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Robustness and Resilience
This paper discusses the two-way interaction between brains and bodies, and the

consequences for adaptive behavior, along with reviewing research that builds

on insights from the neurobiology of these interactions to inform the design of

evolving and adaptive robots.
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ABSTRACT | In biomimetic engineering, we may take inspira-

tion from the products of biological evolution: we may

instantiate biologically realistic neural architectures and algo-

rithms in robots, or we may construct robots with morpholo-

gies that are found in nature. Alternatively, we may take

inspiration from the process of evolution: we may evolve

populations of robots in simulation and then manufacture

physical versions of the most interesting or more capable

robots that evolve. If we follow this latter approach and evolve

both the neural and morphological subsystems of machines,

we can perform controlled experiments that provide unique

insight into how bodies and brains can work together to

produce adaptive behavior, regardless of whether such bodies

and brains are instantiated in a biological or technological

substrate. In this paper, we review selected projects that use

such methods to investigate the synergies and tradeoffs

between neural architecture, morphology, action, and adaptive

behavior.
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I . INTRODUCTION

Embodied cognition [16], [65] (Fig. 1) is a particular

paradigm for addressing the challenge of creating auton-

omous machines, as well as understanding how animals

and humans produce adaptive behavior. It dictates that

cognition cannot be understoodVor realized in machinesV
without grounding it in behavior. Indeed cognition can be

viewed as a collection of particularly subtle ways of
exploiting one’s interaction with the environment; an

interaction that requires neural computation but also use

of a body to carry out that interaction. It follows from this

that there may exist a large number of pairings of particular

mechanical constructs and neural architectures that, when

combined, give rise to the behavior of interest. This raises

several engineering challenges.

First, if a particular morphology is chosen, the designer
may unintentionally constrain himself to a set of

unsatisfying neural systems. For example, if a robot must

travel over flat ground and a legged morphology is chosen,

neural architectures which allow for movement may be

much more complex than neural architectures that would

allow a wheeled robot to travel successfully in the same

environment. As an extreme example, passive dynamic

walkers [20], [78] are bipedal robots that travel down
declined planes and require the minimum of neural

control: their particular morphology and specific environ-

mental niche enables them to convert potential energy

into kinetic energy while remaining upright with no

control at all.

Second, how does one search the space of all possible

body/brain pairings to find those that produce the desired

behavior? Such search spaces are high dimensional as
parameters describing both the morphological and control

subsystems must be optimized. These spaces also contain

many local optima: if search is operating in a part of the
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space that contains robots with high centers of mass

relative to their polygons of support, slight changes in

neural control may cause these robots to become unstable.

Third, one may now consider a machine whose brain

and body change while it behaves. A robot may employ a
learning algorithm to improve its behavior over time,

but if it is a modular robot [91] it may also reconfigure

its body, or if it is a soft robot [73] it may alter the

volume of different body parts in a simulation of growth.

This morphological change may then hinder or ease

learning.

Evolutionary algorithms [23] are a class of stochastic

optimization methods that are particularly well suited for
the challenges raised by embodied cognition. Designed

well, they guard against becoming trapped in local optima.

They are also more general than learning algorithms,

which are constrained to optimizing only the neural

subsystem of a robot. Finally, they readily allow for

morphological and neurobiological change while a robot

behaves (Section V): evolutionary algorithms can be

designed that dictate how a robot’s body and brain should
change over time, rather than dictating a static morphol-

ogy and neural control system. The use of evolutionary

algorithms to optimize autonomous machines is the

subfield of robotics known as evolutionary robotics.

II . EVOLUTIONARY ROBOTICS

In the initial evolutionary robotics experiments [18], [32],
neural controllers were optimized for physical robots with

fixed morphologies. Neural control policies were generat-

ed on a computer, and downloaded serially onto the

physical robot. The performance of the robot using a given

control policy was recorded and returned to the computer.

Once all of the robots in the population were evaluated,

some would produce randomly modified offspring and

others would die out. By repeating this cycle, robots
capable of maze navigation [32] and visual discrimination

tasks [18] were evolved.

Soon after, dynamical simulators were employed which

allowed the evolutionary algorithm to simulate much

larger numbers of virtual robots than could be evaluated in

reality. Simulating robots provided another benefit: both

the body plan and the neural controllers of the robots

could be optimized [74]. Undulation was the primary
movement strategy that evolved, which recapitulates what

is observed in nature: undulation was the precursor to

quadrupedal and then bipedal walking in higher animals.

Fig. 2 outlines the basic process of simultaneously evolving

the body plan and neural architecture of autonomous

robots.

Some important work since the field’s inception

involved gradually introducing gradients into the search
space. In [68], a biped was evolved to walk by applying

counteracting forces if it became unstable; as evolution

proceeded these forces were weakened and gradually

removed. In [82], a passive dynamic biped with no

controller was initially evolved to walk down a decline.

Once passive walking was achieved, the robots were

exposed to flat ground, which forced evolution to gradually

incorporate actuation to support the gait evolved in the
purely passive regime.

There has also been much work on evolving artificial

neural networks with greater biological realism, including

networks that allow for fine tuning of temporal dynamics

[4] as well as spiking neural networks [88].

More recently, there has been progress on increasing

the evolvability of evolutionary algorithms. Evolvability is

defined differently by different authors but generally is
considered to measure the propensity of a given evolu-

tionary system to produce more fit solutions to a given

problem over time [81], [83]. Much success has resulted

from incorporating multiobjective optimization into evo-

lutionary algorithms [25], [70]. For a long period there was

no good method for introducing sexual recombination into

the evolution of artificial neural networks, because

Fig. 1. Embodied cognition framework. In order to design an adaptive

machine to operate in some task environment (a) it is imperative to

consider aspects of the machine’s mechanical construction (b) as well

as aspects of its biologically inspired control policy (c). In order to

improve the interaction of a machine with its environment one may

alter its morphology, controller, or both.
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combining material from two networks with different

architectures rarely produced fit offspring networks.
Stanley and Miikkulainen [75], however, introduced a

method that enables evolution to alter and thus automat-

ically improve the architectures of artificial neural net-

works by combining them based on their descent from a

common ancestor. It has also been shown [8] that adding

aspects of a robot’s morphology to an evolutionary

algorithm can increase its evolvability.

III . RESILIENT MACHINES

One of the major challenges in the field of evolutionary

robotics is known as the ‘‘reality gap problem’’ [46]: once a

robot of sufficient capability is evolved in simulation, how

can its behavior be transferred seamlessly into a physical

robot? Often, evolution specializes behavior to match

specific details of the simulation in which the robots are

evolved. For example, the temporal dynamics of the
artificial neural networks may adapt to the time interval

used for numerical integration in the simulator. Once

realized in hardware, however, physical constraints may

result in slower motors, or technological constraints may

lead to slower updating of sensor readings. Early work in

addressing the reality gap problem involved wrapping

various aspects of the robot simulator in noise, given

knowledge about sources of uncertainty from the robot’s

sensors, motors, and environment [46].
This and other early approaches, however, require

manually altering the simulation in which robots are

evolved to better match reality. In [7], we introduced a

method for automatically altering the simulation to reflect

the current state of the robot: this involved restructuring

the body plan of the simulated robots to better reflect the

mechanical construction of the physical robot. To accom-

plish this, the physical robot maintains three separate
stochastic optimization methods, as shown in Fig. 3.

These three optimizers together produce several

forward and inverse models of the robot. Forward models

are known to exist in the brains of higher animals [86] and

are somehow employed to predict future sensation, given a

candidate action. In the resilient machine project, forward

models took the form of simulated robots, as shown in

Fig. 3(b). An evolutionary algorithm searched the space of
possible robot body plans to find those that could, when

actuated using the same motor programs that the physical

robot had performed, predict the sensor data generated by

that motor program by the physical robot. Note that no

assumptions were made about the structure of the robot: it

had to learn its own structure through physical experi-

mentation. This is known as structural learning in the

motor learning literature [85], and is a particular talent of
humans: we must learn to maintain coordination even

Fig. 2. Basic evolutionary robotics process. At the outset of optimization (a), a population of randomly generated robots are constructed.

These robots differ in their morphologies as well as their neural control policies. (R1 ¼ robot 1; circles represent neurons; lines represent synaptic

connections between neurons; irregular shapes represent the robot’s body plan; squiggles represent flagella; small and large arrows represent

slow and fast speed of travel, respectively.) (b) Robots with low fitness (in this example, the slow traveling robots R1 and R3) are then culled

from the population. (c) Robots that survive culling produce randomly modified copies of themselves. In this example, R2 produces an

offspring R20 that incurs a mutation affecting its neural controller (the red synapse). R40, the offspring of R4 incurs mutations that affect a synapse

and neuron (red line and circle, respectively) but also its morphology (a flagellum is added). (d) The behavior of the offspring is now evaluated,

and their fitness values are computed. This cycle is repeated until a machine of sufficient fitness is obtained or a fixed amount of

computational effort is expended.
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when the structure of our body changes because we swing
a tennis racket or don skis.

An advantage of not assuming what the structure of the

robot should be a priori means that the evolutionary

algorithm can continue to adapt the structure of the

forward models if the morphology of the robot changes.

We demonstrated such a simulation by damaging the

robot: we separate one of the robot’s four legs. The robot

was not equipped with any sensors that could directly
detect this separation, and the robot could continue to

send commands to the dragging motor (although they

would not affect the overall movement of the robot).

Instead, the robot was only equipped with vestibular

sensors that could detect the orientation of the robot’s

main body. However, with a sufficient number of physical

actions, the evolutionary algorithm would eventually

determine that the only forward models that explained
the robot’s new sensor/action data pairs were models that

reflected the damage that the robot had suffered.

The virtual robots that evolve to reflect the morphology

of the physical robot can also be viewed as body schema:

neural encodings of body structure and dynamics [42]. It is

known that the human brain maintains multiple repre-

sentations of the body, but much controversy remains

about how many representations there are and how they
are encoded. There is general consensus, however, that the

brain maintains a separation between body schema

employed for action and those used for perception [24].

In [7], no such separation was made: forward models were

constrained to actuatable kinematic chains. It would be of

interest to conduct further experiments in which the

evolutionary algorithm would be free to formulate its own

body schema representations appropriate to the robot and
its environment. Indeed Massera et al. [54] investigated

active categorical perceptionVthe ability to distinguish

between objects by actively manipulating themVand

demonstrated that an evolutionary algorithm could devise

its own neural encoding for objects of different shape.

We could then compare the encodings discovered by

artificial evolution to those encoded in biological nervous

systems. If these artificial and biological encodings differ,
this suggests that it does not matter how bodies are

represented in artificial or biological nervous systems. If

these encodings resemble one another, this suggests that

there is a particular way that bodies should be neurally

represented to enable successful prediction of action in

particular, and thus enable rapid generation of adaptive

behavior in general. Indeed, this is but one way

evolutionary methods could be employed to study the
role of mental representation in complex behavior, which

has remained a central and controversial subject in

artificial intelligence research for decades [12].

Once the physical robot has evolved a sufficiently

accurate forward model, it can use the second optimizer to

evolve neural controllers so that the robot performs some

desired task [Fig. 3(d)]. In the experiments reported in [7],

the physical robot’s task was forward locomotion: a
population of neural controllers are sequentially tested

on the evolved forward model [one is shown actuating the

forward model in Fig. 3(d)]. Once a neural controller is

evolved that allows the forward model to move sufficiently

fast, it is employed by the physical robot [Fig. 3(e) and (f)].

We can view the evolutionary algorithm that produces

these neural controllers as an inverse model. An inverse

model in biological nervous systems takes as input some
desired sensation and produces as output a set of actions

that will realize that sensation [85]. This second evolu-

tionary algorithm takes as input a fitness function that

maximizes forward acceleration and outputs a neural

network; this neural network generates motor commands

in either the simulated or physical robot that result in this

sensation.

Fig. 3.Resilient machine. A physical robot (a) maintains three separate

optimization methods (b)–(d). In the first optimizer (a), the robot

performs structural learning [85]: it must search through the space of

all possible configurations of its own body [four examples are shown in

(a)] to find those that can most closely reproduce the sensor data

generated by the physical robot, when actuated with the same motor

program that the physical robot has executed. With little sensorimotor

data, multiple structures may explain the data. This requires the

robot to search for a new action to perform (b): candidate actions not

yet performed are represented by green arrows. Once it finds an action

likely to yield new information, the physical robot performs it (a).

This cycle continues until the robot models converge. The physical

robot then optimizes a neural controller using the best model found so

far to perform some desired behavior, which in this example is forward

locomotion (d). The physical robot then employs this evolved

controller to produce the desired behavior in reality (e) and (f).

Photo courtesy of the American Association for the Advancement of

Science (AAAS); video courtesy of the authors.
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In the event that the robot undergoes damage and the
forward models evolve to reflect this damage, the neural

controllers evolved by the second optimizer no longer

produce the desired behavior in the new forward models.

This causes the second optimizer to rapidly replace these

failed neural controllers with newly evolved neural

controllers that do produce the desired behavior in the

damaged robot. Taken together, this results in resiliency:

when the physical robot experiences an unanticipated
situation for which it has no contingency plan, it diagnoses

the situation by fitting new forward models to it and then

evolving a qualitatively different behavior to compensate

for the new situation. ResiliencyVabandoning a behavior

that is no longer relevant and generating a new one that

isVdiffers markedly from robustness, which is the ability

of an organism or machine to continue operations in the

face of noise or change.
The third optimizer searches through the space of

possible actions that the physical robot should perform

next [Fig. 3(c)], when there is currently insufficient

information to distinguish between competing forward

models [Fig. 3(b)]. There is relatively well developed

theory from the machine learning field that dictates how to

do so: the physical robot should perform an action that

induces the most disagreement among the predictions of
the current forward models [72]. Thus, this third

evolutionary algorithm uses prediction disagreement as

the fitness function for deciding which candidate actions

to delete and which to reproduce. If one observes the

physical robot from a distance, it seems to perform a series

of random actions, despite the fact that the selected actions

are decidedly nonrandom. This method may prove useful

for developmental psychologists, who theorize about the
amountVif anyVof randomness in the seemingly random

movements infants make to learn about their own bodies

and the world around them [40], [69].

In summary, one evolutionary algorithm searches the

space of possible forward models for those that most

closely resemble the physical robot [Fig. 3(b)]; a second

searches the space of neural controllers that enable an

evolved forward model to perform the desired task
[Fig. 3(d)]; and a third searches the space of candidate

actions that will generate the most information about the

robot’s current state.

A. Neuronal Replicator Theory
Each of these three optimization methods maintains its

own population of forward models, neural controllers, and

candidate actions. Within each population, individuals
compete to explain the physical robot’s state, generate

desired behavior, and induce disagreement among the

forward models, respectively. There has been long debate

within neuroscience about whether and how patterns of

neural activity or neural circuits themselves compete

against one another in some form of a Darwinian process

[14], [22], [29]. Recently, it has been shown [31] that

temporal dynamics within one set of neurons can migrate
to another set, and that selection can cause certain

patterns to proliferate at the expense of others. Although

no evidence has yet been found for such Darwinian

processes occurring in actual nervous systems, their

presence has not yet been ruled out, nor is it clear what

role such competition might play in the generation of

adaptive behavior.

B. Deep Learning
Recently, a theory of general brain function has been

proposed and become increasingly popular: hierarchical

predictive coding [17], [37]. In short, it has been argued

that the brain continuously makes predictions about

arriving sensory inputs, and these predictions are orga-

nized hierarchically: cortical regions responsible for

abstract cognition may form high-order predictions that
span different perceptual systems such as visual, auditory,

and tactile sensations (e.g., ‘‘I am seeing and holding a

hat’’); as these predictions project ‘‘forward’’ toward

specific perceptual systems the predictions become more

specific (e.g., ‘‘If I rub my fingers I will feel the softness of

the hat’s material’’).

If there is a mismatch between predicted and actual

sensation, the resulting error propagates upward to restruc-
ture predictions generated by higher brain regions, triggers

actions that correct the error [35], and/or attracts attention to

this unexpected stimulus. Part of the allure of this hypothesis

is that it is intuitive; it explains the prevalence of forward

connections in the brain (projections from cortical regions

toward perceptual systems); it unifies various aspects of

perception, action, and attention; and computational

methods based on this concept, known as deep belief
networks, have shown superior performance in pattern

recognition tasks [41]. Again, there is much controversy

about whether this is the primary function of the brain [17]

and, if it is, what form do predictions take at different levels

in this hierarchy. One could imagine a neural system that

combines the advantages of multiple forward models as

demonstrated in the resilient machines project (Section III),

Darwinian competition between forward models of various
levels of detail and locality at different levels in a hierarchy

(Section III-A), and different actions designed to disambig-

uate between predictions made by these forward models at

different levels of granularity.

C. Multiple Resilient Machines
In [10], we expanded the resilient machines approach

to robot swarms. As shown in Fig. 4, each member of a
team of robots constructs models of itself and chooses

particular actions designed to accelerate that process.

Periodically each robot exports its best self-model and

imports self-models generated by its peers. If performed by

a group of sufficiently similar machines, each robot is able

to generate a model of self more rapidly than if it had done

so individually. This is enabled by incorporating sexual

Bongard and Lipson: Evolved Machines Shed Light on Robustness and Resilience
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recombination into the evolutionary process that generates

self-models: a chance crossing may combine one correctly

modeled part of the body from an imported model with
another correctly modeled part of the body from a native

self-model.

Collective construction of self-models can also accelerate

the recovery from injury. If one robot becomes damaged, it

may perform actions to diagnose that damage and then

evolve a compensating neural controller to recover move-

ment despite its injury. If robots are sufficiently similar, it is

likely that they will experience similar wear and tear, or
damage will occur at similar weak points in the robots’

construction. If one robot suffers damage, recovers, and

broadcasts its self-models to its peers, the evolutionary

algorithms generating self-models in its peers will automat-

ically discard the damaged self-model because this model

does not fit their sensorimotor experiences. If, however, a

similarly damaged peer imports this damaged self-model, it

will automatically bypass the damage diagnosis stage: the
damaged model already explains the new sensorimotor

experiences obtained by the damaged machine.

This ability to directly share experiences obviously has

no equivalent in the biological realm. However, humans do

have the ability to combine language and physical

demonstration to communicate to a peer how a new

activity or body state may feel, and how to fight or channel

that experience to master a new skill. For example, an
instructor may counsel a student to fight the urge to lean

forward when first riding a snowboard because leaning

back will recenter the student’s center of mass over their

polygon of support.

D. Social Resilient Machines
In addition to modeling self, it is of great utility for a

social organism or machine to also model others [56]. For

example, such models may help the observer to predict the
physical capabilities and limitations of others andValong

with predictions about the sensory repercussions of one’s

own actionsVmake predictions about whether a contem-

plated social interaction will succeed. Indeed much work

in the field of social robotics is concerned with modeling

self and others [39], [48], [62].

In [51], we reported on a student robot that attempts to

detect, model, and then imitate other robots that are
sufficiently similar to itself (Fig. 5). It first creates models

of self using the method described above. It then, upon

detecting another machine, constructs multiple kinematic

chains of differing structure to describe it. It then samples

pixels from the video stream coming from its camera in a

manner analogous to how it determines which actions to

perform when modeling itself: it ‘‘looks’’ at each of the

models of the candidate teacher robot, and searches for
pixels in each mental image that differ. For example, if one

teacher model takes the form of a long robot lying close to

the ground but another teacher model represents a tall,

upright robot, many of the lower pixels in the former

Fig. 4. Robot pair creating forward models together. Each robot

maintains its own self-modeling engine (Fig. 3). Periodically each

robot exports its best self model to its peer and overwrites its worst

self-model with the best self-model received from its peer. Each robot

decides independently which action to perform to improve its own

current set of self-models. Image courtesy of IEEE.

Fig. 5. Self- and other modeling. A student robot (a) observes other

robots in its environment in an attempt to determine which are

sufficiently similar to imitate. Although robot (b) has a similar visual

appearance and the same degrees of freedom, the student robot

determines that it is sufficiently structurally different from itself to

make imitation impossible. The student robot then models robot (c),

determines that it is sufficiently similar to it, and learns to imitate its

movements. Image courtesy of Neural Networks.
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image will be dark (because the candidate teacher robot is
dark) but will be light in the latter image (assuming the

teacher robot is moving against a light background). If the

physical student robot then queries a low pixel from its

actual camera and detects darkness, this lends support to

the hypothesis that the other robot is lying on the ground

while weakening the hypothesis that the robot is tall and

thin. By continuously evolving multiple models of the

other robot and repeatedly sampling only one pixel from
its video stream the student robot can rapidly infer its

kinematic structure. By performing this process repeatedly

as the candidate teacher robot is moving, the student robot

can also infer the changes in its joint angles.

Finally, armed with a model of self and a model of the

other, the student robot attempts to determine whether it

is possible to imitate the other. It does so by evolving a

neural controller that actuates its self-model. In this
evolutionary algorithm, the fitness of any neural controller

is determined to be how close it can cause the self-model to

move like the teacher robot. If a controller evolves that

reproduces the teacher robot’s movements sufficiently

closely in the self-model, then that teacher is deemed to be

imitatable; otherwise, the student robot continues its

search for an appropriate teacher. If the physical student

robot now employs this evolved controller, it will imitate
the physical robot in its field of view.

There are two points of contact between this particular

approach to social robotics and neuroscience. First, the

visual method employed here suggests a possible link

between active perception (selecting a subset of available

sense data through action [66]), the neuronal replicator

theory, and the hierarchical predictive coding hypothesis:

organisms may indeed learn multiple forward models of
different levels of detail; models at each level of a

hierarchy may compete with one another to explain

previous experience; but models at each level may also

collectively determine which perceptual streams to sample

from, or which actions to perform to collect the required

sensory input. Second, it is known that there are certain

brain regions that activate if an animal performs an action

or observes another animal performing that action.
Neurons in these regions are colloquially referred to as

mirror neurons [36], but much controversy surrounds the

role (if any) such neurons play in social skills such as

imitation and empathy [43]. It may be that mirror neurons

represent some linkage between forward models of self-

and forward models of others that have been genetically

encoded or learned. However, despite some preliminary

evidence relating mirror neurons to forward models of self
[58], more such evidence is required to support this

hypothesis.

IV. MODULARITY

It is well known that both structural modularity (i.e.,

modular wiring [57]) and functional modularity (i.e.,

discrete sets of activation patterns [3]) exist in the brains of
higher animals, but much work remains to determine the

evolutionary and developmental causes that give rise to

them. We must determine what such causes are because

naive optimization of neural controllers for robots rapidly

leads to increasingly densely interconnected networks [9].

This dense connectivity in turn slows optimization,

because any slight change in a partially optimized network

causes functional change to propagate throughout the
network, usually leading to a decrease in performance.

Also, we cannot simply copy the modularity observed in

biological nervous systems into artificial neural networks,

because the imported modularity may not match the

functional demands of the robot’s environment. However,

if we can create an evolutionary algorithm that exerts

selection pressures that favor functional and modular

networks, we can automatically derive modular robot
neural controllers and thus obtain all the benefits of

modularity such as robustness and the ability to adapt to

novel situations.

It has been argued that metabolic cost of connections

between neurons can account for modularity [19],

however this criterion is not sufficient: a sparse but

nonmodular network will contain many fewer connections

than a densely interconnected modular network. It has
also been shown [52] that evolutionary change can favor

the evolution of modularity in a computational model.

Wagner has argued [84] that evolution will produce

modular phenotypes if directional selection acts on one

part of the phenotype and stabilizing selection acts on

another part. Directional selection is an evolutionary force

that causes a structure or behavior of an organism to

change over time; stabilizing selection favors organisms
that maintain a given structure or behavior. Espinosa-Soto

and Wagner [30] instantiated this theoretical argument in

a computational model in which networks, meant to

represent genetic regulatory networks, were modeled as

dynamical systems: some parts of the network were

challenged, over evolutionary time, to maintain an earlier

evolved attractor landscape (stabilizing selection). Other

parts were challenged to add new attractors as evolution
proceeded (directional selection). This led to the evolution

of increasingly modular networks, without explicitly

selecting for modularity.

Kashtan and Alon [49] also demonstrated the sponta-

neous evolution of modularity using what they termed

‘‘modularly-varying goals.’’ Such goals are reminiscent of

the directional/stabilizing selection approach to modular-

ity in that some subgoals within the overall goal change
over evolutionary time while other subgoals remain

constant. This goal structure comes to be reflected in

increasingly modular logic circuits: relatively independent

subcircuits evolve to compute results for each of the

unchanging subgoals, while sparse connections between

the subcircuits change to track changes in the time-varying

subgoals.
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A. Modularity in Robot Neural Controllers
However, in all of these previous computational

approaches to modularity [19], [49], [52], [84], embodi-

ment was not taken into account: the logic circuits or

neural networks did not control the movements of a robot.

A notable exception is the work of Yamashita and Tani [89],

in which it was shown that functional modularityVthe

ability of a neural network to exhibit independent, stable

dynamical statesVcould become organized into a hierar-
chy: neurons with slow temporal dynamics could trigger

collections of fast neurons to switch between different

stable patterns, which correspond to specific robot

behaviors. In [9], we introduced a method following

Espinosa-Soto’s approach in which action played a central

role in the spontaneous evolution of structural modularity

(densely connected neural modules with sparse connectiv-

ity between modules). Neural controllers were evolved to
drive a robot arm to grasp differently sized objects placed at

different positions (Fig. 6).

At the outset of an evolutionary trial, neural controllers

were only selected for their ability to drive the robot to

grasp a large object placed on its left [Fig. 6(a)]. Evolution

proceeded until such a network was found, after which

time subsequent neural controllers were selected for their

ability to generate successful behavior in two environ-
ments [Fig. 6(a) and (b)]. Once a network evolved that

enabled success in both environments, its descendents

were evolved to produce successful behavior in three

environments [Fig. 6(a)–(c)]. Finally, neural controllers

were evolved to enable object grasping in all four
environments [Fig. 6(a)–(d)].

Many trials were conducted, and successful neural

controllers at the end of each of these four phases were

collected together. It was found that among neural

controllers evolved against just the first environment, no

modularity was present: the density of synaptic connec-

tions between arm and hand motor neurons was not

appreciably different from the density of connections
among arm motor neurons, or among hand motor neurons

[Fig. 7(a)]. However, there was significant modularity

present among the neural controllers that produced

successful behavior in all four environments: there was

significantly greater connectivity among hand motor

neurons and among arm motor neurons than there was

between hand and arm motor neurons [Fig. 7(b)].

One can account for the increasing modularity by
applying the directional/stabilizing selection argument to

the movements of the robot’s arm and hand. When a

familiar object [such as the object in Fig. 6(a)] appears in

an unfamiliar location [as in Fig. 6(c)], one possible

solution is for the hand to perform the same grasp, but for

the arm to act different (rotate right instead of left). In

effect, stabilizing selection is acting on the hand while

Fig. 6. Robot arm evolved for object grasping. The robot arm, when

exposed to a large object on its left (a), rotates to the object and places

its two fingertips (black dots) on the circumference of the object.

Thick light lines represent the robot’s position at the outset of its

motion; thin black lines represent its final position. The same

robot’s behavior when exposed to a small object on its right (b); a large

object on its right (c); and a small object on its left (d). This robot

successfully ‘‘grasps’’ all four objects. (a) Environment 1.

(b) Environment 2. (c) Environment 3. (d) Environment 4.

(Reproduced from [9].)

Fig. 7. Spontaneous evolution of modularity in robot neural

controllers. (a) Mean connectivity across neural controllers that enable

the robot to succeed in environment 1 [Fig. 6(a)]. Gray circles represent

hand motor neurons, white circles represent arm motor neurons.

The lines represent the probability of a synaptic between each pair of

these neurons across the evolved networks: lighter and darker lines

indicate a lower and higher probability of that connection occurring

in any given network, respectively. (b) Mean connectivity across

evolved networks that enable the robot to succeed in environments 1

and 2 [Fig. 6(a) and (b)]. (c) and (d) report the mean connectivity

across networks that enable the robot to perform in the first three

environments and all four environments, respectively.

(a) Environment 1. (b) Environment 2. (c) Environment 3.

(d) Environment 4. (Reproduced from [9].)
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directional selection is acting on the arm. Alternatively, in
comparing the successful behaviors in environments 2 and

3 [Fig. 6(b) and (c)], stabilizing selection acts on the arm

while directional selection acts on the hand.

Importantly, neural dynamics were found to play an

important role in the evolution of modularity. For

example, it was possible for a successful neural controller

to fall into a point or cyclic attractor of neural activity. A

point attractor results in the robot coming to rest with a
successful grasp; a cyclic attractor results in the robot

alternatively grasping and releasing the object. If selection

did not explicitly select for point attractors, modularity

would not evolve. It is currently unknown why this is so,

nor what the general relationship is between neural

dynamical behavior and conditions that favor the evolution

of modularity. Additionally, it is not clear how robots of

greater complexity should be evolved to favor the
hierarchical and modular architecture (‘‘modules within

modules’’) observed in biological nervous systems [57].

V. MORPHOLOGICAL SCAFFOLDING

A majority of work in biomimetic or neuromorphic

computation focuses on learning or other neural change

which leads to improved function as the robot or device

interacts with its environment (for examples, refer to [33]

and [53]). However, very little work has focused on the

role of morphological change in the acquisition of adaptive
behavior. One notable example comes from developmental

robotics [1] (a sister field to evolutionary robotics), which

takes inspiration from human cognitive development.

Developmental roboticists have shown how altering a

robot’s body can provide a solution to Bernstein’s problem

in motor control, which states that there are many ways to

perform a movement for an animal with a large number of

mechanical degrees of freedom [5]. They demonstrated
that initially reducing a robot’s number of mechanical

degrees of freedom can facilitate the learning of motor

control. Once the robot achieves some competency, more

of its degrees of freedom are released and coopted by the

developing neural controller [6]. A popular approach to

Bernstein’s problem is to use optimal control: among the

many (possibly infinite) movements that may result in

success, the movement that minimizes some cost function
is chosen as the optimal way to achieve the given task [26],

[79]. However, optimal control approaches usually consid-

er the musculoskeletal system of the animal (or mechanical

system of the robot) fixed, despite the observation that

animals with large numbers of degrees of freedom undergo

significant morphological change over their lifetimes.

Indeed humans in particular exhibit both high morpholog-

ical complexity and extreme morphological change.
In a recent study [11], we investigated the role that

metamorphosis might play in the evolution of neural

controllers for robots. We began by formulating a control

experiment, in which artificial neural networks were

evolved for a hexapod such that it would locomote toward a

target object placed in its environment [Fig. 8(d)]. In this

study, the topology of the neural network controller was

held constant and the evolutionary process only optimized
the strength of the synaptic connections between the

robot’s sensor neurons, its sensor neurons and its

interneurons, and its interneurons and its motor neurons.

The evolutionary algorithm terminated once a neural

network evolved that brought the robot sufficiently close

to the target object. We ran several such trials and

recorded the average time it took evolution to discover

such controllers.
We then performed a second set of trials in which we

introduced metamorphosis. At the outset of the evolutionary

Fig. 8. Incorporating development into the evolution of robot behavior. A population of simulated robots are evolved to travel to a target

object placed in their environment (small cube). At the outset of an evolutionary trial, the robots’ morphology changes while they behave: they

transition from an infant, legless form into an adult legged form while moving (a). The inset graph indicates how the robot’s morphology

changes: the robot gradually ‘‘grows’’ legs, and those legs become increasingly vertical relative to the body. The inset graph shows how the robot’s

center of mass changes during the evaluation period. Evolution continues until a neural controller is found that successfully enables the robot

to reach the target object. When this occurs, the robots’ developmental trajectory is altered: subsequent neural controllers must control

a robot that grows from the infant into the adult form over the first two-thirds of the evaluation period and then maintains the upright legged for

the remaining third of the evaluation period (b). Once successful behavior is regained, the infant to adult form is accelerated further (c) and

evolution continues. In the final stage, the infant form is discarded completely (d) and evolution continues with the existing neural controllers

until they produce successful legged locomotion to the target. (Reproduced from [11].)
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trial additional mechanical degrees of freedom were added
to the robot such that it would gradually reconfigure from a

legless segmented robot [lower right robot in Fig. 8(a)],

while being controlled by a given neural controller, into an

upright legged hexapod [top left in Fig. 8(a)]. The

evolutionary algorithm continues until a neural controller

is found that produces successful behavior in this

metamorphosing robot [Fig. 8(a)]. When this occurs, the

robot’s developmental trajectory is altered. The robot now
transitions from the infant legless form into the adult

legged form over the first two thirds of its evaluation period

[Fig. 8(b)]. The neural controllers previously evolved are

reevaluated on this altered robot, which typically reduces

the quality of behavior they produce. Evolution thus

continues until it rediscovers a neural controller that works

for the altered robot. Once success is again achieved,

evolution of the neural controllers continues on a robot that
metamorphoses from the infant form to the adult form

during the first third of its evaluation period [Fig. 8(c)].

When success is again achieved, the infant form is

discarded altogether [Fig. 8(d)]: the evolved controllers

are reevaluated on the robot which now begins with and

maintains a hexapedal form through its evaluation period.

Evolution continues until a neural controller evolves that

generates the desired behavior in this morphologically fixed
robot. We conducted several trials using this approach and

measured the average time it took to progress through all

four evolutionary stages.

Despite the three prepended evolutionary stages with

metamorphosing robots, these experimental trials took less

time than the control trials. The reason for this is that

optimizing controllers for dynamically unstable machines

like legged robots is difficult: there are few gradients in the
search space. However, a legless robot creates a much

smoother search space: any slight change to a given neural

controller may slightly increase or decrease the travel

speed of such a robot. By forcing these robots to change

into legged robots while they move, however, we force the

optimization method to find controllers that enable

movement in both robot forms rather than specialized

controllers that only work for the legless robot. Then, by
gradually removing the infant form over evolutionary time,

we gradually remove the gradients from the search space.

However, the infant robot form has brought search into

the neighborhood of neural controllers that work for the

legged robot.

Not only were controllers evolved for the hexapod

more rapidly if metamorphosis was employed, but also the

resulting controllers were more robust. The successful
neural controller returned at the end of each control and

experimental evolutionary trial was reevaluated on the

hexapedal robot, but under novel environmental condi-

tions. The robot was exposed to small, random external

impulse forces, simulating mild collisions or wind. It was

found that the robot was better able to continue

locomotion despite these novel perturbations when

equipped with the neural controllers from the experimen-
tal trials than when it was equipped with neural controllers

from the control trials. This observation can be explained

by the fact that controllers evolved across robots with

differing morphologies must maintain legged locomotion

over a wider range of sensor–motor contingencies than

controllers evolved for a single robot. In these experi-

ments, this evolved robustness against internal change

(metamorphosis) translated, after optimization, to robust-
ness against external perturbation.

Although metamorphosis has been explored with

robots previously [61], [90], the role that such change

has on the ability to generate adaptive and robust behavior

was hitherto unknown. In the biological realm, there is

some understanding about how motor control changes

during metamorphosis [21]. However, the way in which

behaviors obtained prior to metamorphosis facilitate the
acquisition of behaviors after metamorphosis is largely

unknown, from a neurobiological perspective: for exam-

ple, do the behaviors that a human infant learns (crawling

and then scooting) somehow prepare it for learning

different yet related behaviors (walking and running) as

it transitions into an adult form? Such questions are

related to scaffolding, a concept originating in psychology:

how can a caregiver structure the environment of a learner
such that it learns a behavior more rapidly than if it

attempted to learn it in an unstructured environment [87]?

This idea has carried over into robotics in which the robot’s

environment is often scaffolded [28]. Our work in [11],

however, can be viewed as a form of morphological
scaffolding: the robot’s own body may allow it to rapidly

acquire a behavior; subsequent body changes may then

increase the robustness of that behavior when exhibited in
the final, fixed adult form.

Finally, the relationship between the robustness of

neural control and metamorphosis is little explored.

Humans excel in adapting behavior to suit environmental

change, and clearly much of that ability can be attributed

to learning. However, some of this plasticity may also be

caused by the radical changes we experience in growing

from infants into adults. Robots may serve as a uniquely
suited tool for investigating this connection.

VI. MORPHOLOGICAL COMPLEXITY

There is a large body of work in the neuroscience literature

that makes use of information theory [27]. Some work uses

information theoretic measures to gauge how much

information about a stimulus or behavior is encoded by a
population of neurons [67]. Such metrics may also be

employed to characterize the complexity of nervous

systems [13]. Indeed it has been argued that such

measurements indicate that the cerebral cortex exhibits

higher complexity than other brain regions, which may

reflect the ability of higher organisms to successfully

grapple with a complex environment [80].
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Similarly, evolutionary biologists have explored the
evolution of morphological complexity. However, much

analysis has focused on macroscopic trends toward increas-

ing complexity [15]; whether such rises in complexity are the

result of selection or simply occur because of drift through

the space of possible phenotypes [55], [59]; or investigation

of the genetic underpinnings of phenotypic complexity [34].

Relatively little work, however, has focused on determining

the adaptive advantage of morphological complexity. An
exception to this is the work of Passy [64], who determined

that increased morphological complexity in the form of

internal variation may give an organism an advantage in

changing environments: Passy found that the fractal

dimension of different diatom species correlates with the

variability of their particular environmental niche.

One can often detect a ‘‘neurochauvinist’’ bias in

artificial intelligence and robotics research: more work is
often dedicated to modeling neural systems than in

designing the bodies into which these neural models will

be housed. This chauvinism is evidenced by the greater

amount of work on neural complexity than on morpho-

logical complexity in the AI and robotics literature. Dating

back to the earliest computational neural models, it was

demonstrated that artificial neural networks required a

minimum level of complexityVin this case, the inclusion
of interneuronsVin order to correctly classify data sets

that are not linearly separable [45]. More recent work has

investigated the relation between neural complexity and

adaptive behavior [47], [71]. However, only a few studies

have investigated the relationship between morphological

complexity and behavior [2], [38].

If adaptive behavior can best be understood by

considering how an animal’s brain (or robot’s neural
controller) mediates the interaction between its body and

its environment [16], [65], it follows that the body will

constrain as well as afford particular ways in which this

interaction can be exploited. From this, it follows that for

any given task, different pairs of robot body plans and

neural controllers will result in the desired behavior.

Finally, some of these pairs will contain morphologies of

greater complexity and neural controllers of less complex-
ity than other pairs. As described in Section I, there are

many legged robots that are capable of locomotion, but the

passive dynamic walkers provide an example of a brain/

body pairing with zero control complexity: these walkers

have no controllers at all [20], [78].

For these reasons, it would be helpful to understand

the relationships between morphological, neural, and

environmental complexity. Such an understanding might
help to determine, for example, the minimal amount of

morphological and control complexity required for success

in a given task environment. In a recent work [2], we

explored one of these relationships, that between mor-

phological and environmental complexity.

To do so, we evolved robots in simple and complex

environments. The simple environment required the robot

to locomote across a high-friction, flat ground plane

[Fig. 9(a)]. The complex environment was composed of a

series of low-friction blocks sitting atop the high-friction

ground plane [Fig. 9(b)–(d)]. This cluttered environment
is not only more complex but it is more challenging: robots

evolved to travel over these objects had to evolve the ability

to reach between the blocks and push or pull themselves

forward.

We then employed an evolutionary algorithm [76] that

enabled us to evolve the 3-D shape of the robot, along with

parameters describing a neural controller of fixed topol-

ogy: thus evolution could complexify (or simplify) the
robot’s morphology but not its neural complexity. (In

future work, we intend to explore the evolutionary tradeoff

between morphological and neural complexity.) The

robots comprised triangular meshes, which facilitated

our ability to measure the morphological complexity of a

given robot. We measured complexity using shape entropy

[63], which equates the complexity of a 3-D shape with the

variation in local curvature on its surface. (It has been
shown that high values of shape entropy correspond with

human observers’ attribution of complexity [77].)

After evolving robots in the simple and complex

environments, we compared the average shape entropies

of both sets of robots. When no cost was placed on

morphological complexity, no significant difference in

morphological complexities between the two sets of robots

evolved. However, when the robots were evolved in both
environments again, and a cost was placed on complexity,

Fig. 9. Robots whose morphologies and neural controllers were

evolved in different environments. If robots are evolved to move over

flat, high-friction terrain, relatively simply shaped robots arise (top

left). If, however, robots are evolved to travel over low-friction objects

(blue bars), they evolve more complexly shaped body plans which

enable them to reach within the crevices between blocks and propel

themselves forward. (Reproduced from [2].)
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robots in the simple environment were simpler [Fig. 9(a)]

than the robots evolved in the complex environment

[Fig. 9(b)–(d)]. This different rate in the evolution of
morphological complexity is depicted in Fig. 10. Although

this situation did not arise in every pairing of a simple and

complex environment studied in [2], the inverse was never

observed: there were no simple and complex environment

pairings in which more complex robots evolved in the

simpler environment. It may not be surprising that such a

correlation does exist between morphological and envi-

ronmental complexity in this simple domainVor that this
correlation may not hold in other task environmentsVbut

this was the first quantitative determination of such a

relationship.

Many modern evolutionary methods bias search toward

increasingly complex solutions as optimization proceeds,

regardless of what is selected for, including the method we

used in this work [76]. So, we had to rule out that the

observed increases in complexity were the result of bias,
rather than because they were useful for the task at hand.

To do so we ran several evolutionary trials with the exact

same parameter settings but with selection turned off:

robots were selected for culling or reproduction randomly,

rather than their ability to locomote. We then measured

evolutionary changes in morphological complexity within

these control trials. We found that morphological

complexity does indeed increase, but it increases at a
much lower rate than within the populations evolving for

locomotion over flat ground (black line in Fig. 10) or

cluttered terrains (blue line in Fig. 10). This indicates that,

despite the fact that there is an inherent bias in this
particular evolutionary simulation toward greater com-

plexity over time, the greater complexity observed in the

robots evolved to move through the more challenging

environment is a result of selection and not random

chance. In a similar manner, it is often difficult to

determine which of these two forces produced a given

form of complexity observed in nature. Thus, much work

remains to understand the links between morphological,
neural, and environmental complexity in biological

organisms, as well as for machines. An understanding of

such relationships would enable us to build both the most

capable machine and the most simple machine for a given

task environment.

VII. SELF-REFLECTION: FROM BODY
TO MIND

In Section III, we described how a robotic system can

become more resilient by acquiring an ability to create a

forward model of its own body. That forward model can

predict the mechanical consequence of various motor

commands. The ability to create such a self-model, or self-
image, allows the robot to try out various candidate actions

on the model before carrying them out in physical reality,
thereby eliminating unnecessary risk and energy expendi-

ture. A robot or an animal can then use this ability to

quickly optimize actions through virtual trial and error, to

detect when something is wrong by noticing that

predictions do not match reality, and to adapt to

unforeseen situations.

From an evolutionary perspective, an innate ability of

an individual to model its body could incur an advantage to
survival under a changing environment where experimen-

tation is costly or risky, especially under a long life span

where the body or the environment is likely to change. But

this advantage comes at a price. First, the self-modeling

process can go wrong, leading to pathologies such as

‘‘phantom limbs.’’ But more importantly, the self-modeling

machinery itself requires sophisticated learning and

adaptation processes. Would there be other uses for such
capability to justify the costs?

Just as the self-modeling capacity can help individuals

to create models of their own body, the same self-modeling

capability can be used to allow systems to model their own

behavior. While body and brain are often anatomically

distinct, from a purely algorithmic perspective, both the

body and the brain can be seen, at a high level, as self-

contained input–output (I/O) systems. The body has
motor actuators as outputs and mechanical sensors as

inputs; the brain issues output command signals and

receives input signals. Modeling the brain should, in

principle, not be fundamentally different than modeling

the body.

It is quite possible that somewhere in our evolutionary

heritage, the same mental processes that allowed some

Fig. 10. Evolution of morphological complexity. Robots evolved to

travel in complex, challenging environments show more of an increase

in morphological complexity (blue curve) than robots evolved to

move in simpler environments (black curve). In this example, the

robots evolved in the complex environment also evolved to

move slightly further (red curve) than those evolved in the simpler

environment (green curve). Dotted lines denote one unit of

standard error. (Reproduced from [2].)
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individuals to model their own mechanical body eventually
were used also to allow those individuals to model their

own behavior. Imagine, for example, an individual that can

predict how they would behave or react in a future

situation, without actually being in that situation. They

could then predict what situation would be more favorable,

and take the action to engender that situation.

The ability to model one’s own thinking, or ‘‘think

about thinking,’’ is a metacognitive capacity that is one
step away from forward modeling of one’s own mechanical

body. In robotic terms, it is in fact a dynamical system-

identification task where a dynamical model is created

from observations. Often the term ‘‘self-reflection’’ is used

to refer to modeling one’s own behavior, in contrast to the

term ‘‘self-modeling’’ used to describe the process of

modeling one’s own body. Fundamentally, however, these

two processes are very similar learning processes, with very
similar benefits and similar implementation challenges.

To implement self-reflection, we need to think of a

robot, or an agent, as having two ‘‘minds’’Vone mind is

being modeled, and the other mind is doing the modeling.

Evidence has been presented that suggests that the human

brain is indeed composed of multiple ‘‘mind modules’’

[44], [57], where some are capable of modeling others but

not vice versa. For example, many animal brains contain a
hippocampus, responsible for some spatial memory

aspects. Humans and some other animals also have a

cerebral cortex, which could be seen as a separate ‘‘mind’’

responsible for learning at a higher level. The cerebral

cortex can think about the hippocampus (as we are doing

right now while reading this text), but not the other way

round. Minsky initially proposed that a brain could actually

be composed of multiple subbrains, each serving as the
external world for the next brain in a cascade [Fig. 11(a)].

We recently attempted to implement a variant of

Minsky’s architecture in a two-mind robot. Imagine a

robotic system containing only two ‘‘brains.’’ Let us think

of one brain as observing the second brain, and the second

brain as being observed by the first brain [Fig. 11(b)]. The

observed mind is a simple, low-level brain that processes

input signals and produces output signals according to
some fixed behavior. The simple brain is evolved and

optimized for some basic survival task, such as chasing

blue dots and avoiding red dots using simple sensors (red/

blue, left/right) and simple actuators (left/right wheels)

[Fig. 11(d)]. The higher level brain does not have access to

the inner workings of the lower brain, but the high-level

brain can observe the lower level brain’s I/O in various

situationsVi.e., the signals it receives and the signals it
generates. This is conceptually similar to the way that you

can consider your own spatial-memory behavior in various

actual and hypothetical situations, even though you cannot

actually access the inner workings of your own hippocampus.

What would be the advantages of this two-mind

architecture? The advantages would be similar to the

benefits gained from the ability to model one’s own

mechanics. An individual with introspective self-reflection

ability would be able to predict and optimize its own

behavior in various situations without incurring the costs
and risks of experiencing them out in physical reality. A

self-reflective agent would be able to detect that something

has changed in the lower level brain, or that the

environment or tasks have changed to the point where

the lower level brain’s behavior is not optimal anymore and

needs to be adapted. The higher level brain might even

intervene and modulate the I/O behavior so that the lower

level brain’s behavior is useful in a new context.
To try this out, Zagal and Lipson [92] constructed a

simple robot with two brains. The lower level brain was a

simple neural network evolved to seek blue lights and

avoid red lights, by turning the left and right wheels of a

wheeled robot. The second onboard brain could only

monitor the inputs and outputs to the lower brain. The

higher level brain then formed a model of the lower brain

by collecting data on the lower brains I/O signals. The
higher level brain could then detect anomalies in the

behavior (e.g., due to damage in the lower level brain) and

often recover at least partially by modulating the inputs

and the outputs. More importantly, when the environment

changed and now red lights needed to be chased rather

than be avoided, the higher level brain could modulate the

inputs so that the robot would still function appropriately.

In other words, self-reflection allowed the robot to adapt to
major internal and external changes.

One could challenge this thinking by asking why a

robotic system would ever need to model its own behavior,

since that behavior is known a priori to the engineers who

designed the robot in the first place. While this argument

is correct for most conventional robots today, it is likely

that, in the future, robotic systems would not be so easily

understood by their designers. Future robotic minds are
likely to be generated indirectly through machine learning

processes; they are likely to be increasingly complex and

Fig. 11. Self-modeling cognitive architecture. (a) Minsky’s brain chain,

from [60]. (b) Proposal of nested brains architecture, from [92].

(c) Robot contains an innate brain, and a reflective brain which can

model and modulate the I/O of the innate brain. (d) Schematic of robot

and environment consisting of moving sources of blue and red light.

(Reproduced from [60] and [92].)
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opaque; and they might need to operate in changing
environments where the original engineers are not available.

Taking the idea of self-reflection one step further, it is

likely that individuals that evolved the capacity to model

their own body and brain, were eventually able to model

the body and brain of other agents as well. For example,

some primates are able to model and anticipate the actions

and behavior of other primates purely by observation. This

ability, known as Theory of Mind [50], underlies much of
human–human interaction and social behavior, and is key

to cooperation, competition, deception, and manipulation

observed in many social environments. While these

concepts are very difficult to test and validate in human

and animal behavior, they can be induced in simple robotic

systems, offering a new window to this complex yet

important aspect of cognition and self-awareness.

VIII. CONCLUSION

Much work in biomimetic computation is dedicated to

creating detailed neural models in order to understand the

function of biological nervous systems. Some of this work

connects models to robots to determine how the model

affects the machine’s ability to behave adaptively. Howev-

er, with the exception of the projects described herein, few
studies have investigated the interaction between mor-

phological and neurobiological change. This change may

occur at different time scales. We described work in which

a robot’s morphology may change over the course of

optimization (Sections VI and V), or, it may change over

the course of the evaluation of a single neural controller

due to growth (Section V) or damage (Section III).

Even if a robot’s morphology does not change, its
conception of its own bodyVor those of othersVmay. We

described a machine that can spontaneously optimize a
self-image (Section III) and use that to internally rehearse

behaviors before attempting them in reality. Similarly, a

team of robots may collectively construct self-models and

share them to accelerate the process (Section III-C). Social

robots may construct models of self and models of others

in order to learn from them (Section III-D) or predict their

intentions (Section VII).

Embodied cognition, coupled with an evolutionary
approach to the improvement of autonomous machines,

provides a framework for incorporating biological inspira-

tion at different temporal and spatial scales. Temporally,

change may occur within populations over evolutionary

time; individual robots may develop from infant into adult

forms; learning may induce neurobiological change; and

models of self and others may form as the robot interacts

with its environment as well as other machines. Spatially,
evolutionary methods allow for local or coordinated

change to the robot’s body as well as its brain; learning

methods are constrained to improve the robot’s control

policy.

Finally, we may investigate feedback loops between

these different spatial and temporal processes. The studies

reported here all employ neural models that are much

simpler than those used elsewhere. For instance, in all of
the work described here, no learning occurs: synaptic

connections between neurons are fixed by the evolutionary

algorithm. Future work is needed to incorporate more

detailed neural models into evolving machine populations.

This would allow us to explore how short-term change,

such as learning, is affected by change not only at longer

time scales, but also by change across the machine’s

various mechanical, material, motoric, sensory, and
control subsystems. h
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