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ABSTRACT
Despite recent demonstrations that deep learning methods
can successfully recognize and categorize objects using high
dimensional visual input, other recent work has shown that
these methods can fail when presented with novel input.
However, a robot that is free to interact with objects should
be able to reduce spurious differences between objects be-
longing to the same class through motion and thus reduce
the likelihood of overfitting. Here we demonstrate a robot
that achieves more robust categorization when it evolves to
use proprioceptive sensors and is then trained to rely in-
creasingly on vision, compared to a similar robot that is
trained to categorize only with visual sensors. This work
thus suggests that embodied methods may help scaffold the
eventual achievement of robust visual classification.

Categories and Subject Descriptors
I.2.m.c [Artificial Intelligence]: Evolutionary computing
and genetic algorithms; I.2.9 [Computing Methodolo-
gies]: Artificial Intelligence - Robotics

Keywords
Evolutionary Computation; fitness; deception; scaffolding

1. INTRODUCTION
Categorization is an important aspect of intelligence [12],

but fundamental disagreement exists as to how an artificial
agent should do so, and how biological organisms acquire
this ability.

One can partition categorization strategies into non-embodied
and embodied approaches. In the non-embodied approach,
an agent is presented with some stimuli and must signal
which category the perceived object belongs to. In the em-
bodied approach, the robot or organism must interact with
its environment to generate useful percepts for categoriza-
tion [1, 3, 22].
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The disagreement about which of these two approaches to
categorization is superior stems from the fact that humans
are equally adept at both: one can nearly instantaneously
visually recognize a friend at a distance or rapidly pick out
a desired key from one’s pocket just by handling a set of
them.

Deep learning methods have recently demonstrated an
excellent ability to recognize objects belonging to familiar
categories using the non-embodied approach [2, 13]. These
methods are able to handle input images with very high
dimensionality because they are provided with millions of
training images. However, despite these successes, recent
work [21, 16] has demonstrated that these methods can fail
on images that, from a human observer’s perspective, clearly
do not contain the object claimed to exist in the image.

Embodied approaches to categorization offer an advan-
tage over non-embodied approaches in that the learner may
choose how to manipulate objects such that spurious differ-
ences between objects in the same class, including orienta-
tion and position, are reduced. In addition, the learner may
act to increase the differences between objects belonging to
different classes: if edged objects are to be distinguished
from round objects, the learner may alter her grasp of an
object to confirm the existence (or absence) of an edge. It
has even been shown that, given an appropriate morphology,
a robot may reduce intra-category differences and increase
inter-category differences as a side effect of actions that are
not directed towards explicit object manipulation [20].

Evolutionary algorithms have been employed previously
to enable a robot to perform this active categorical percep-
tion (ACP). Beer [1] reported an agent that achieves ACP
simply by moving relative to objects in its environment with-
out touching them, while Tuci [22] and Bongard [3] reported
robots that achieved ACP by physically manipulating ob-
jects. Furthermore, Bongard [3] demonstrated that evolving
robot morphology along with control facilitated the evolu-
tion of ACP, presumably because evolution could more read-
ily discover grasping strategies that reduced intra-category
differences and exaggerated inter-category differences. How-
ever, to date, no evolutionary approaches have show that
tactile experiences predispose certain strategies to be robust
in novel situations.

Outside of evolutionary robotics, Fitzpatrick et al. [10]
presented work in which robots learn to visually classify ob-
jects based on their physical interactions with them. How-
ever, the robots were pre-programmed to explicitly detect
correlations between proprioceptive and visual features. Here
we describe a similar approach, but do not require that the
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robot detect similarities between different sensor modalities.
Instead, we employ scaffolding to gradually wean a robot off
sensors that require physical contact and onto visual sensors
that do not.

Scaffolding, a concept brought to robotics from develop-
mental psychology [18], facilitates learning by initially ex-
posing the learner to simpler tasks, and only exposing her
to more challenging versions of the tasks gradually. Our use
of scaffolding to swap one sensor modality in for another
differs from most usages of scaffolding in robotics, in which
the robot is exposed to increasingly more challenging task
environments [8, 17, 19], or in which the robot’s morphology
itself scaffolds the acquisition of adaptive behavior [5, 4].

Here, we demonstrate a robot evolved to achieve active
categorical perception using action and proprioception, which
successfully reduces spurious intra-category differences. Dur-
ing subsequent evolution, these robots are challenged to rely
increasingly on vision and allowed to rely less on propri-
oception, which gradually transitions the robot from ACP
to visual classification. We demonstrate that the resulting
robots retain the action that reduced intra-category differ-
ences and thus exhibit robust visual classification when ex-
posed to novel visual scenes.

The next section describes this method in more detail.
Sect. 3 reports our results, and the final section provides
some discussion and concluding remarks.

2. METHODS
We first describe the task for our robot. We proceed to

describe the robot’s body and controller architecture. We
then describe the robot’s sensor modalities. This is followed
by a description of how scaffolding is employed to wean cat-
egorizing robots off proprioception and force them to rely
increasingly on vision alone. We also elaborate on the var-
ious environments the robots were trained in. We conclude
this section by describing how we measured the robustness
of the evolved robots when forced to categorize in previously
unseen environments. All material for replicating the work
described here is available at http://git.io/vfYYP

2.1 Task
The robot we are evaluating is tasked with classifying the

size of a cylinder within its grasp. Two cylinder sizes are
presented to each robot. These cylinders vary in their radius:
the larger one’s radius is 50% larger than the smaller one.
The larger cylinder’s radius was 30% of each of the robot’s
arm segments in length.

2.2 Robot Morphology
The robot’s morphology (Figure 1) is planar and is com-

prised of five body segments connected together with four,
one degree-of-freedom hinge joints. The bulk of the robot
is comprised of its chassis, which is locked in place for the
present study. The two arms are each connected to the chas-
sis at slightly different heights to allow them to slide past
each other if their grip flexes sufficiently far inward. Each
arm is composed of an upper and lower segment. These seg-
ments are attached with a hinge joint that rotates the two
arm segments through the horizontal plane, with a range
of motion constrained to [−90o,+90o]. The upper segment
is attached to the chassis with a second hinge joint that ro-
tates the entire arm relative to the chassis through the range
[−90o,+90o]. The initial pose of the robot, as shown at the

Figure 1: Each of the four frames show the robot
under different environments. The top frames de-
pict the start of simulations with a small object and
a large object respectively. The bottom frames ex-
hibit the rays the robot uses to see objects after the
robot has gripped the objects during its simulation,
with the slightly darker ray depicting the center of
each eye.

top of Figure 1, is considered to set the four joint angles to
default values of 0 ◦.

Each of the four joints are equipped with a motor that
applies a torque to the joint proportional to the difference
between the joint’s current angle and the desired angle out-
put by the robot’s controller. The robot is equipped with
four proprioceptive sensors, which report the current angle
of each joint.

Vision is, in the most fundamental sense, an instantaneous
perception of remote objects. For this experiment we chose
not to simulate vision, but rather to simulate a simpler set
of distance sensors. Distance sensors operate much like vi-
sual ones, but instead of detecting variations in colors they
detect variations in distance. Furthermore, like vision, dis-
tal sensors can be high resolution. Vision here is thus ap-
proximated using four sets of ‘eyes’, which point at −67.5o,
−22.5o, +22.5o, and +67.5o relative to the forward facing
direction, arbitrarily considered to be 0o.

Each eye is composed of a fan of nine rays equally spaced
(5 ◦) apart. At each time step a cast ray returns a value
linearly proportional to the distance between the source of
the ray and the first point of collision. A maximum value is
returned if the ray is unobstructed. The rays’ values are then
averaged and normalized to provide four visual inputs to the
controller. A visual input value of−1 indicates a large object
right in front of the sensor while +1 indicates there is no
object within range of that eye. A higher resolution of rays
was not used due to the linearly increasing computational
cost of casting rays.

The following equation shows the setup of each of they
vision sensors. The term N is the number of rays. The term
R is the length of each of the rays. The subscript o refers to
the origin of the ray and the subscript c refers to the point
of first collision.

dr =
√

(xr,o − xr,c)2 + (yr,o − yr,c)2 + (zr,o − zr,c)2

v =
1

N

N∑
r=1

{
2 dr

R
− 1 if ray r collides

1 otherwise
(1)
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Figure 2: Neural Network of Controller

2.3 Controller
The robot’s controller is a synchronous, deterministic, and

real-valued neural network. Figure 2 reports its architecture,
where each layer is fully connected to the succeeding layer.
The middle (hidden) layer is also fully recurrent, obtaining
inputs from all five input and five hidden neurons. The
output layer’s five neurons feed directly from the hidden
layer. Four of the five input neurons were designated as
sensor inputs. The fifth input neuron was a bias neuron
permanently set to the maximum neuron value of one. Four
of the five output neurons were used to control the joint
motors. The final output neuron is the guess neuron, which
was used for object categorization but did not influence the
motion of the robot. At each time step the input neurons
were encoded with the current sensor values. Each hidden
neuron was then updated using:

h
(t+1)
i = erf

(
5∑

j=1

n
(t+1)
j wj,i +

5∑
j=1

h
(t)
j wj,i

)
(2)

where nj and hj are the jth input and hidden neurons,
respectively, wj,i is the synaptic weight connecting neuron j
to neuron i, and this weighted sum is normalized to a value
in [−1,+1] using the Gauss error function. Synaptic weights
were restricted to the range [−1,+1].

The output neurons were updated using:

o
(t+1)
i = erf

(
5∑

j=1

h
(t+1)
j wj,i

)
(3)

After the network was updated, the values of the four
motor neurons were scaled to values in [−90o,+90o] and
then translated into torques by the motors, proportional to
how far the current angle was from the desired angle.

During the evolutionary runs in which the robot is weaned
off proprioception and on to vision, some mixture of propri-
oception and vision is supplied to the sensor neurons, rather
than feeding increasingly less proprioception to four sensor
neurons and increasingly more vision to an additional four
sensor neurons. In this way evolution does not need to learn
to ignore or value sets of weights over the evolutionary run.

2.4 Evolutionary Algorithm
The Covariance Matrix Adaptation Evolution Strategy

[11] (CMA-ES) was chosen as the real-valued optimization

method. In all evolutionary trials, only the synaptic weights
in the robot’s controller were evolved. All aspects of the
robot’s cognitive architecture and morphology remained fixed.
CMA-ES evolved 75 synaptic weights, each constrained to
[−1, 1]. The initial synapses vector was initialized with uni-
formly random weights in the bounded range. CMA-ES spe-
cific parameters included initializing each run with a σ of
0.25 and a default of 16 fitness evaluations per generation.
Each evaluation was composed of multiple simulations in
which the robot was confronted with different objects placed
at different positions. All other unmentioned parameters
were kept at the default settings. Since we utilized CMA-
ES as a function minimizer, our experiment attempted to
minimize the error of the robot’s guess as to which class
the object currently in front of it belonged to. We shall use
the term evolutionary run to refer to the process of evolving
(training) our controllers for a given set of environments and
sensor modality.

2.5 Environments
The environment of the robots differ primarily through

the position and size of the cylinder presented in each sim-
ulation. Each robot’s controller for a given sensor modality
was simulated a specific number of times, which we define
as an evaluation. During training the objects were placed as
described below and shown in Figure 3 for each 6-simulation
evaluation. The horizontal and vertical environments were
chosen because they constrained the training data to one di-
mension. The alternating environment was chosen because
it did not place both a large and a small cylinder at the same
positions. Additionally, we also investigated how controllers
evolved when exposed to fewer (4) and more (8) simulations.
The evaluation types include:

Horizontal (H4, H6, H8) The objects were placed across
the X axis such that both sizes were tried at each
unique position.

Vertical (V4, V6, V8) The objects were placed across the
Z axis such that both sizes were tried at each unique
position.

Alternating (A4, A6, A8) The objects were placed in a
two-object deep rectangle, alternating large and small
objects, each object with their own unique position.

Testing The objects were placed on a Cartesian plane over
78 positions for a total of 156 simulations.

2.6 Sensor Modalities and Scaffolding

2.6.1 Proprioception (P)
Robots evaluated under this sensor modality only utilized

their proprioceptive sensors (joint angles) as inputs to their
controller for the entirety of training and testing.

2.6.2 Vision (V)
Robots evaluated under this sensor modality only utilized

their vision sensors (four eyes composed of distal rays) as
inputs to their controller for the entirety of training and
testing.

2.6.3 Scaffolding
Although scaffolding is a common method employed in

robotics [8, 17, 19, 5, 4], we employed it here in a novel way.
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Figure 3: This figure depicts the initial positions for the cylinders under various environments. Additionally,
the thick red lines indicate the initial position of the robot’s limbs. The filled circles represent the locations
of the joints. The circle and ray colors correspond to the ordered pairs of sensors combined during the
ontological scaffolding: the teal outer joint on the right arm corresponds to the rightmost eye’s rays.

Figure 4: The relative contribution of propriocep-
tion (P) and vision (V) to a robot’s input over the
course of an evolutionary run that is scaffolded. This
parameter is then used in each simulation as seen in
Figure 5.

During the evolutionary process, the robot is forced to rely
progressively less on proprioception and progressively more
on vision to perform categorization. Three different types
of scaffolds were attempted and reported here. For each
scaffolding type, a single parameter linearly descends from
one to zero over the course of an evolutionary run and dic-
tates how much proprioceptive input the robot has access to
(blue line in Figure 4). A second parameter climbs from zero
to one over the course of an evolutionary run and dictates
how much visual input the robot has access to (green line
in Figure 4). During testing, the controllers evolved using
scaffolding were tested identically to the controllers evolved
using the Vision (V) sensor modality.

During scaffolded evolutionary runs the robot could rely
only on proprioception during the initial 30% of training.
The next 60% of training time caused a constant linear de-
crease in the scaffold. During the final 10% of training, the
robot could only rely on vision. Each robot evaluation was
provided with a fraction that was zero during the first 10% of
training, some value in [0, 1] during the next 60% of training,
and one for the last 10% of training. This value was used to
tune the three scaffolding schedules described next.

Melding (X) During the evaluation of an individual robot,
the values arriving at the sensor neurons were an ad-
mixture of the four proprioceptive and the four visual
sensors (Fig. 5a). The proportions of both sensor
modalities gradually changed over evolutionary time:

Figure 5: Changes in contribution of proprioception
(P) and vision (V) during the evaluation of a single
controller. The lines represent ontological scaffold-
ing, or the scaffolding that occurs over one simula-
tion of the robot. The arrows represent how the
relative contribution of proprioception and vision
change as the evolutionary run proceeds. The move-
ment in the direction of the arrows, as described in
Figure 4, represents evolutionary scaffolding.

robots in the first generation obtained 100% propri-
oceptive input and 0% visual input, robots halfway
through an evolutionary run received roughly 50% pro-
prioceptive input and 50% visual input, and robots in
the final generation received 100% visual input.

Swapping (S) Partway through the evaluation of a sin-
gle robot, its input would switch from proprioception
to vision (Fig. 5b). The point at which this swap
would occur changed over evolutionary time: robots
in the first generation received only proprioceptive in-
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put, robots halfway through an evolutionary run re-
ceived proprioceptive input for the first 256 time steps
and visual input for the last 256 time steps, and robots
in the last generation received only visual input.

Sigmoidal (C) A sigmoidal smoothing function was used
to determine the amount of contribution of vision and
proprioception to the input layer during any single
time step of the evaluation (Fig. 5c). The shape of
this sigmoid was altered over the course of an evolu-
tionary run such that the contribution of propriocep-
tion dropped more precipitously—and the amount of
visual input increased more precipitously—later dur-
ing the evolutionary run. Essentially, this scaffold is a
combination of the other two scaffolds.

None (N) For the first half of evolutionary time the robot’s
controller solely received input from its proprioceptive
sensors. For the second half of evolutionary time the
robot’s controller solely received input from its vision
sensors.

In the case of the sigmoidal smoothing function the contri-
bution of vision to the value of the input neurons is shown
in equation 4. The term g represents the current genera-
tion in the evolutionary run out of G generations. The term
t represents the time step in the simulation out of T time
steps.

cv =
erf
[
4
(

g
G

+ 2 t
T
− 1
)
− 2
]

+ 1

2
(4)

2.7 Fitness
Each simulation lasted 512 time steps in the Bullet Physics

Engine[7]. The final 10% of values of the controller’s guess
neuron were recorded and used to compute the controller’s
fitness. The guess neuron’s values were compared against
the cylinder’s class label (-0.5 for small and 0.5 for large)
to obtain a difference. This difference is averaged over the
time steps to become our error:

e =
1

C

C∑
c=1

1

T

T∑
t=0.9T

|gc,t − rc| (5)

where C represents the number of cylinders placed and T
represents the total number of time steps for an evaluation.
gc,t denotes the value of the guess neuron when the robot is
simulated under environment c and rc denotes the relative
radius of the object in environment c. (r = −0.5 for the
small object and r = 0.5 for the large objects.) In this way
an error of zero indicates perfect and stable categorization
over the last 5% of the robot’s evaluation period. Impor-
tantly, the category values were not set to the extrema of
the neuron’s output range (-1 and +1) because this made
the robot’s task too easy: instead, it had to hold each guess
neuron steady at the correct value for a protracted period
of time.

The robot morphology and task were formulated such that
there were at least four types of movement that could be
used to manipulate objects. The robot could choose to not
move objects by extending its joints outward. The robot
could open one of its arms while closing the other to slide
objects which come into contact with the closing arm away

from it. The robot could close its inner joints while keep-
ing its outer joints relatively open, leading to the object
becoming trapped in a diamond-like arm pattern. Finally,
the robot could fully close both arms, leading to the object
becoming trapped in a triangle formed by the arms. (Figure
1) We found that the controller rarely changed its motion
strategy partway through a simulation.

2.8 Tests
After evolution, we assessed how robustly a robot could

categorize when simulated in novel environments. To do so,
we extracted the controller with the lowest training error
obtained during the final 10% of the generations from each
evolutionary run. This robot was denoted as that run’s rep-
resentative. The representative controllers were then pre-
sented with the Testing environment as shown in Fig. 3. In
these test evaluations the robots were only allowed to use
the visual sensors for categorization. The only exception
were those runs in which only proprioception was allowed
during training; these robots were allowed to use only pro-
prioception during testing. As during training, testing error
was calculated using Equation (5), but averaged over 156
simulations instead of four, six, or eight simulations.

In the next section we investigate the intra- and inter-
category distances between objects caused by the robot’s
movement. The following equations describe these values.
In each case I and J represent the number of large and
small objects, respectively.

Dintra =
2
∑I

i=1

∑I
j=i+1

√
(xi − xj)2 + (zi − zj)2

I(I − 1)
(6)

+
2
∑J

i=1

∑J
j=i+1

√
(xi − xj)2 + (zi − zj)2

J(J − 1)

Dinter =
1

IJ

I∑
i=1

J∑
j=1

√
(xi − xj)2 + (zi − zj)2 (7)

3. RESULTS
In this section we report on a total of 3 × 3 × 6 × 50 =

2250 evolutionary runs. We evolved the robot’s controllers
against every environment: the combination of object po-
sition (horizontal, vertical, and alternating) and simulation
count (4, 6, 8). Robots had six modalities: just propriocep-
tive input (P), just visual input (V), or evolved against one
of the four scaffolding strategies (N, S, X, C). For each of the
54 combinations of object positioning, simulation count, and
scaffolding strategy, we performed 50 evolutionary runs. For
robots trained against four, six, and eight objects, they were
evolved for 40,000, 60,000, and 80,000 robot simulations, re-
spectively. This provided every evolutionary run with the
same number of evaluations.

The average testing errors for the representative controllers
is reported in Table 1. A robot whose strategy would be to
randomly guess the size of its cylinders would have a test er-
ror of 0.5. When we refer to robots as memorizing we mean
that their test error is high; these robots have overfitted the
training examples and therefore cannot perform well on the
generalized test set.

In most cases, the robots trained with vision (column ’V’
in Table 1) memorized more than robots trained using one
of the scaffolds (columns ’N’ through ’C’ in Table 1). How-
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P V N X S C
A8 0.16** 0.24 0.23 0.21 0.22 0.19*
H8 0.14*** 0.23 0.21 0.21 0.24 0.21
V8 0.16*** 0.27 0.25 0.25 0.32 0.27

A6 0.21*** 0.31 0.27 0.22*** 0.27 0.25**
H6 0.20 0.22 0.25 0.22 0.26* 0.21
V6 0.23*** 0.41 0.35** 0.30*** 0.34*** 0.35***

A4 0.36 0.35 0.34 0.37 0.36 0.39
H4 0.20*** 0.36 0.26*** 0.26*** 0.28*** 0.24***
V4 0.20*** 0.41 0.34* 0.35* 0.34** 0.36*

Table 1: Test errors for 50 runs over the different
object counts. positions, and sensor modalities. The
asterisks designate p values below 0.05, 0.01, and
0.001 for one through three asterisks respectively.
p values were calculated by applying a t-test to the
average test errors of vision when compared to other
those of the other sensor modalities for each of the
environments.

ever, robots trained with proprioception and then tested us-
ing proprioception also memorized on occasion: these robots
obtained similarly high testing error as the robots trained
and tested with vision in environments H6 and A4. This
result implies that although the task may seem sufficiently
simple that categorization using proprioception always re-
sults in robust categorization in unseen environments, there
are movement strategies that evolve for which this is not
the case. In this case, the P solutions evolved behaviors
that would swing the arms asymmetrically, utilizing feed-
back from the objects’ positions to complete the task of de-
ciding their size.

4. DISCUSSION
It was found that many scaffolded robots evolved to rely

on proprioception early during an evolutionary run. These
ACP-evolved behaviors contributed to contributed to the
evolution of subsequent controllers that exhibited robust vi-
sual categorization in novel environments. This is indicated
by the significantly lower testing error obtained by many
of the scaffolding schedules (X, S, and C) compared to the
runs in which only vision was available (V). The behavior
exhibited by one of these robustly-categorizing robots is il-
lustrated in Figure 1. As can be seen, this robot’s evolved
behavior of closing its arms together has the effect of moving
objects at different positions to the same position directly
in front of the robot. This has the result of reducing dif-
ferences in irrelevant properties of the object; here, such an
irrelevant difference is the different positions of the objects.

In contrast, a robot that does not move will generate no
difference in sensor signatures during different object place-
ments if it relies on proprioception for categorization, and
very different sensor signatures if it relies on vision. Neither
bode well for robust categorization in unseen environments.
In the former case, the robot will not be able to success-
fully categorize even under training environments. In the
latter case, there is a danger that the robot will memorize
the training environments and fail to generalize to any un-
seen environments. This highlights the importance of mo-
tion for active categorical perception and that propriocep-
tion is more likely to lead to active behaviors: a blind robot
must move and contact objects in order to categorize them.

4.1 Scaffolding success through motion
For the experiment set involving vertical arrangement of

six object positions (V6), we obtained some of our most
successful results. Since the training set consisted of closely
positioned objects, vision-evolved controllers had a natural
tendency to memorize with little movement. As shown in
Figure 6 both the proprioception and all of the scaffolded
runs resulted in significantly more motion during testing.
This indicates that when vision favors passive behaviors that
do not involve object manipulation, then scaffolding can be
a good way to bias search toward movement-based catego-
rization. This movement-bias is retained while the robot
transitions to vision, and results in increased robustness of
the eventual visual classifier.

One of the primary indicators for whether a controller
would generalize was the extent to which it manipulated
the object. As shown in Figure 6, the motion induced by
the vision-based controllers is significantly lower than any
observed in the scaffolded runs. Memorization combined
with the lack of motion is the reason that the visual classifier
was only able to successfully categorize objects inside the
range of its training positions.

The scaffolding process can therefore lead to robust vi-
sual classifiers. The efficacy of scaffolding indeed increased
as the training set grew increasingly sparse (eight objects
are reduced to six and then four in Table 1) and accordingly
the amount of computational effort available was increas-
ingly restricted (from 80,000 robot simulations to 60,000 to
40,000).

4.2 Scaffolding success in other cases
We also investigated the effect of scaffolding when the vi-

sual classifier’s motion was not significantly different from
robots that relied on proprioception. This was the case for
the A8 training regimen, as shown in Figure 7. However,
even in this case, the C scaffolding schedule achieved signif-
icantly lower test error than pure vision.

The reason for this is that motion is not a meaningful
metric in and of itself. A robot may evolve to move its arms
a great deal and push the objects away from it in ways that
exaggerate the irrelevant feature of object position.

To distinguish between helpful and unhelpful motion, we
can look at intra-category and inter-category distances. Intra-
category distance, the average distance between the final
position of an object and every other object in its category,
would be low for the behavior shown in Figure 1 as the ob-
jects would be pulled to about the same location. Since
objects are getting pulled close regardless of size, we would
expect to see inter-category distance, the average distance
between an object and every other object not in its category,
to also decrease a similar amount.

Because the radii of the objects are different, we do not ex-
pect inter-category distances to be lower than intra-category
distances as the centers of the two object sizes would be in
marginally different places (25% of the small object’s ra-
dius) when the objects are flush against the robot’s chassis.
For unhelpful movement, objects may be pushed away from
a swinging arm or not moved at all: both intra-category
and inter-category distances should thus remain high. The
results in Figure 7 show that the scaffolds that were most
successful have intra-category and inter-category differences
that are low, like those for proprioception. The unsuccessful
scaffold (S) characteristically evolved higher intra-category
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Figure 6: Statistics of V6-trained controllers over
60,000 simulations per run. We define motion as
the average euclidean distance between the begin-
ning and ending positions of the objects during test-
ing simulations. The light blue boxplot represents
vision. Green boxplots for each subplot are signifi-
cantly different than vision at a p level of 0.05. The
horizontal red lines designate medians and the thick
horizontal black lines designate the mean. In the
intra and inter-category graphs the horizontal yel-
low lines designate what the distances would be if
the test objects were not perturbed. The boxplot’s
whiskers represent the 25th and 75th percentiles.

and inter-category behavior, which were more in line with
the same metrics for the pure vision runs (V).

From this, it seems likely that the best predictor of whether
a particular run will produce robust visual classifiers is whether
the difference between intra-category and inter-category dis-
tances is magnified by motion induced by the robot’s limbs.
Indeed this is what is observed in the results from the V6
training regimen (Figure 6).

The types of movements that the scaffolds can help insti-
gate is therefore also an important component of whether
they lead to robust visual categorization, and the signature
of whether motion is helpful is if it reduces the separation
between intra-category and inter-category differences.

4.3 Scaffolding Issues
As shown in Table 1, both the vertical and horizontal en-

vironments’ scaffolds lead to relatively better generalizers
as we provide fewer training positions, and therefore less
computational power. This highlights vision’s inclination
towards memorization. In the case of the alternating ob-

Figure 7: Statistics of A8-trained controllers over
80,000 simulations per run.

ject positions, a different pattern emerges. In the case of
A4, neither proprioception nor any of the scaffolds have sig-
nificantly different means; proprioception becomes just as
much a memorizer as vision. This explains the lack of suc-
cess of the scaffolds; they do not have a robust categoriza-
tion strategy from which to begin weaning the robot off pro-
prioception. However, as we add computational power and
complexity through A6 and A8, proprioception-based robots
memorize less. Even as the environments exhibit greater
variation and vision-based controllers memorize, propriocep-
tion based controllers resist memorization and are thus still
able to be scaffolded. This indicates that even when prob-
lems are not constrained to a single dimension of position,
there may be success through sensor scaffolding. The un-
derlying pattern for success is whether proprioception can
evolve and then pass these successful grasping behaviors to
vision. The grasping behaviors that work are the ones that
collapse the state space by reducing intra-category and inter-
category distances.

When comparing our four scaffolds, none of the scaffolds
had a clear and universal advantage over any other. The pos-
itive aspect of this is that scaffolding strategies are a manual
process that the experiment designer must consider. On the
other hand, we still have little insight into the underlying
intricacies of applying different scheduling scaffolds.

5. CONCLUSIONS AND FUTURE WORK
Here we have demonstrated how, through action, a robot

may be gradually transitioned from active categorical per-
ception to visual classification.
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Direct successors to this research revolve around improv-
ing the efficacy of scaffolding. We believe that the cur-
rent method presented in this paper can potentially ben-
efit from further optimizations. These potential investiga-
tions include spending more time evolving proprioceptive
behaviors and limiting evolution’s ability to move away from
ACP-evolved grasping behaviors. Another angle of approach
would be provide each evolutionary run with a randomized
set of initial positions to evolve with. Other future work
might include evolving classifiers that utilize both touch and
vision concurrently, or a system that learns to map sensors
to neural inputs concurrently with the scaling of its neural
weights.

The results presented here and previously in [3], when
taken together, suggest a pathway for uniting the two sis-
ter disciplines of evolutionary robotics and developmental
robotics. Work in evolutionary robotics tends to focus on
how control and morphology can be gradually shaped by
evolutionary pressures to enable successful achievement of
a task [6]. In developmental robotics, the focus is often on
how an individual robot gradually acquires greater behav-
ioral competency as its sensory and motor systems complex-
ify or become less constrained [15].

If these two approaches were combined in future work,
evolution may explore different kinds of developmental tran-
sitions from embodied to non-embodied categorization, be-
yond the four manually-devised transitions we studied here.
Evolved transitions that enable a more efficient transition
from proprioception to vision during the robot’s lifetime
would confer an evolutionary advantage on it, thus leading
to the evolution of increasingly efficient transitions. This
better reflects biological evolution, which evolves develop-
mental trajectories from infant to adult forms, rather than
fixed traits. Such a combined evolutionary and developmen-
tal approach may discover evolved transitions that are more
efficient and effective than the manually-devised develop-
mental transition studied here.

Furthermore, in previous work [3] it was shown that evolv-
ing morphology can facilitate the acquisition of active cat-
egorical perception in robots. Thus, evolving morphology
may further empower evolution to discover useful control,
morphology and action combinations that lead to efficient
transitions from embodied to non-embodied categorization.

It may also be applicable to other aspects of cognition. For
example, it may be possible to automatically evolve embod-
ied language understanding [9] or embodied symbol manipu-
lation [14], and then automatically and gradually transition
these competencies to abstract reasoning about language or
symbols.
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