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In the field of evolutionary robotics, investigators evolve

populations of autonomous machines to exhibit some desired

behavior. The neurology, morphology, or both may be placed

under evolutionary control, and different behaviors can be

selected for. Results from this approach can generate unique

and surprising hypotheses about why certain behaviors evolve,

regardless of whether they emerge in organisms or machines.

To illustrate this approach, I describe recent work on the

evolution of modularity, morphological computation, and

prospection.
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Introduction
The beginnings of robotics and computers can both be

traced back to the late 1940s: W. Grey Walter demon-

strated autonomous robot tortoises in 1948 and 1949 [1],

while war efforts led to the first computers in the United

States and England [2]. Yet, despite their cogenesis,

computers have advanced much more rapidly than robot-

ics. The reason for this is that, in retrospect, it has proved

relatively easy to build machines that repeat the same

actions indefinitely; building machines that continuously

adapt to their surroundings remains difficult.

Evolutionary robotics (ER) [3,4�,5–7] is a subdiscipline

within the larger study of robots, and began as an attempt

to overcome the difficulty of manually constructing both

adaptive and autonomous machines. Instead, in ER,

computers are tasked with evolving such machines: the

investigator provides the computer with a way to measure

the quality of any given robot; the computer then creates

populations of randomly generated robots and measures
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each robot’s ability using the investigator-provided met-

ric; deletes those with poor ability; and makes randomly

modified copies of those that survive. If this process is

repeated over a sufficient period of time, it is possible to

automatically evolve robots that exhibit some desired

behavior (Figure 1).

This approach to robotics has two major advantages over

other approaches. First, it promises an automated method

for yielding robots. A modern robot is composed of two

main subsystems: its sensors, motors, and mechanical

layout, roughly equivalent to an organism’s body plan;

and its controller, which transforms sensor signals into

motor commands. In all other approaches in robotics,

most of the architecture of a robot’s body plan and

controller is designed by hand. In ER, the evolutionary

simulation may be tasked with sculpting as many details

of the body plan and controller as desired.

The second advantage of ER is that it can generate

hypotheses about the ultimate mechanisms of adaptive

behavior observed in nature. If a particular trait evolves in

a robot, it is possible to trace back through the robot ‘fossil

record’ to study what selective forces and/or historical

accidents led to that trait. Although such traces do not

prove that similar forces led to the evolution of that trait in

organisms, such studies can place explanatory lower

bounds on hypotheses regarding adaptive advantages of

traits: what is the simplest evolutionary system that will, if

replayed with different starting conditions, consistently

yield the emergence of that trait? Indeed, how consis-

tently (if at all) do traits evolve, given such an iterative

system?

In the next three sections I survey the study of three such

traits: modularity, morphological computation, and pro-

spection.

The evolution of modularity
Modules are ubiquitous at all levels of biological organi-

zation, from discrete genes up to distinct ecosystems [8].

Modularity is also prevalent in most human-built struc-

tures, for the simple reason that it is only possible to

extend or improve a complex machine if it is modular [9].

Otherwise, any change to a system with global integration

will lead to large-effects and thus most probably unde-

sired-effects.

Despite this obvious advantage of modular over non-

modular systems, hypotheses regarding how modularity
www.sciencedirect.com
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Figure 1
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The evolution of robots. In a typical evolutionary robotics experiment, a population of robots, each with randomly generated body plans (gray

shapes), neurons (circles), and synapses (lines), is created (a–c). The ability of each robot to perform some task is evaluated and assigned a

numerical score (numbers embedded in each panel). Robots with low ‘fitness’ are deleted (c), and robots that survive (d,e) produce offspring

(robot a begets robot f). This cycle of evaluation, culling, and reproduction is repeated for several generations and gradually yields robots better

able to perform the desired task (g–i).
might evolve remained elusive until Wagner [10�] for-

warded a theoretical argument that a combination of

directional and stabilizing selection acting on a popula-

tion would simultaneously decrease pleiotropic effects

between emerging groups of traits and increase pleiotro-

pic effects within emerging groups of traits.

This was followed by work by Kashtan and Alon [11],

which provided computational validation for this account.

They evolved populations of neural models and observed
www.sciencedirect.com 
increasing modularity only when directional and stabiliz-

ing selection acted on different computations required of

the neural models. Another study [12] demonstrated the

same effect in gene network models, while others [13]

demonstrated that a metabolic cost on the number of

connections is an additional requirement for the evolution

of neural modularity.

Despite these advances, it was not clear how such selec-

tive pressures could be brought to bear on robots.
Current Opinion in Behavioral Sciences 2015, 6:168–173
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Figure 2
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The evolution of modularity in robots. Under the right conditions, robots with non-modular nervous systems (a–c) may gradually evolve into robots

with modular nervous systems (d–f), in which there is dense connectivity within neural circuits and little or no connectivity between circuits

(following [19]).
Currently, the field of ER suffers from a lack of scalability:

the ability to evolve ever more complex and adaptive

machines [14,15]. Importing insights regarding the evo-

lution of modularity could help to overcome this chal-

lenge. In recent work [16] we showed that this may be

possible. We demonstrated that if both the body plan and

nervous system is placed under evolutionary control, body

plans can be found that cause the right combination of

stabilizing and directional selection to act on different

parts of the robots’ controller, yielding the evolution of

modular controllers. Because modularity is known to

increase evolvability [17], we observed that such robots

outcompeted non-modular robots in the population, lead-

ing to the evolution of neural modularity in robots

(Figure 2).

The above work focuses on structural modularity: dense

connectivity within modules and sparse connectivity across

modules. Yamashita and Tani [18] demonstrated the utility

of functional modularity — the ability of a continuous

system such as a neural network to exhibit discrete func-

tional states — for robotics. A neural model controlling a

humanoid robot was able to learn and then combine simple

actions into increasingly complex motor sequences.

Such work suggests that morphology and action may need

to be incorporated into future explanations of the evolu-

tion of modularity in biological systems.
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The evolution of morphological computation
Modularity is just one domain in which it is advantageous

to consider interactions between morphology and neural

control of movement. Practitioners in the field of embod-

ied cognition [20–23] have long argued that the body of an

animal or robot can provide an appropriate response to

external stimuli, without recourse to explicit neural con-

trol (because they lack such control, plants provide ex-

cellent examples of how this can be accomplished). This

concept is often referred to as ‘morphological computa-

tion’ [24,25]. However, it is difficult to quantify how much

the morphological or neural subsystems of an animal or

robot contribute to a given adaptive response [26]. Such a

quantification could prove useful for the study of adaptive

behavior: not only might the relative contributions of

body and brain to behavior be quantified in biological

organisms, but how the ratio of this contribution changes

in response to selection would also be of interest. Such

detailed tracking of morphological and neural evolution

could provide a more detailed account for the evolution of

cognition (Figure 3).

Progress in quantifying morphological computation has

been reported in [27]: concepts from information theory

were used to establish a link between the complexity of a

robot’s environment and the complexity of the geometry

of its body plan. Advances in materials science has re-

cently made it feasible to construct robots from soft
www.sciencedirect.com
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Figure 3
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The role of morphological computation in evolution. If a robot exhibits more morphological computation (b) than its conspecifics (a,c), it may

possess a selective advantage: It may be easier for evolution to shift the burden of an adaptive response from the ancestor’s morphology (b) to

the more complex nervous systems of its offspring (d–f) than it is to enrich an adaptive response already controlled by relatively complex nervous

systems (a,c).
materials [28,29��,30–32], and a number of projects

have now demonstrated that the complex dynamics

inherent in soft materials can provide complex and

appropriate responses in soft robots, even though such

robots are equipped with simple controllers [33,34�,35–
37]. Such robotics experiments are now being utilized

to test biological hypotheses regarding how, whether,

and why organisms perform morphological computation

[38,39].

The evolution of prospection
For some, the ability to predict is synonymous with

intelligence [40,41]. More specifically, the hallmark of

human cognition may be prospection: the ability to men-

tally simulate the consequences of future events that have

never been encountered before [42,43]. The advantage of

such ability is clear for animals and robots alike: it allows

for rapid responses to novel situations without the need

for physical trial and error. Indeed in past work [44] we

demonstrated how a robot can accomplish this feat in

simple settings. A physical robot mentally simulates itself

in two different ways (Figure 4). It uses one evolutionary

simulation to continuously improve its understanding of

itself, which can enable it to diagnose any unexpected

situations such as injury (Figure 4d). It uses a second

evolutionary simulation to mentally rehearse novel motor
www.sciencedirect.com 
programs that will enable it to recover function, despite its

injury.

More recently this method has been adapted to study

how robots (and, by extension, animals and humans)

may predict the future actions of others [45]. In another

project [46��], a robot stored a large portfolio of diverse

actions and successfully predicted which of those

actions would be useful in the face of unanticipated

events.

This body of work, along with recent advances in pattern

recognition in the related field of machine learning [47],

has been implicated as a possible source for studying the

selective advantage of dreaming [48,49] and creativity

[50]. Such approaches may eventually allow for the crea-

tion of not just adaptive and autonomous machines, but

cognitive machines: machines that can predict which

actions will help usher in desired future outcomes, all

the while navigating increasingly challenging physical

environments and complex social situations.

But such machines may act as more than useful tools.

They may also serve as unique scientific instruments for

studying, in new ways, the most prolific yet mysterious

engine of adaptive behavior: cognition.
Current Opinion in Behavioral Sciences 2015, 6:168–173
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Figure 4
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Robot prospection. A robot incapable of prospection (a) is unable to move once it suffers physical damage, such as the loss of part of a leg

(b). Another robot that can move and can predict (c), once damaged, mentally simulates its situation and deduces that it has been damaged

(d). It then mentally rehearses a motor program that will enable it to regain the ability to move despite its injury (e). Finally, it executes that motor

program and thus autonomous recovers from the injury (f).
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