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ABSTRACT
Although recent work has demonstrated that modularity can
increase evolvability in non-embodied systems, it remains to
be seen how the morphologies of embodied agents influences
the ability of an evolutionary algorithm to find useful and
modular controllers for them. We hypothesize that a mod-
ular control system may enable different parts of a robot’s
body to sense and react to stimuli independently, enabling
it to correctly recognize a seemingly novel environment as,
in fact, a composition of familiar percepts and thus respond
appropriately without need of further evolution. Here we
provide evidence that supports this hypothesis: We found
that such robots can indeed be evolved if (1) the robot’s
morphology is evolved along with its controller, (2) the fit-
ness function selects for the desired behavior and (3) also
selects for conservative and robust behavior. In addition,
we show that if constraints (1) and (3) are relaxed, or struc-
tural modularity is selected for directly, the robots have too
little or too much modularity and lower evolvability. Thus,
we demonstrate a previously unknown relationship between
modularity and embodied cognition: evolving morphology
and control such that robots exhibit conservative behavior
indirectly selects for appropriate modularity and, thus, in-
creased evolvability.

Categories and Subject Descriptors
I.2.9 [Computing Methodologies]: Artificial Intelligence-
Robotics
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1. INTRODUCTION
In the field of evolutionary robotics [14, 10, 2], an evo-

lutionary algorithm is typically employed to optimize the
wiring diagram of the robot’s neural controller and/or as-
pects of its morphology such that the robot exhibits some
desired behavior. However, for complex robots with large
numbers of artificial neurons, the number of possible con-
nections between those neurons grows quadratically, requir-
ing search over a very large space of candidate controllers.
Another barrier to continued evolutionary improvement is
that large, densely-connected neural controllers are notori-
ously difficult to evolve: any mutation to one part of the
network tends to affect behavior at many other parts of the
network.

Both of these reasons suggest that it would be desirable to
evolve robots controlled by modular neural networks. How-
ever, it is unclear how to architect an evolutionary algorithm
to evolve controllers with modularity suitable to the task the
robot must perform.

Previous work has investigated evolving modular control
if the task calls for it. In [13] however, the number and
type of modules, as well as the connectivity pattern, were
predetermined. Gruau [8] employed an indirect genotype
to phenotype mapping that allowed for the construction of
neural modules. However, this method requires an evolu-
tionary operator for explicitly creating modules. In other
work [3] an evolutionary operator could duplicate existing
modules. The work presented here differs from all of these
approaches in that it does not require such high-level oper-
ators: modules emerge (or dissipate) as local connectivity
density gradually increases (or decreases) over evolutionary
time.

The challenge of evolving modularity without pre-supposing
the cognitive architecture of the controller, or explicitly hav-
ing to formulate module-creating operators, is demonstrated
in [4]. There, it was shown that HyperNEAT [17], a popular
indirect encoding method, failed to evolve neural modularity
on all but the simplest of problems.

Outside of evolutionary robotics, many recent projects
have investigated the conditions under which structural mod-
ularity will evolve1. However, these approaches have investi-

1Structural modularity—in which dense connectivity ex-
ists within modules and few connections exist between
modules—is distinguished from functionally modularity[20],
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Figure 1: The hypothesized relationship between morphology, neural modularity, and evolvability. Two
robot arms with different morphologies are evolved to move objects of different size onto two ledges: one arm
supports a three-fingered gripper (a-d) while the other supports a two-fingered gripper (e-h). Both evolve
the ability to grasp one object (a,e) and place it somewhere else (b,f). Later in evolutionary time, both
evolve the ability to place two of the objects (c,g). During this second evolutionary phase, the second robot
evolves a modular neural controller: synapses connect gripper motor neurons and other synapses connect
the arm motor neurons, but there are no synapses connecting gripper and arm neurons (g). The first robot
does not evolve neural modularity: its gripper and arm motor neurons do not become dissociated (c). This
modularity renders the second arm more evolvable than the first such that it eventually evolves the ability
to place all six objects (h).

gated modularity in a non-embodied context: in [9] and [5],
a disembodied visual system must recognize combinations of
familiar and unfamiliar patterns; in [6], gene regulatory net-
works were modeled without taking into account the effect
that the cell’s environment has on gene regulation.

In contrast, here we investigate the evolution of modular
controllers in embodied agents and demonstrate a hitherto
unknown relationship between modularity and adaptive be-
havior: evolving robot morphology along with control can
lead to modular controllers which, in turn, increase the over-
all evolvability2 of the population; however, if the robots’
body plans are fixed, this evolvability cannot be achieved.

The robots evolve modular controllers because they expe-
rience a combination of directional selection and stabilizing
selection. This combination of evolutionary pressures has
been implicated as the driving force behind the evolution
of modularity in biological organisms [19]. More recently,
this theory was supported experimentally by observing the
evolution of models of gene regulatory networks under these
conditions [6].

In the same work [6], the link between modularity and
evolvability was made clear: modular networks can rapidly
produce novel combinations of previously- evolved gene ac-
tivity patterns. Here, we demonstrate that robots with mod-
ular controllers are evolvable for similar reasons: such robots
can recognize seemingly novel situations as novel combina-
tions of familiar percepts. They are thus able to respond
appropriately without having to evolve a novel response to
this seeming novel situation.

in which a network exhibits several distinct functional pat-
tens.
2Here we define the evolvability of a system as the aver-
age increase in fitness that can be achieved, given a fixed
computational budget.

2. HYPOTHESIS
Our hypothesis is that robots with certain morphologies

will experience directional selection acting on one part of
their bodies and controllers, and stabilizing selection act-
ing on another part of their bodies and controllers, as they
evolve to perform some desired task. This combination of
selection pressures will favor neural modularity that will
in turn enable them to rapidly adapt when presented with
novel combinations of familiar percepts: only slight evolu-
tionary modification will be required in one or a few neural
modules.

Fig. 1 provides a visual outline of the hypothesis we wish
to test. Two robots with different morphologies evolve to
perform an object pick-and-place task. The first robot’s
morphology does not experience the correct combination of
selection pressures (Fig. 1a-b), does not evolve neural modu-
larity (Fig. 1c), exhibits low evolvability, and fails to become
increasingly adept at the task (Fig. 1d). The second robot
happens to have the right morphology (Fig. 1e-f) that even-
tually leads to neural modularity (Fig. 1g) and increased
evolvability (Fig. 1h).

Below, we demonstrate that this relationship between mor-
phology, neural modularity and evolvability does indeed ex-
ist, at least for a simplified robot and task environment.

3. METHODS
This section outlines the robots, their task environments,

their controllers, and the evolutionary algorithm we used to
evolve them. All of the material for replicating the work
described here is available at http://git.io/vvH7r.

3.1 The Robots
The robots used in this work are two dimensional, are

composed of a three-segment arm (black lines in Fig. 2)
and a hand composed of two, two-segment fingers (red and
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Figure 2: A typical evolved non-conservative pose.
The robot’s arm (black segments) and hand (red
and green segments) reach a different pose in each
environment.

Figure 3: A typical evolved conservative pose. The
hand reaches the same pose in environments 1 and
2, and environments 3 and 4. The arm reaches the
same pose in environments 1 and 3, and environ-
ments 2 and 4.

green lines in Fig. 2), and are based on the robots investi-
gated in [1]. Each of the seven segments can vary in length
between 0.5u and 3.0u3. Segments are attached by rota-
tional hinge joints, each of which can take on one of four
possible angles. The three arm joints can take any angle in
{−70o,−23.33o,+23.33o,+70o}: negative and positive an-
gles rotate the arm to the left and right, respectively. The
left proximate phalange and right distal phalange can take
any value in {−70o,−46.67o,−23.33o, 0o}; The right proxi-
mate phalange and left distal phalange can take any value
in {0o, 23.33o, 46.67o, 70o}; These angle constraints for the
hand ensure that it maintains claw-like poses and that the
phalanges do not cross.

In the experiments in which the robot’s morphology is
evolved, a seven-element, floating-point valued vector m was
evolved: element mi in this vector encodes the length of the
ith segment.

3.2 The Task Environments
The robots were evolved to grasp objects in four different

environments. The first environment contained an object
with radius 1u placed 2.5u to the right of the robot’s base.
The second environment contained an object with radius
1u placed 2.5u to the left of the robot’s base. The third
environment contained an object with radius 0.5u placed
2.5u to the right of the robot’s base. The fourth environment
contained an object with radius 0.5u placed 2.5u to the left
of the robot’s base. No collision detection and resolution
was employed: the robot’s segments could pass through the
object. The robot and object were simulated in a kinematic
simulation.

3u is a unitless measure of distance.

3.3 The Controllers
The robots were evolved with either a simple or random

boolean network (RBN) controller.
Simple Control. The simple controller was encoded as a
4 × 7 matrix C, in which the ith row encoded joint angles
for the ith environment and the j column encoded angles for
the jth joint. When the robot was ‘controlled’ by this sim-
ple controller, its joints were simply set to these angles and
forward kinematics were used to compute the resulting pose
of the robot. Fig. 2 displays a typical pose when the robot
is evolved to grasp the four objects using this controller.
RBN Control. The RBN controller is composed of 14
binary neurons that can take on values in {−1,+1}. Each
of the seven joints is assigned two of these neurons. The
first six neurons are assigned to the three arm joints; the
last eight neurons are assigned to the four hand joints. The
four possible neuron value pairs [−1,−1], [−1,+1], [+1,−1],
and [+1,+1] for each joint dictate which of its four possible
angles it rotates to. Thus, each of the 214 = 16, 384 possible
states of the controller corresponds to a unique robot pose.
Each controller is encoded as a 14×14 adjacency matrix A.
Elements in this matrix are trinary: aij = +1, aij = −1, and
aij = 0 indicate that neuron i is connected to node j with
an excitatory synapse, inhibitory synapse, or no synapse,
respectively.

When a robot is placed into one of the four environments,
the initial values of the neurons are set to indicate the size
and position of the object in that environment. Thus, the
robot can ‘sense’ its surroundings based on the neurons’ ini-
tial values. Even-numbered neurons indicate object size:
n0, n2, . . . , n12 are all set to +1 if the object is large and to
−1 if the object is small. Odd-numbered neurons indicate
object position: n1, n3, . . . , n13 are all set to +1 if the object
is on the robot’s right and to to −1 if the object is on the
robot’s left.

After setting the initial conditions, the RBN is updated
three times using synchronous updating. The value of the
ith neuron at time step t is set to

n
(t)
i = σ(

14∑
j=1

ajin
(t−1)
j ) (1)

where

σ(x) =

{
−1, if x <= 0

+1, otherwise
(2)

The final values of the neurons are then used to set the
robot’s pose as described above. Fig. 3 displays a pose
produced by an evolved RBN controller.

3.4 The Evolutionary Algorithm
We employed the Age-Fitness Pareto Optimization (AFPO)

evolutionary algorithm [16] for all of the experiments re-
ported here. AFPO is a multiobjective optimization method
that periodically injects new genomes into the evolving pop-
ulation, and enables these younger genomes time to im-
prove before being outcompeted in the population by older
genomes with higher fitness. This enables older genomes
trapped on local optima to periodically be displaced by younger
genomes that, with time, evolve to higher fitness values.
AFPO achieves this dynamic using the genome’s age as one
fitness objective.
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Aside from age, genomes were also evolved to produce
robots that could grasp objects, had modular controllers,
and/or exhibited behavioral conservatism.
Grasping ability. Evolving robots could be exposed to one
or more of the four environments shown in Fig. 2. In each
environment, grasping ability was determined by how close
the robot could get the tips of its fingers to the circumfer-
ence of the object, and ensure that the fingertips touched on
opposite sides of the objects.

In addition, the robot may have to exhibit grasping in the
face of a perturbation: in some evaluations, after the initial
values of the neurons have been set, one of the binary neuron
values is flipped from +1 to −1 (or −1 to +1). The robot
is expected to still exhibit successful grasping in the face of
this perturbations.

A robot’s grasping ability g was computed using

g =

14∑
r=0

2∑
s=1

2∑
p=1

grsp, (3)

grsp = g(L)
rsp g(R)

rsp g(S)
rsp, (4)

g(L)
rsp =

(
1

1 + d
(L)
rsp

)
, (5)

g(R)
rsp =

(
1

1 + d
(R)
rsp

)
, (6)

g(S)
rsp =

(
1

1 + d
(S)
rsp

)
, (7)

d(S)
rsp = |srsp − os| , (8)

srsp =

√
(x

(L)
rsp − x(R)

rsp)2 + (y
(L)
rsp − y(R)

rsp )2 (9)

where

• g = 0 indicates that the robot failed completely in
every environment, and g = 15× 2× 2 = 60 indicates
that the robot grasped every object perfectly in every
environment.

• grsp indicates the robot’s ability to grasp during the
rth perturbation, the sth object size, and the pth ob-
ject position.

• For perturbation r = 0, no perturbation of the neu-
rons’ initial values in the robot’s controller occurs. For
r = 1 through r = 14, the initial value of the rth neu-
ron is flipped.

• s = 1 indicates that the robot is in an environment in
which the object is large; s = 2 indicates the object is
small.

• p = 1 indicates that the robot is in an environment in
which the object is on its right; p = 2 indicates the
object is on its left.

• grsp = 0 indicates that the robot grasped the object in
that environment poorly; grsp = 1 indicates it grasped
it perfectly.

• g(L)
rsp (or g

(R)
rsp ) indicate how close the robot’s left fin-

gertip (or right fingertip) got to the object’s circum-
ference, respectively.

• d(L)
rsp (or d

(R)
rsp) indicate the shortest distance between

the robot’s left fingertip (or right fingertip) and the
object’s circumference, respectively.

• g(S)
rsp denotes the spread of the robot’s grasp: g

(S)
rsp = 0

indicates the robot’s fingertips are touching the ob-
ject’s circumference at the same point (a poor grasp);

g
(S)
rsp = 1 indicates the robot’s fingertips are touching

the object on opposite sides of its circumference (a
good grasp).

• d(S)
rsp is the difference between the distance of the robot’s

fingertips—their spread (srsp)—and the circumference
of the sth object (os).

• Finally, x
(L)
rsp and y

(L)
rsp (and x

(R)
rsp and y

(R)
rsp ) denote the

horizontal and vertical position of the robot’s left (and
right) fingertips.

During evolution, each robot was only exposed to the next
environment if it achieved sufficiently good grasping in the
current environment. The robot was allowed to behave in
the next environment—and, thus, obtain higher fitness—
if grsp > 0.9 and the robot’s controller had settled into a
fixed-point attractor. This latter stipulation ensures that
the robot has not simply managed to bring its fingertips near
the object during the third and final update of its controller
but may move away from the object on subsequent updates.

Thus, more fit robots had to exhibit competency in a
growing number of environments. Furthermore, as shown
by the summation sequence in Eqn. (3), robots experienced
changes in their environment in a particular order: they ex-
perienced a novel object position in environment 2 (Fig. 2b)
and a novel object size in environment 3 (Fig. 2c).

Once a robot evolves to succeed in all four environments,
it is evaluated again in the first environment, but now suffers
a perturbation: the initial value of its first neuron is flipped.
If successful there, the robot is evaluated a sixth time in
environment 2 with a flipped first neuron value, and so on.
Robots can thus be exposed up to a maximum of 15×2×2 =
60 environments.
Controller modularity. The modularity of an evolved
robot’s controller was computed using

m =
1 + daa + dhh
1 + dah + dha

, (10)

daa =

∑3
a1=1

∑3
a2=1 |aa1a2|
9

, (11)

dhh =

∑7
h1=4

∑7
h2=4 |ah1h2|
16

, (12)

dah =

∑3
a1=1

∑7
h1=4 |aa1h1|
12

, (13)

dha =

∑7
h1=4

∑3
a1=1 |ah1a1|
12

(14)

where daa, dhh, dah, and dha denote the density of connec-
tivity between the arm neurons, between the hand neurons,
between the arm and hand neurons, and between the hand
and arm neurons, respectively.

Thus m, like the more general modularity metric Q [12],
measures the ratio of connection density within candidate
modules, compared to connection density across modules4.
4The Q modularity score was not employed here because of
its computational overhead.
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In this work we seek to measure specific modularity in the
robot’s controller: evolutionary dissociation between the arm
neurons and the hand neurons.
Behavioral conservatism. It has been hypothesized [19]
and shown experimentally in non-embodied systems [6] that
structural modularity evolves when a system experiences
stabilizing selection on one part of its phenotype and direc-
tional selection on another part. Here, we wished to select
for robots that experience this kind of evolutionary pres-
sure. We did so by formulating a measure c that gauges the
amount of conservatism in a robot’s evolved behavior:

c =
ca + ch + cr

3
, (15)

ca =

(
14∑
r=0

2∑
s=1

2∑
p1=1

2∑
p2=1

6∑
a=1

ersp1p2

(
n(rsp1)
a = n(rsp2)

a

))
/ep,

(16)

ep =

14∑
r=0

2∑
s=1

2∑
p1=1

2∑
p2=1

6∑
a=1

ersp1p2 , (17)

ch =

14∑
r=0

2∑
s1=1

2∑
s2=1

2∑
p=1

14∑
a=7

ers1s2p
(
n
(rs1p)
h = n

(rs2p)
h

)
/es,

(18)

es =

14∑
r=0

2∑
s1=1

2∑
s2=1

2∑
p=1

14∑
a=7

ers1s2p, (19)

cr =

14∑
r=1

2∑
s=1

2∑
p=1

14∑
i=1

ersp
(
n
(0sp)
i = n

(rsp)
i

)
/er, (20)

er =

14∑
r=1

2∑
s=1

2∑
p=1

14∑
i=1

ersp (21)

where

• c = 0 when the robot exhibits a different pose in ev-
ery environment and under every perturbation. (Fig 2
shows a robot with this minimal conservatism.)

• c = 1 when the arm does the same thing in all environ-
ments in which the object is at the same position, the
hand always does the same thing in all environments
in which the object is the same size, and the overall
robot does the same thing in the same environment,
regardless of whether its initial state was perturbed or
not. (Fig. 3 shows an evolved robot that achieves this:
the hand reaches the same pose in environments 1 and
2 and environments 3 and 4, and the arm reaches the
same pose in environments 1 and 3 and environments
2 and 4.)

• ca measures the amount of similarity across arm poses
for environments in which the object is on the same
side,

• ch measures the amount of similarity across hand poses
for environments in which the object is the same size,
and

• cr measures the robot’s robustness: how similar is the
robot’s overall pose when it experiences a perturbation
compared to the same environment in which it does not
experience a perturbation.

• ersp1p2 is equal to 1 if the robot was evaluated in the
two environments rsp1 and rsp2, and the object had
the same position in those environments (p1 = p2),
and is equal to zero otherwise.

• n(rsp1)
a = n

(rsp2)
a is equal to 1 if arm neuron na holds

the same value in a pair of environments with equal
object positions, and zero otherwise.

• ep denotes the number of environments with equally-
positioned objects that the robot was evaluated in.

• ers1s2p is equal to 1 if the robot was evaluated in the
two environments rs1p and rs2p, and the object had
the same size in those environments (s1 = s2), and is
equal to zero otherwise.

• n(rs1p)
h = n

(rs2p)
h is equal to 1 if hand neuron nh holds

the same value in a pair of environments with equal
object sizes, and zero otherwise. Finally,

• es denotes the number of environments with equally-
sized objects that the robot was evaluated in.

• ersp is equal to 1 if the robot was evaluated in envi-
ronment rsp and is equal to zero otherwise.

• er denotes the number of environments the robot was
evaluated in.

• Finally, n
(0sp)
i = n

(rsp)
i is equal to 1 if the ith neuron

obtains the same final value in an environment in which
the initial value of neuron r experienced no perturba-
tion, and the same environment in which the initial
value of neuron r was flipped, and zero otherwise.

Population initialization. Each population was seeded
with 100 randomly-generated genomes. For robots evolved
with simple controllers (experiment set 1 in Table 1), each
genome was made up of one set of morphological param-
eters m and control parameters C. For robots with fixed
morphologies and RBN controllers (experiment sets 2, 4,
and 6 in Table 1), each genome was comprised of an RBN
adjacency matrix A. For robots with evolved morphologies
and evolved RBN controllers (experiment sets 3, 5, and 7
in Table 1), each genome comprised a set of morphological
parameters m and an RBN adjacency matrix A.

Randomly-generated m vectors were filled with random
values drawn from (0.5, 3.0) with a uniform distribution.
Randomly-generated C matrices were filled with random
angles drawn from the four possible angles for each joint.
Randomly-generated A matrices were filled with (2 × 14 =
28) positive or negative edges, following the convention es-
tablished in [6].
Selection. In each generation, each new genome was evalu-
ated on the robot in as many environments as it was able to
succeed in. Then, the Pareto front was calculated using the
genome’s age, grasping ability, controller modularity and/or
behavioral conservatism, as shown in Table 1. All dominated
genomes were then discarded. The population was refilled
by selecting a non-dominated genome at random, copying it,
mutating it, and placing it in an empty slot until the popu-
lation size reached 99. The final empty slot was filled with
a new randomly-generated genome with an age of zero.
Mutation. When m was mutated, zero (0.33 probabil-
ity), one (0.33 probability) or two (0.34 probability) segment
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Table 1: Summary of experimental settings.

Experiment Controller Morphology Popn. Num of Num of First Second Third Environ-
set type evolved? size generations replicates objective objective objective ments

1 Simple yes 100 100,000 100 age grasping 4

2 RBN no 100 1,000,000 100 age grasping 60
3 RBN yes 100 1,000,000 100 age grasping 60

4 RBN no 100 1,000,000 100 age grasping modularity 60
5 RBN yes 100 1,000,000 100 age grasping modularity 60

6 RBN no 100 1,000,000 100 age grasping conservatism 60
7 RBN yes 100 1,000,000 100 age grasping conservatism 60

lengths in m were mutated. The current value was replaced
with a new random value drawn from (0.5, 3.0) with a uni-
form probability.

When C was mutated, zero (0.33 probability), one (0.33
probability) or two (0.34 probability) angles in C were mu-
tated. The current value was replaced with a new angle
drawn from the four possible angles for that joint.

A was mutated with a bias toward two or three incoming
edges, following [6]. Each neuron in a newly-copied con-
troller was targetted for mutation with probability 0.05.
If selected for mutation, the probability that an incoming
synapse to n would be deleted is defined as

p(n) =
4rn

4rn + (14− rn)
(22)

and the probability that a randomly-selected incoming edge
will be added to n is defined as q(n) = 1 − p(n). Here rn
denotes the in-degree of neuron n.

4. RESULTS
The settings for all of the experiments described in this

section are summarized in Table 1.
In the first experiment, 100 trials were conducted in which

the morphologies of robots were evolved along with their
simple controllers. These robots were evolved only to grasp,
did not experience perturbations, and each robot was ex-
posed to all four environments. One hundred robots were
collected by extracting the best robot from each trial. The
resulting behavior for one of these robots is shown in Fig. 2.
All 100 of these robots succeeded in all four environments:
each achieved g > 0.96 (data not shown).

In the 100 trials comprising the second experiment, each
trial was seeded with one of the 100 robots from the pre-
vious experiment. Then, RBN controllers were evolved in
each trial to enable the fixed-morphology robot assigned to
that trial to succeed at grasping in (up to) the 60 possible
environments. The third experiment was conducted in the
same manner, except that the trials began with randomly-
generated morphologies, and those morphologies then evolved
along with the controllers. The 100 best robots were col-
lected from the second experiment and the third experiment;
differences between their mean grasping ability (Fig. 4a),
controller modularity (Fig. 4b), behavioral conservatism
(Fig. 4c) and pose differences (Fig. 4d) are reported. (Pose
difference is defined as the converse of behavioral conser-
vatism: how different was the robot’s arm pose in environ-
ments with objects in the same place; how different was the

Figure 4: Relative performance of robots with fixed
and evolved morphologies, when evolved to grasp
the objects. Robots with evolved morphology exhib-
ited (a) significantly better grasping ability (Mann-
Whitney U-test, p < 0.001), (b) no significant differ-
ence in modularity, (c) significantly more behavioral
conservatism (Mann-Whitney U-test, p < 0.001), and
(d) no significant difference in the amount of pose
differences. Error bars denote the 95% confidence
intervals.

robot’s hand pose in environments with objects of the same
size; and how different was the robot’s overall pose with or
without initial perturbation.)

Two more experiments were conducted in which the robot’s
morphology was fixed or was allowed to evolve (experiment
sets 4 and 5 in Table 1). In the 100 treatments involving
a fixed-morphology robot (experiment set 4), the 100 mor-
phologies evolved in experiment 1 were re-used. In these two
experiments, the robots were evolved against the additional
objective of controller modularity, in addition to grasping
ability and genome age. The differences in mean grasping
ability, controller modularity, behavioral conservatism and
pose differences for the 100 best robots from each experi-
ment are reported in Fig. 5.

A final pair of experiments were conducted (experiment
sets 6 and 7 in Table 1) where, again, the robots’ morpholo-
gies were held constant in the first set of 100 trials, and
were allowed to evolve in the second set of 100 trials. The
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Figure 5: Relative performance of robots with
fixed and evolved morphologies, when evolved to
grasp the objects with highly modular controllers.
Robots with evolved morphology exhibited (a) sig-
nificantly better grasping ability (Mann-Whitney U-
test, p < 0.001), (b) significantly lower modularity
(Mann-Whitney U-test, p < 0.001), (c) significantly
more behavioral conservatism (Mann-Whitney U-
test, p < 0.001), and (d) no significant difference in
the amount of pose differences.

Figure 6: Relative performance of robots with fixed
and evolved morphologies, when evolved to grasp
the objects in a conservative manner. Robots with
evolved morphology exhibited (a) significantly bet-
ter grasping ability (Mann-Whitney U-test, p <
0.001), (b) significantly higher modularity (Mann-
Whitney U-test, p < 0.001), (c) significantly more
behavioral conservatism (Mann-Whitney U-test, p <
0.001), but (d) no significant difference in the amount
of pose differences.

mean grasping ability, controller modularity, behavioral con-
servatism and pose differences for the 100 best robots from
these two experiments are reported in Fig. 6.

5. DISCUSSION AND CONCLUSIONS
Fig. 4a indicates that evolving robot morphologies along

with RBN controllers produces robots significantly more ca-
pable of grasping than robots with fixed morphologies, even
though these latter robots are known to be capable of solv-
ing the task. Fig. 4b suggests why: evolution is able to
find robot morphologies capable of grasping with more mod-
ular controllers than the controllers found for the fixed-
morphology robots. However, the difference in neural mod-
ularity between the fixed- and evolved-morphology robots is
not statistically significant.

This suggests that directly selecting for modular controllers
may increase the evolvability of the evolving robots, enabling
them to react appropriately to new environments which are
novel combinations of familiar percepts. However, when
both grasping and neural modularity are selected for perfor-
mance decreased: exceedingly modular controllers are dis-
covered (Fig. 5b) but at the expense of grasping ability:
regardless of whether robots have fixed or evolved morpholo-
gies, few reach even the third or fourth environment (Fig.
5a).

We hypothesize that this is because evolution tends to
maximize the interconnectivity among the hand neurons,
and among the arm neurons. Such dense connectivity within
neural modules likely makes the addition of new attractors
corresponding to new useful hand (or arm) poses difficult.
Indeed, the inability of dense networks to add attractors
while preserving existing ones has been reported in [18]. An
alternative explanation is that the multiobjective method
employed here may have impaired this set of runs. In future
work we will compare these results against those produced
by a single-objective optimization method in which graping
ability and neural modularity are multiplied together.

Returning to robots evolved only to grasp, there is an-
other feature of the successful robots that was signficantly
higher among the evolved-morphology robots than among
those with fixed modularity, even though it was not se-
lected for: the conservatism of their behavior (Fig. 4c).
When conservatism is directly selected for along with grasp-
ing (Fig. 6), significantly better grasping is achieved (Fig.
6c), even though, due to the additional fitness objective of
conservatism, selection pressure acting directly on grasp-
ing is weaker. Indeed, robots with evolved morphologies
and controllers that were selected for grasping and conser-
vatism yielded significantly better grasping that the robots
produced by experiment sets two through six (Fig. 7).

The robots produced by selecting for grasping and conser-
vatism also achieved significantly higher neural modularity
(Fig. 6b), even though this trait was not directly selected
for. These results, taken together, support the hypothesis
outlined above: Under these particular pressures, and given
the ability to mould the body of robots, evolution seems
better able to find morphology and controller pairs that en-
able successful grasping such that the arm only attends to
changes in object position and the hand only attends to
changes in object size. Evolution accomplishes this by in-
creasing neural modularity in such a way that arm and hand
motor neurons become more independent (Fig. 6b).

This modularity then presumably enables robots to rapidly
evolve in new environments, because the evolving arm mod-
ules and hand modules both react appropriately to a famil-
iar object position and object size, respectively, even if those
percepts appear in a novel combination. This can be seen
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Figure 7: Comparative grasping abilities of evolved
robots. F (x) and E(x) denote robots with fixed
and evolved morphologies, respectively. (a, g) de-
note genomes evolved for age and grasping abil-
ity; (a, g,m) denote genomes evolved for age, grasp-
ing ability and neural modularity; (a, g, c) denote
genomes evolved for age, grasping ability and be-
havioral conservatism.

in the evolved robot shown in Fig. 3: this robot employs
the same hand pose in environment 4 as the one it evolved
to succeed in environment 3, and it also employs the same
arm pose in environment 4 as the one it evolved to succeed
in environment 2.

This work thus suggests a new reason for why roboticists
should pay careful attention to the design of a robot’s me-
chanical structure. Even if a robot is designed in such a way
that it is known to be capable of solving specific instances
of a task, it may not be evolvable: poor design choices may
inadvertently require additional learning or the evolution of
new behaviors when presented with any new instance of the
task. This work may also have implications for neuroscience.
There is evidence that distinct regions of the brain come
to reflect discrete structure out in the world [15]. However,
brains also strike a balance between localized and distributed
representations [11], which we also see in the modular but
not extremely modular nature of our robot’s evolved con-
trollers. Finally, the demonstrated ability of the robots here
to recognize novel combinations of familiar percepts could
pave the way to robots capable of more flexible cognition
through the establishment of compositional symbol ground-
ing from motor patterns [7].

In future work we plan to scale up the complexity and
physical realism of the robot and its task environment. Specif-
ically, we wish to investigate whether in more challenging do-
mains behavioral conservatism will be of increasingly utility
such that it does not have to be directly selected for. Also,
we plan to study robots which must act on their environ-
ment to draw out the invariant features that modules should
evolve to deal with independently.

6. ACKNOWLEDGEMENTS
We thank Jodi Schwarz for many thoughtful discussions

that contributed to the fruition of this project. This work
was supported by NSF Awards PECASE-0953837 and INSPIRE-
1344227 and DARPA award MSEE-FA8650-11-1-7155.

7. REFERENCES
[1] J. C. Bongard. Spontaneous evolution of structural

modularity in robot neural network controllers. In
Procs of GECCO, pages 251–258. ACM, 2011.

[2] J. C. Bongard. Evolutionary robotics.
Communications of the ACM, 56(8):74–83, 2013.

[3] R. Calabretta, S. Nolfi, D. Parisi, and G. P. Wagner.
Duplication of modules facilitates the evolution of
functional specialization. Artificial Life, 6(1):69–84,
2000.

[4] J. Clune, B. Beckmann, P. McKinley, and C. Ofria.
Investigating whether HyperNEAT produces modular
neural networks. In Procs of GECCO, pages 635–642.
ACM, 2010.

[5] J. Clune, J.-B. Mouret, and H. Lipson. The
evolutionary origins of modularity. Procs of the Royal
Society B: Biological sciences, 280(1755):20122863,
2013.

[6] C. Espinosa-Soto and A. Wagner. Specialization can
drive the evolution of modularity. PLoS Comp Biol,
6(3):e1000719, 2010.

[7] A. Greco and C. Caneva. Compositional symbol
grounding for motor patterns. Frontiers in
Neurorobotics, 4, 2010.

[8] F. Gruau. Automatic definition of modular neural
networks. Adaptive Behaviour, 3:151–183, 1994.

[9] N. Kashtan and U. Alon. Spontaneous evolution of
modularity and network motifs. PNAS, 102(39):13773,
2005.

[10] J. Long. Darwin’s Devices. Basic Books, 2012.

[11] B. Z. Mahon and A. Caramazza. What drives the
organization of object knowledge in the brain? Trends
in Cognitive Sciences, 15(3):97–103, 2011.

[12] M. E. Newman. Modularity and community structure
in networks. PNAS, 103(23):8577–8582, 2006.

[13] S. Nolfi. Using emergent modularity to develop control
systems for mobile robots. Adaptive Behavior,
3–4:343–364, 1997.

[14] S. Nolfi and D. Floreano. Evolutionary Robotics. MIT
Press, Boston, MA, 2000.

[15] T. Orlov, T. R. Makin, and E. Zohary. Topographic
representation of the human body in the
occipitotemporal cortex. Neuron, 68(3):586–600, 2010.

[16] M. Schmidt and H. Lipson. Age-Fitness Pareto
Optimization. Genetic Programming Theory and
Practice VIII, pages 129–146, 2011.

[17] K. Stanley, D. D’Ambrosio, and J. Gauci. A
hypercube-based encoding for evolving large-scale
neural networks. Artificial Life, 15(2):185–212, 2009.

[18] C. Torres-Sosa, S. Huang, and M. Aldana. Criticality
is an emergent property of genetic networks that
exhibit evolvability. PLoS Comp Bio, 8(9):e1002669,
2012.

[19] G. Wagner, M. Pavlicev, and J. Cheverud. The road
to modularity. Nature Reviews Genetics,
8(12):921–931, 2007.

[20] Y. Yamashita and J. Tani. Emergence of functional
hierarchy in a multiple timescale neural network
model: a humanoid robot experiment. PLoS Comp
Bio, 4(11):e1000220, 2008.

136




