic encodings that

simulate development to some extent offer demonstrable benefits

over those that do not. This is because such encodings tend to

produce regularities and symmetries in the phenotype;

such patterns in nature are the inevitable result of biological

development, which biases the kinds of phenotypes that

biological evolution may act on [38]. For this reason, here we

employ a particular form of genetic encoding that produces three-

dimensional shapes with regular patterns (see Methods for

more details) [39]. Each genome generated from this encoding

generates a triangular mesh (trimesh) that forms the body plan

of the virtual organism. Trimeshes allow evolution to craft

morphologies with greater geometric detail compared to other

systems in which evolution composes a small number of simple

three-dimensional shapes together [19,21–32] (see Figs. 1 and 2

for examples of morphologies evolved with the current

system). Finally, populations of these genetic encodings are

evolved with a commonly-used evolutionary model which has

been demonstrated to be more evolvable than other evolutionary

models [40].

The behavior of each virtual organism is simulated in a

three-dimensional, physically-realistic virtual environment in

order to assess its fitness. Because of the organisms’

triangular mesh body plans and the complex environments in

which they are evolved, evaluating the fitness of each organism

requires considerable time. Moreover, many evolutionary trials

were conducted in each of several environments to allow for

meaningful statistical analysis. For these reasons all of the

experiments were carried out on a 7.1 teraflop supercomputing

cluster and required a total of over 100 CPU-years of distributed

compute time.

Author Summary

The evolution of complexity, a central issue of evolutionary
theory since Darwin’s time, remains a controversial topic.
One particular question of interest is how the complexity
of an organism’s body plan (morphology) is influenced by
the complexity of the environment in which it evolved.
Ideally, it would be desirable to perform investigations on
living organisms in which environmental complexity is
under experimental control, but our ability to do so in a
limited timespan and in a controlled manner is severely
constrained. In lieu of such studies, here we employ
computer simulations capable of evolving the body plans
of virtual organisms to investigate this question in silico. By
evolving virtual organisms for locomotion in a variety of
environments, we are able to demonstrate that selecting
for locomotion causes more complex morphologies to
evolve than would be expected solely due to random
chance. Moreover, if increased complexity incurs a cost (as
it is thought to do in biology), then more complex
environments tend to lead to the evolution of more
complex body plans than those that evolve in a simpler
environment. This result supports the idea that the
morphological complexity of organisms is influenced by
the complexity of the environments in which they evolve.

Environmental Impact on Morphological Complexity
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Results/Discussion

In order to study the relationship between the morphological

complexity of the virtual organisms and the task environments

within which they evolve, evolutionary trials are conducted in each

of 50 different environments. The first environment in which

organisms are evolved is composed only of a uniform, flat, high

friction ground surface (refer to Fig. 1a). The organisms evolved in

this simple environment are considered control cases to compare

against organisms evolved in other environments. Subsequent

environments are more complex: they all consist of an infinite

series of low friction rectangular solids over which an organism

Figure 1. Evolved organisms and their environments. The control environment (top left) and three icy environments are shown with
organisms that evolved to successfully move in each. The control environment only contains a high friction ground surface, while the icy
environments feature low friction ‘‘blocks of ice’’ (blue) on top of the ground. Videos of these organisms are included in the Supplementary Material
(Videos S1, S2, S3, S4, S5, S6, S7, S8, S9, S10, S11, S12, S13, S14, S15).
doi:10.1371/journal.pcbi.1003399.g001

Figure 2. Simple and complex morphologies. The five morphologies with smallest (top, HD values from left to right: 0.66, 0.76, 0.82, 0.88, 0.88)
and largest (bottom, HD values from left to right: 3.74, 3.77, 3.80, 3.84, 3.84) values of HD (see Methods for details) across all best of trial individuals
from all environments (icy and control). The morphologies with high HD values are visually more complex than those with small HD values.
doi:10.1371/journal.pcbi.1003399.g002

Environmental Impact on Morphological Complexity
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must locomote (see below for a characterization of this complex-

ity). These ‘‘ice blocks’’ are constructed such that it is impossible

for an organism to gain purchase by moving over their upper

surfaces, but must instead reach into the gaps between the blocks

to propel themselves forward in some fashion. This requires the

evolution of morphologies with appropriate physical forms. Fig. 1

shows a sampling of these environments and virtual organisms that

evolved within them.

The icy environments vary according to two parameters: the

height of the blocks and the spacing between them. Each of these

parameters varies from 0.025 meters to 1.6 meters exponentially

for a total of 7 � 7~49 different environments. These two

parameters and the their exponential scaling are employed in

order to produce a variety of qualitatively different environments

that roughly approximate natural surfaces, but yet are also

amenable to analysis and efficient simulation. There are certainly

many ways in which the environments could be created to more

closely approximate natural terrain, and there are many other

factors which could influence the complexity of an environment,

however the parameterization employed here provides a set of

environments within which it is largely possible to evolve

organisms capable of successful locomotion with the bare

minimum of neural complexity. This allows for isolating the

influence of environment on morphological complexity, which is

the property of interest in this study (see Conclusions for further

discussion).

For each icy environment, 100 evolutionary trials are conducted

in that environment and a corresponding 100 evolutionary trials

are conducted in the control environment (for a total of

200 � 49~9800 evolutionary trials; see Methods for details).

Fig. 3 reports the mean distance that the best individuals from

each trial traveled (computed across the 100 independent trials) in

each icy environment. This figure demonstrates that there is a

clear relationship between the environmental parameters and the

difficulty of the task. Specifically, moving to the lower right in

Fig. 3, where both the spacing and the height of blocks are large,

the task becomes increasingly difficult: the organisms all become

trapped in the gaps between blocks. Keeping the spacing constant

and decreasing the block height (moving left in Fig. 3) gradually

eases the task: the organisms are able to navigate over these

smaller blocks and displace themselves at least several body

lengths. Once the height has been reduced to 0.025 meters the

blocks are so short that the environment becomes very similar to

flat ground, and in fact distances achieved by organisms in the

lower left environments are not significantly different from those of

the control environment.

As the spacing between the blocks is reduced (moving upward in

Fig. 3) the organisms are no longer able to behave as they would

on flat ground, but instead must find ways to move along the tops

of the blocks while finding a means of gaining purchase by

reaching into the gaps. The height of the blocks loses importance

in this part of the parameter space but still has an effect (though

opposite to when the spacing is large). Here the general pattern is

for taller blocks to make the task easier, because taller blocks

provide more voluminous gaps which more easily support a variety

of ways to gain purchase. Finally in the top row of Fig. 3, when the

spacing is smallest, block height ceases to have much of an impact

because however narrow an organism’s appendages are they can

only reach a short distance into the gaps.

For a better understanding of how the evolved organisms

behave in each of these environments it is helpful to observe their

behavior. For this purpose, sample videos of evolved organisms are

available in the Supplementary Material (Videos S1, S2, S3, S4,

S5, S6, S7, S8, S9, S10, S11, S12, S13, S14, S15).

Quantifying Complexity
It is clear that different environments in this parameterization

present the evolutionary system with varying degrees of difficulty,

but the question now becomes: how does environment influence

the evolution of morphological complexity? There are many

approaches to quantify the complexity of an evolved morphology.

Commonly, the variability of part types such as the number of cell

types [41] has been used to measure the morphological complexity

of biological organisms. But, the parts under consideration may

vary in scale from organelles [42] to limbs [43], and it is unclear

what should be considered a part in the current work. More

geometric measures describing how space-filling a morphology is

could also be employed (see Text S1 and Figure S2). Alternatively,

a morphology’s surface area to volume ratio could be measured, or

its concavity could be computed (e.g. by taking the ratio of a

morphology’s volume to that of its convex hull). However each of

these measures may be deceived by relatively simple body shapes,

such as those that are very flat or contain large, simple concavities

(e.g. a ‘C’ shape).

Instead, it is useful to think about the complexity of a body plan

in information theoretic terms. One commonly used measure of

complexity is Shannon’s Entropy [44], which measures the

uncertainty of a random variable. Recent work [45,46] has

demonstrated how Shannon Entropy can be applied to measure

the complexity of a 3D object by considering the curvature of the

object as a random variable. This means that in order to have

higher complexity it is necessary to have more angles (regions of

non-zero curvature) that can not simply be a repeating pattern,

exactly what humans would think of as more complex shapes. And

in fact, quantifying the complexity of 3D objects in this way has

been shown to strongly correlate with human observers’ notions of

complexity [46].

In this work, the complexity of an organism’s morphology is

computed as the quantity HD which is the morphology’s entropy

of curvature or, in terminology which may be more familiar to

biologists, it is the Shannon diversity [47] of the curvature on the

organism’s exterior (see Methods for details). Does HD capture the

complexity of evolved morphologies? To answer this question, HD

is calculated for all 9800 best-of-trial virtual organisms from all

environments (icy and control). Out of those 9800, the five

morphologies with the smallest HD value and the five morphol-

ogies with the largest HD value are selected. Images of these

morphologies are shown in Fig. 2. Looking at these two sets of

morphologies, those with high HD values appear more complex

than those with low HD values. In light of this observation and the

previous work in this area it is concluded that HD successfully

captures morphological complexity.

Similarly, the concept of entropy may also be applied to

characterizing the complexity of an environment. In the current

formulation, environments are differentiated by variability in

surface friction and terrain elevation. In the flat ground

environment both the height of the terrain and the surface

friction are uniform throughout, thus conveying zero entropy.

On the other hand, in all of the icy environments there is

variability in both of these properties. The surface friction is low

on the ice blocks, but high on the ground between them.

Likewise, the terrain is one height on the blocks and another in

the intervening space. Therefore each of the icy environments

has non-zero entropies of friction and elevation and so is

considered to be more complex than flat ground. However, since

each icy environment consists of a uniform series of ice blocks,

the relative complexity between these environments is not

considered.

Environmental Impact on Morphological Complexity
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Changes in Complexity over Evolutionary Time
Armed with these measures, it is now possible to characterize

how different environments influence the morphological complex-

ity of evolving organisms. In order to understand the evolutionary

pressures which lead to virtual organisms that are more or less

morphologically complex, it is interesting to consider how

morphological complexity varies over evolutionary time in

different environments, and how these changes correspond to

variations in fitness. Towards that goal, Fig. 4 depicts the mean

morphological complexity and mean displacement of the current

best individual over evolutionary time for each of several icy

environments along with a corresponding set of control trials.

Here it can be seen that morphological complexity tends to

increase over time along with fitness. This means that in these

environments selection for locomotion corresponds to an increase

in complexity.

However, it is unclear whether this increase of complexity is the

result of a passive or a driven trend [3,6,34]. Passive trends may

result from envelope expansion without any directional bias. For

example, if there is a minimum level of complexity necessary for

success, but no upper bound, then both the mean and the

maximum complexity of the population will increase over time

simply due to random variation (what Stephen Jay Gould

famously referred to as a ‘‘drunkard’s walk’’ [9]). On the other

hand, driven trends exhibit a consistent, directional bias. This

corresponds to active selection for greater complexity. In this case

not only will there be an increase in mean and maximum

complexity, but the minimum level of complexity will increase

over evolutionary time as well.

Neutral Shadow Model
When looking only at how morphological complexity varies

over evolutionary time it is unclear what change in complexity is

due to selection pressure from the environment and what change is

due to biases towards increasing complexity within the evolution-

ary model itself and/or the general tendency of evolutionary

systems to produce increasing complexity in the absence of

selection [48]. In order to separate the influence of these factors it

is useful to compare the evolving populations to a neutral shadow

model [49,50]. For a generational evolutionary model, such as that

employed here, a neutral shadow of a given experiment is

equivalent to re-running the evolutionary model with the same

parameters but with random selection. Fig. 5 shows how the

morphological complexity of organisms evolved in flat ground

(black), as well as all icy environments (blue), changes over

evolutionary time compared to those evolved in 100 independent

trials using random selection (purple) in which the only preference

is for genomes that produce valid morphologies (so that there exists

a morphology for which complexity can be calculated; see

Methods). It is known that the evolutionary system employed

here [40] has an inherent bias to increase genotypic complexity

over evolutionary time. The increasing purple curve in Fig. 5

indicates that there exists a bias to produce more complex

morphologies over time as well. In fact, random selection alone

produces morphologies that are more complex than those selected

in any of the environments investigated. However, this comparison

is not entirely fair. At any given generation, individuals in the

random selection experiments will be the end product of many

more reproduction (mutation and crossover) events than the

Figure 3. Mean distance achieved in each environment. This plot shows the mean distance achieved by the final generation champion taken
across the 100 independent trials of CPPN-NEAT in each of the 49 icy environments. For comparison, the mean distance achieved across all 4900
independent trials in the control environment is 7.32 meters.
doi:10.1371/journal.pcbi.1003399.g003

Environmental Impact on Morphological Complexity
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Figure 4. Sample complexities and fitnesses over evolutionary time. This plot depicts morphological complexity (HD) and fitness
(displacement) over evolutionary time for three sample icy environments (left: spacing 0.025, height 0.05, middle: spacing 0.025, height 0.8, right:
spacing 0.2, height 0.8) along with their corresponding set of trials from the control environment. For the icy environments morphological complexity
is plotted in blue and displacement is plotted in red. For the corresponding trials in the control environment morphological complexity is plotted in
black and displacement is plotted in green. Solid lines denote means (taken across all best-of-generation individuals from all trials in the set) and
dotted lines denote one unit of standard error.
doi:10.1371/journal.pcbi.1003399.g004

Figure 5. Complexity over evolutionary time versus neutral shadows. This plot compares morphological complexity (HD) over evolutionary
time for all single-objective experiments in the control environment (black) and all icy environments (blue) along with several neutral shadow models.
Solid lines denote means (taken across all best-of-generation individuals from all trials in that environment) and dotted lines denote one unit of
standard error. The purple line depicts the naı̈ve shadow model: completely random selection except for a preference for valid morphologies. The
remaining lines depict the alternate shadow models with reproduction depths matched to the two real evolutionary experiments (see Text S1 for
details). Yellow = shadow model a matched to the control environment, green = shadow model a matched to an icy environment, red = shadow
model b matched to the control environment, and gray = shadow model b matched to an icy environment.
doi:10.1371/journal.pcbi.1003399.g005

Environmental Impact on Morphological Complexity
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corresponding individuals evolved for displacement, because

under random selection it is unlikely that any individual will

persist in the population for very long. Therefore, individuals in

the random selection experiments will have had many more

opportunities to increase the complexity of their genomes and

hence the complexity of their morphologies.

In order to correct for this discrepancy in the number of

reproduction events, alternative shadow models are employed.

Specifically, neutral shadow models of both the flat ground

experiments and a representative icy environment (spacing 0.025,

height 0.8) are created, which control for the number of

reproduction events leading to the individuals in the current

population. In each of the 100 independent trials evolving for

locomotion in both of these environments, a record of every

reproduction event is kept, and alternative shadow models are

created for each trial such that they maintain the same rate of

reproduction. These shadow models are detailed in Text S1.

All model alternatives have similar complexity curves (see

yellow, green, red and gray lines in Fig. 5) indicating that this

shadow formulation is robust to whichever alternative is employed.

Qualitatively they both show a much slower increase in

morphological complexity (especially early on in evolution)

compared to the experiments selecting for displacement, and so

contrary to the naı̈ve shadow model, both flat ground and icy

environments select for increased morphological complexity

beyond what would be expected in a neutral model. This implies

that greater morphological complexity is being actively selected for

in these environments: there is a driven trend towards increased

morphological complexity.

Multi-objective Selection
While the results reported so far support the hypothesis that

there is a driven trend for increased morphological complexity in

all environments, they do not differentiate between the complex-

ities of organisms evolved based on which environment they are

evolved in. Specifically, Fig. 5 depicts similar levels of complexity

evolving in icy environments as compared to the flat, high friction

environment under this regime. In fact, when the morphological

complexities of organisms evolved in each of the 49 icy

environments are compared with independent sets of trials

conducted in the control environment (see Figs. 4 and S1) they

do not reflect a consistent relationship between environment and

evolved morphological complexity. It is hypothesized that without

a cost to becoming more complex the driven trend towards

increased morphological complexity will dominate in all of the

investigated environments.

On the other hand, it is hypothesized that when complexity

does come at a cost–as is thought to occur in biological organisms

[35,36] –there will be greater pressure towards increased

morphological complexity in more complex environments. In an

an attempt to test this hypothesis, a second set of experiments is

conducted which uses Pareto based multi-objective selection

[51,52] to evolve organisms that can locomote in their given task

environment and are as simple as possible, therefore imposing a

cost on complexity.

As was done for the single-objective experiments, 100 indepen-

dent trials of a multi-objective model are run in each of the 49 icy

environments along with a corresponding 49 independent sets of

100 trials apiece in the high friction, flat ground control

environment. By selecting for both maximal displacement and

minimal morphological complexity these experiments should

evolve organisms that are no more complex than necessary to

succeed in their task environment. If indeed more complex

environments induce greater selection pressure favoring morpho-

logical complexity than simple environments when morphological

complexity comes at a cost, then these differences should be

observable under this regime.

Comparing the results of these multi-objective experiments, we

indeed see that more complex environments tend to select for

organisms with greater morphological complexity when compared

with organisms evolved in the simple, control environment.

Figs. 6–8 show how the morphological complexities of organisms

evolved in each of the icy environments under multi-objective

selection differs from that of organisms evolved in a corresponding

set of trials from the control environment. Since selecting a single

representative individual from each trial is not as straightforward

as in the single-objective case (see Methods), several different

techniques are employed to compare the results of these

experiments.

First, for the final Pareto front of each trial in a given

environment, the mean morphological complexity is taken. These

means (100 from each environment) are compared to the mean

morphological complexity in the final Pareto front of each trial

from a corresponding set of trials from the control environment.

This comparison is depicted in Fig. 6. Fig. 7 presents the same

comparison except that it considers the organism with median

performance on each Pareto front: the organism with equal

number of individuals on the front that displace less and more

than it (e.g. the most central point in Fig. 9). Lastly, Fig. 8 shows

the same comparison except that it considers the mean complexity

of those organisms in the middle half of their respective Pareto

fronts. That is, the top quarter of the most complex morphologies

(rightmost three points in Fig. 9) and the bottom quarter of most

simple morphologies (leftmost three points in Fig. 9) in each front

are ignored, and the means are taken across the remaining

organisms in each front (which should reduce the influence of any

outliers).

While some differences can be observed across these plots, the

general pattern is largely consistent (and therefore not an artifact

of the particular comparison employed): imposing a cost on

complexity results in a multitude of icy environments where

significantly more complex morphologies evolve compared to the

control environment, and many of these differences are observed

at the highest significance level (p{valuev0:001). This corrob-

orates the hypothesis that the more complex environments induce

selection pressure for increased morphological complexity beyond

what would evolve in a simpler environment when morphological

complexity comes at a cost.

In the lower right of Figs. 6–8, where the environments become

too difficult to succeed in (because the organisms get trapped in the

large gaps; see Fig. 3), multi-objective selection actually results in

the evolution of morphologies that are significantly less complex

than those that evolve to locomote on flat ground. The reason for

this is that when it is not possible to evolve for greater

displacement, the majority of selection bears down on the

simplicity objective, and therefore simpler morphologies evolve

in these environments under multi-objective selection.

Conclusions
This paper has presented a new method for evolving not only

the neural systems but also the body plans of virtual organisms.

This system differs from previous work by evolving populations of

genetic encodings that produce complex morphologies instantiated

in virtual environments as triangular meshes. This methodology

opens up the possibility of investigating previously unexplored

relationships between evolving organisms and their environments

in a systematic manner.

Environmental Impact on Morphological Complexity
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Here, this system was used to investigate how different

environments induce differing selection pressures on morpholog-

ical complexity. By evolving virtual organisms in a number of

different task environments and analyzing how an information

theoretic measure of morphological complexity varies over

evolutionary time, it was demonstrated that not only do all

investigated environments actively induce selection pressure

favoring greater complexity above and beyond what would be

expected in the absence of selection, but that more complex

environments in fact induce selection for more complex morphol-

ogies then simple environments when a cost is imposed on

morphological complexity. Since it is often thought that complex-

ity does incur a cost in biological organisms [35,36], the differences

observed between environments in this regime may be more

representative of the selection pressures present in biological

systems.

These results have illustrated how the environment may

influence the complexity of evolving morphologies. Based on the

results presented here it is possible that a similar evolutionary

dynamic has been partially responsible for the ‘‘arrows of

complexity’’ observed among biological organisms. As organisms

have come to occupy more complex niches it is likely that these

niches have actively selected for increased morphological com-

plexity. Additionally, it should be possible to leverage this property

for evolving more complex artifacts with evolutionary computation

systems. However, it is not likely that increased environmental

complexity will select for increased morphological complexity in

every case where such complexity incurs a cost. While this work

has demonstrated that such a relationship can exist, future work is

needed to clarify this relationship across different environments,

tasks, organisms, evolutionary models, and neural systems.

A number of simplifications were made here which it may be

desirable to relax in future work. By constraining the number of

morphological components and using very simple neural archi-

tectures it was possible to largely bracket the question of neural

complexity and focus on one particular aspect of morphological

complexity. However, it may be desirable to investigate how many

different forms of complexity evolve as a function of environment.

For instance, in a recent study [53] we demonstrated that another

measure of complexity: ‘‘mechanical complexity’’, decreased in the

same environments that selected for greater morphological

complexity. This result lends support to the notion that various

Figure 6. Differences in morphological complexity between icy and control environments: multi-objective means. This plot compares
the ways in which the complexity of morphologies from icy environments differ from the complexity of morphologies evolved in the control
environment under multi-objective selection. This plot is created from the multi-objective results by comparing the mean HD values across each
trial’s final Pareto front in each icy environment to the mean HD values across each trial’s final Pareto front in a corresponding set of trials in the
control environment. See Results/Discussion for details. All p-values calculated using the Mann-Whitney U test.
doi:10.1371/journal.pcbi.1003399.g006
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forms of complexity may be inversely correlated as discussed in

[54], and it also suggests that there is likely a trade-off between the

various forms of complexity needed to succeed in a given

environment, similar to the trade-off between morphological and

neural complexity [11,17].

To investigate these ideas further it will be interesting to allow

for more complex neural architectures, more complex sensorimo-

tor systems, and a greater diversity of materials (including ‘soft’

materials [55]) to study how environments may influence the

evolution of sensorial, nuerological, motoric, material, mechanical,

and morphological complexity of these various systems. By

extending the information theoretic ideas used here for quantifying

morphological complexity it is hoped that a ‘common currency of

bits’ may be used to investigate these complexity trade-offs in a

systematic manner.

Methods

CPPNs
The morphologies evolved in this work are encoded by

Compositional Pattern Producing Networks (CPPNs) [39]. CPPNs

are a form of artificial neural network (ANN) [56] which differ

from traditional ANNs in several ways. While each internal node

in a traditional ANN typically has the same activation function

(such as a sigmoid or a step function), CPPN nodes can take on

one of several activation functions from a predefined set. This

function set often includes functions that are repetitive, such as

sine or cosine, as well as symmetric functions, such as Gaussian,

thus allowing for motifs seen in natural systems that arise as a

result of development: symmetry, repetition, and repetition with

variation. Additionally, CPPNs are often used as generative

systems to produce other objects of interest, such as images [57],

3D structures [58,59], robot morphologies [31,32] or traditional

ANNs themselves[60–64]. This is in contrast to the typical, direct

application of ANNs as robot control architectures or classifiers.

CPPNs act as functions of geometry. Geometric coordinates

meaningful to the object being represented are fed as inputs to the

CPPN. These input values are passed through the various

connections of the CPPN from node to node. Each node

aggregates its inputs by taking a weighted sum of the values

output by each upstream node (weights are specific to each

connection) and outputs the result of applying a particular

Figure 7. Differences in morphological complexity between icy and control environments: multi-objective medians. This plot
compares the ways in which the complexity of morphologies from icy environments differ from the complexity of morphologies evolved in the
control environment under multi-objective selection. This plot is created from the multi-objective results by comparing the HD values of the median
individual from each trial’s final Pareto front in each icy environment to the HD value of the median individual from each trial’s final Pareto front in a
corresponding set of trials in the control environment. See Results/Discussion for details. All p-values calculated using the Mann-Whitney U test.
doi:10.1371/journal.pcbi.1003399.g007
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activation function (specific to that node) to this weighted sum. By

passing the inputs through subsequent nodes the activation

functions are composed to produce novel outputs while maintain-

ing features of the different functions (hence the ‘‘compositional’’

aspect of CPPNs). Additionally, since these functions are chosen to

have desirable properties present across a wide range of natural

systems, as discussed above, CPPNs are capable of directly

producing structures which in nature require a developmental

process. For a more in-depth description of CPPNs, and further

discussion of their ability to act as an abstraction of development,

the reader is referred to [39].

Evolutionary Model
In this study CPPNs are evolved via CPPN-NEAT [39]. CPPN-

NEAT is an extension of the NeuroEvolution of Augmenting

Topologies (NEAT) [40] method of neuro-evolution. NEAT is

capable of evolving not only connection weights for existing

network topologies, but also the network topologies themselves. Its

operation is based on a few key ideas. First, the initial population is

comprised of minimal networks (those without any internal or

hidden nodes), which may then gradually increase in complexity

over evolutionary time through structural mutations which add

new nodes and links to the network. When a new node or link is

created in this manner it is assigned a unique historical marking.

These historical markings are inherited during reproduction and

allow meaningful crossovers to occur without the use of expensive

graph matching procedures. Additionally, these markings are used

to divide the population into ‘‘species’’ of similar network

topologies. Speciation promotes genotypic diversity and, because

competition is primarily intraspecies, novel structural innovations

are given time to mature before directly competing with

individuals in other species.

CPPN-NEAT extends NEAT to evolve CPPNs. Effectively, this

means that since nodes are no longer restricted to having sigmoid

activation functions, each node contains an additional parameter

which specifies its own activation function. When a new node is

added to a network it is assigned a random function from a

predefined set (the signed cosine, Gaussian and sigmoid functions

are used in the experiments reported here). Additionally, the

compatibility distance metric used for speciation is modified to

Figure 8. Differences in morphological complexity between icy and control environments: multi-objective means of center halves.
This plot compares the ways in which the complexity of morphologies from icy environments differ from the complexity of morphologies evolved in
the control environment under multi-objective selection. This plot is created from the multi-objective results by comparing the mean HD values
across the center half of each trial’s final Pareto front in each icy environment to the mean HD values across the center half of each trial’s final Pareto
front in a corresponding set of trials in the control environment. See Results/Discussion for details. All p-values calculated using the Mann-Whitney U
test.
doi:10.1371/journal.pcbi.1003399.g008
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incorporate the number of different activation functions between

two networks. In all other respects, CPPN-NEAT behaves the

same as NEAT.

NEAT and CPPN-NEAT have successfully evolved ANNs and

CPPNs for a variety tasks [40,57,59,61,62,65] which makes

CPPN-NEAT a good option for evolving the CPPNs used in this

study. Moreover, CPPN-NEAT’s ability to systematically increase

network complexity over evolutionary time as needed should lend

itself well to studying how morphologies increase in complexity

when evolving inside different environments. For a more thorough

description of these algorithms, including additional details of the

mechanisms discussed above, please refer to [39,40].

Building Morphologies from CPPNs
While previously [31,32] evolving virtual organisms were

constructed out of spherical components, the current study

employs a voxel-based method to create morphological compo-

nents out of triangular meshes (trimeshes) similar to what is done

for the creation of 3D shapes in [59]. This process is illustrated in

Fig. 10, and is explained in detail below.

First, A regular grid is placed over a region of 3D space which

defines the presence of voxel locations. In the current work this

region extends from {1 to 1 (inclusive) in each dimension and

grid lines are placed at intervals of 0.2. This yields a total of 11 grid

lines in each dimension for a total of 1331 voxels. A candidate

CPPN is iteratively queried with the (x,y,z) Cartesian coordinates

at every voxel location except for the extrema in each direction.

Querying a CPPN at a given location involves resetting all node

values, and updating the CPPN for a fixed number of iterations (in

this case 10) before the output value is retrieved. This procedure is

employed in order to extract consistent output signals from

networks with recurrent connections, which may fall into cyclic or

chaotic attractors. Previously [32], it was found that allowing

recurrent connections in morphology-generating CPPNs increased

their evolvability. Voxel locations that exceed a predefined output

threshold (0:5 in this case) are considered to contain matter, while

those that fall below this threshold are considered to be devoid of

matter. All voxels lying on one of the extrema

(DxD~1 or DyD~1 or DzD~1) are given output value 0 so that no

matter-containing voxel abuts against the boundary of the grid,

Figure 9. A sample Pareto front. This plot depicts the set of non-dominated individuals at the end of an evolutionary trial attempting to maximize
displacement and minimize complexity. The points on the far left represent organisms that are very simple, but do not move far. The points on the far
right represent organisms that are more complex, but also are able to move further.
doi:10.1371/journal.pcbi.1003399.g009
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and therefore guarantees that the final triangular meshes have

completely enclosed surfaces. Once the CPPN has been queried

for every voxel location, the Marching Cubes algorithm [66] is

employed to create triangular meshes from the underlying voxel

data. Specifically, an enclosed triangular mesh is created for each

connected voxel component which defines the exterior surface of a

single physical shape. These triangular meshes are then sent to the

physics simulator where they define the exterior surface of a solid

object and are imbued with mass (see Fig. 1 for some examples).

This is the first instance of physically simulating evolved, rigid

body organisms composed of triangular meshes.

Since the purpose of this study is to investigate how different

task environments affect the shapes of evolved morphologies, a

number of simplifications are used in order to concentrate on the

physical shapes of the evolved organisms and control for other

factors that may influence their performance. From the multiple

enclosed trimesh components that could be produced when

querying a single CPPN, only one of these (the largest in terms of

number of triangles) is used in the resulting organism. This single

component is copied and reflected across the x{axis. The

resulting components (the original and its mirror image) are then

spread apart by 0:2 meters and a capsule of this length is placed

between them such that it connects their two closest points. The

two trimesh components each connect to this capsule by means of

a hinge joint. These joints are constructed such that one rotates

through the organism’s coronal plane while the other rotates

through its sagittal plane. Reflecting and copying a single

component like this ensures that all organisms have the same

mechanical degrees of freedom and ensures that the organisms are

all bilaterally symmetric (which should facilitate locomotion) while

at the same time it allows for a very large number of different

morphologies due to the flexibility of the CPPN representation

and trimesh model.

The two mechanical degrees of freedom of each organism are

actuated by means of coupled oscillators. Each of the two

oscillators is parameterized by several parameters: amplitude,

Figure 10. Constructing an organism from a CPPN genome. First a candidate CPPN is iteratively queried to find the output value at all voxel
locations. These values are used as inputs to the Marching Cubes algorithm [66] which produces a set of enclosed trimesh components containing all
voxels with output value above a given threshold. From the many enclosed components that may be produced, the largest (in terms of number of
triangles) is selected. This trimesh component is then copied and reflected across the x-axis. The resulting components (the original and its mirror
image) are then spread apart by 0.2 meters and a capsule is placed between them. Finally, the two trimesh components each connect to this capsule
by means of a hinge joint which when combined form a universal joint capable of rotation through the organism’s coronal and sagittal planes.
doi:10.1371/journal.pcbi.1003399.g010
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period, and phase shift. These six parameters (three parameters

apiece for each of the two joints) are directly encoded in the

genome of the evolving organisms as floating point values so that

the genome is in actuality a CPPN plus a six dimensional floating

point array. These floating point values are recombined and

mutated in the same manner as CPPN link weights with mutation

magnitudes scaled by the range of values for that parameter.

Additionally, crossover on these vectors is possible in all instances

of sexual reproduction since every individual contains a vector of

the same dimensionality. Values for these parameters are

constrained to predefined ranges: amplitude, a [ p
4

, 3p
4

� �
radians

(so that the hinge rotates between {a and a radians), period

[½250,1500� simulation time steps (or equivalently ½2,12�% of the

total evaluation time) and phase shift [½{1,1� periods. Each

parameter has a mutation probability of 0.1, which was chosen

experimentally.

Encoding the control parameters in this fashion is done to keep

the controllers as simple as possible so that fitness is primarily

dictated by the physical form of the organisms, while at the same

time allowing for diverse enough behavior so that the organisms

can succeed in the different task environments.

Selecting Desirable Organisms
The focus of this study is on how environment influences the

evolution of morphological complexity in virtual organisms.

Towards this aim a simple task is chosen which can be

accomplished with more or less difficulty in a variety of

environments. Specifically, as in previous work (e.g.

[24,25,32,67,68]), the task investigated here is to maximize

directed displacement in a fixed amount of time, across a range

of terrains.

A candidate morphology (triangular mesh) and accompanying

set of control parameters are sent to a physics simulator and

allowed to act for a fixed number of simulation time steps. (In this

work simulations are conducted in the Open Dynamics Engine

(http://www.ode.org), a widely used open source, physically

realistic simulation environment.) Since trimeshes can be arbi-

trarily shaped and, unlike spheres, may simultaneously contact the

environment at several points, it is necessary to use a much smaller

step size than has been used in previous work in order to get

physically realistic behavior. Specifically, a step size of 0.001 s is

used in this work. Because of this smaller step size a proportionally

larger number of time steps are needed to achieve the same

effective simulation length. Here organisms are evaluated for

T~12500 time steps.

Single-objective selection. After the organism has complet-

ed its time in the simulator its fitness is calculated. How exactly this

fitness is calculated takes some care, because evolution often finds

ways to ‘‘cheat’’ naı̈ve fitness functions, especially when the task

environment is difficult. For example, if fitness only considers the

positions of the organism’s center of mass, C, and takes fitness as

C(T)x{C(0)x where C(t)x is the x-coordinate of the organism’s

center of mass at time t and T is the simulation length, then in

environments where locomotion is difficult, evolution will tend to

find solutions where C is initially raised far off the ground so that

its displacement can be maximized by falling forward. This is a

local optimum in this fitness landscape. Similarly, if one tries to

eliminate this cheating by only considering the trailing point of the

organism so that fitness is min p(T)x{min p(0)x where min p(t)x

is the smallest x{coordinate across all points on the organism at

time t, falling forward can still be an effective solution (and is still a

local optimum) in difficult environments if morphologies are

created which have posterior protrusions and thus make min p(0)x

as small as possible.

In light of these considerations, the fitness function employed in

all environments in this study is

f1~min p(T)x{max p(0)x ð1Þ

where all coordinates are taken in terms of ODE units, which may

be thought of as meters.

With this fitness function, falling forward will not be rewarded,

because the maximum fitness that can be achieved by pivoting

about a single point will be 0, and so an organism must actually

displace its whole body forward to be rewarded.

Multi-objective selection. In the initial set of experiments f1

is the only fitness function employed, but in a second set of

experiments f1 is maximized in conjunction with

f2~
1:0

1:0zHD
ð2Þ

through the use of multi-objective selection [51,52]. f2 is strictly

positive and is maximized for minimal values of HD.

By selecting for organisms that are both morphologically simple

and are able to displace as far as possible in their given

environment, it should be possible to evolve organisms that are

no more complex than they need to be in order to succeed.

In order to evolve CPPNs using multi-objective selection it is

necessary to modify CPPN-NEAT to use multiple fitness criteria.

In lieu of the speciation and selection mechanisms employed by

CPPN-NEAT, the widely used Non-dominated Sorting Genetic

Algorithm-II (NSGA-II) [69] is used for selection. The two

primary fitness functions to be maximized by NSGA-II are f1,

which selects for maximum fitness (see Eqn. 1) and f2, which

selects for maximum morphological simplicity (see Eqn. 2).

Additionally, preliminary experiments determined that including

a genotypic diversity objective based on NEAT’s compatibility

metric consistently improved performance on both primary

objectives, and so this additional objective is included in all

reported experiments. It is thought that this term is useful because,

like NEAT’s speciation mechanism, it provides a means for

solutions in different parts of the genotype space to evolve without

competing directly with one another. (As detailed in [70] it is likely

that performance could be improved even further by including a

behavioral diversity metric, but it is not clear what an appropriate

behavioral diversity metric is when evolving morphologies, while

the NEAT compatibility metric is readily available.) Specifically,

the genotypic diversity measure employed here (to be maximized)

for each individual is calculated as the sum of the compatibility

distances to its k nearest neighbors. A value of k~15 is employed

in all experiments, because it was found to achieve the best

performance during preliminary experimentation. However, when

comparing the results of the multi-objective experiments (as is

done in Figs. 6–8) the genotypic diversity objective is ignored, and

only the Pareto front (see below) consisting of the individuals not

dominated on the two primary objectives is considered for each

trial.

Under this multi-objective framework each trial maintains a

Pareto front (see Fig. 9) of non-dominated individuals representing

various trade-offs between task competency and minimal com-

plexity. An individual x is said to dominate another individual x’ if

x is not worse than x’ on any of the objectives and x is strictly

better than x’ on at least one objective. The Pareto front contains

all individuals y such that A=x,fx dominates yg.
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It is not entirely clear how these Pareto fronts should be

compared. One possibility would be to consider the best displacers

in each front (the far right point in Fig. 9). This is shown in Fig. 11.

Here, some differences in the morphological complexities of

organisms evolved in the icy environments versus flat ground can

begin to be seen, but the effect is not wide spread, because the cost

of complexity imposed on these individuals is weak. These

individuals have little direct selection pressure favoring more

simple bodies. Only when two equally good displacers are

compared will the simpler one be favored. However, they are

indirectly influenced in the direction of greater simplicity due to

the way in which this objective is influencing the rest of the

population. The fact that differences between the organisms

evolved in icy and control environments begin to show up even

under this weak cost of complexity further supports our

conclusions.

Another possibility would be to find the knee point [71] on each

Pareto front. The knee point is the point on the Pareto front which

best captures a compromise between the objectives: the point at

which a small gain in performance on one of the objectives would

require a large drop in performance on the other objective.

However, finding each knee point may capture drastically different

levels of competencies on different fronts, and is not always well

defined. In light of these considerations, we have adopted several

methods of comparing the resulting Pareto fronts and demonstrate

that the differences in complexities between morphologies evolved

in the icy and control environments are similar with each method

(thus demonstrating that the results are not an artifact of the

particular method chosen).

Calculating Morphological Complexity
In this section, the building blocks of computing the entropy of

curvature HD are presented. The reader is referred to

[45,46,72,73] for more in-depth discussions of their theoretical

underpinnings.

Given a random variable x with a probability density function

(PDF) p(x), entropy H is defined as

H~{
X

i

pi log pi ð3Þ

Figure 11. Differences in morphological complexity between icy and control environments: multi-objective best displacers. This plot
compares the ways in which the complexity of morphologies from icy environments differ from the complexity of morphologies evolved in the
control environment under multi-objective selection. This plot is created from the multi-objective results by comparing the HD values of the best
displacer in each trial’s final Pareto front in each icy environment to the HD values of the best displacer in each trial’s final Pareto front from the
corresponding set of trials in the control environment. See Methods for details. All p-values calculated using the Mann-Whitney U test.
doi:10.1371/journal.pcbi.1003399.g011
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where p(x) is discretized such that pi~
Ð xi

xi{1
p(x)dx where the xis

are specific values of x.

Following [45,46], the random variable x on which H is

calculated is an approximation of the Gaussian curvature of the

points on the surface. (The Gaussian curvature K of a point is the

product of the principal curvatures k1 and k2 of that point [72].)

Since the bodies here are built out of triangular meshes the points

at which this curvature is non-zero are precisely the vertices of the

triangular mesh. Specifically, for each vertex j in a trimesh the

angular deficit Wj is calculated as

Wj~2p{
X

i

wi ð4Þ

where wi is the internal angle at j of each triangle i of which j is a

vertex. This angular deficit Wj is directly proportional to the

Gaussian curvature of that point [45], and so here we set x~Wj

for calculating the entropy of curvature. (The relationship between

angular deficit and Gaussian curvature can be derived through

application of the Gauss-Bonnet theorem [72]; see [73] for more

details.)

Following the calculation of Wj for every vertex, a PDF p(W) is

estimated by placing the values of Wj into discrete bins of uniform

width (D) and counting the number of Wj samples that fall into

each bin. This results in a discrete set of probabilities pi, and Eqn.

3 can be used to arrive at an estimate of entropy that depends

on the chosen D, denoted here HD. (see Text S1 for further

details.)

Code and Data
The source code used to run the experiments reported in this

paper is publicly available at https://github.com/jauerb/

CPPN_Trimesh

Additionally, the data files corresponding to the experiments

reported in this paper have been made publicly available at

http://dx.doi.org/10.6084/m9.figshare.858799

Supporting Information

Figure S1 Complexities and fitnesses over evolutionary
time. This plot depicts morphological complexity (HD) and fitness

(displacement) over evolutionary time for all icy environments

along with their corresponding set of trials from the control

environment. For the icy environments morphological complexity

is plotted in blue and displacement is plotted in red. For the

corresponding trials in the control environment morphological

complexity is plotted in black and displacement is plotted in green.

Solid lines denote means (taken across all best of generation

individuals from all trials in the set) and dotted lines denote one

unit of standard error.

(TIF)

Figure S2 How space filling the evolved morphologies
are. Left: Mean ratio between the volume of the evolved

morphology’s Axis Aligned Bounding Box (AABB) and the volume

of the morphology itself for each of the experimental environ-

ments. The best organisms from all trials in the control

environment have a mean of 3:75 for this ratio, similar to the

black squares in this plot. Right: Significance of the difference of

this ratio in each experimental environment compared to the

control environment. The ratio is significantly greater (morphol-

ogies are significantly less space filling) on average in the majority

of experimental environments. There are no experimental

environments in which this ratio is significantly smaller than that

of the control. All p-values calculated using the Mann-Whitney U

test.

(TIF)

Table S1 Evolutionary Algorithm Parameters.
(PDF)

Table S2 Encoding Parameters.
(PDF)

Table S3 Compatibility Distance Parameters.
(PDF)

Table S4 Speciation Parameters.
(PDF)

Table S5 Multi-Objective Parameters.
(PDF)

Table S6 ODE Parameters.
(PDF)

Text S1 Supplementary materials.
(PDF)

Video S1 Video of an organism evolved in the at ground,
control environment. One of the best organisms evolved to

locomote in the at ground environment. Notice that this organism

has a very simple shape and is reminiscent of the blocky creatures

evolved by Sims [19].

(MP4)

Video S2 Video of an organism evolved in one of the icy
environments. One of the best organisms evolved to locomote

in an environment with icy blocks 0.2 m tall spaced apart by

0.2 m. This organisms demonstrates how organisms evolve to be

well adapted to their environment.

(MP4)

Video S3 Video of an organism evolved in at ground and
then placed in an icy environment. This video depicts

the organism shown in Video S1 in the icy environment

shown in Fig. S2. Notice that this organism does not have an

appropriate morphology for this environment and is unable to

successfully locomote. This organism continues to be unable to

locomote even if its control parameters are re-evolved in this

environment.

(MP4)

Video S4 Video of another one of the best organisms
evolved in the at ground, control environment. This is the

same organism depicted in the top left of Fig. 1.

(MP4)

Video S5 Video of one of the best organisms evolved in
an icy environment with blocks 0.8 m tall and spaced
apart by 0.025 m. This is the same organism depicted in the top

right of Fig. 1.

(MP4)

Video S6 Video of one of the best organisms evolved in
an icy environment with blocks 0.4 m tall and spaced
apart by 0.2 m. This is the same organism depicted in the

bottom left of Fig. 1.

(MP4)

Video S7 Video of one of the best organisms evolved in
an icy environment with blocks 0.2 m tall and spaced
apart by 0.8 m. This is the same organism depicted in the

bottom right of Fig. 1.

(MP4)

Environmental Impact on Morphological Complexity

PLOS Computational Biology | www.ploscompbiol.org 15 January 2014 | Volume 10 | Issue 1 | e1003399



Video S8 Video of one of the best organisms evolved in
an icy environment with blocks 0.05 m tall and spaced
apart by 1.6 m.

(MP4)

Video S9 Video of one of the best organisms evolved in
an icy environment with blocks 0.2 m tall and spaced
apart by 0.1 m.

(MP4)

Video S10 Video of one of the best organisms evolved in
an icy environment with blocks 0.2 m tall and spaced
apart by 0.4 m.

(MP4)

Video S11 Video of one of the best organisms evolved in
an icy environment with blocks 0.4 m tall and spaced
apart by 0.05 m.

(MP4)

Video S12 Video of one of the best organisms evolved in
an icy environment with blocks 0.4 m tall and spaced
apart by 0.1 m.

(MP4)

Video S13 Video of one of the best organisms evolved in
an icy environment with blocks 0.4 m tall and spaced
apart by 0.4 m.
(MP4)

Video S14 Video of one of the best organisms evolved in
an icy environment with blocks 0.8 m tall and spaced
apart by 0.4 m.
(MP4)

Video S15 Video of one of the best organisms evolved in
an icy environment with blocks 1.6 m tall and spaced
apart by 0.1 m.
(MP4)
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