
Journal of Hydrology 524 (2015) 311–325
Contents lists available at ScienceDirect

Journal of Hydrology

journal homepage: www.elsevier .com/ locate / jhydrol
Inductive machine learning for improved estimation of catchment-scale
snow water equivalent
http://dx.doi.org/10.1016/j.jhydrol.2015.02.042
0022-1694/� 2015 Elsevier B.V. All rights reserved.

⇑ Corresponding author.
E-mail addresses: dbucking@uvm.edu (D. Buckingham), skalka@cs.uvm.edu

(C. Skalka), josh.bongard@uvm.edu (J. Bongard).
David Buckingham ⇑, Christian Skalka, Josh Bongard
Department of Computer Science, University of Vermont, Burlington, VT 05405, USA

a r t i c l e i n f o
Article history:
Received 5 December 2014
Received in revised form 18 February 2015
Accepted 21 February 2015
Available online 2 March 2015
This manuscript was handled by
Konstantine P. Georgakakos, Editor-in-Chief,
with the assistance of Kun Yang, Associate
Editor

Keywords:
Snow water equivalent
Machine learning
Wireless sensor network
Snowpack modeling
Genetic programming
s u m m a r y

Infrastructure for the automatic collection of single-point measurements of snow water equivalent (SWE)
is well-established. However, because SWE varies significantly over space, the estimation of SWE at the
catchment scale based on a single-point measurement is error-prone. We propose low-cost, lightweight
methods for near-real-time estimation of mean catchment-wide SWE using existing infrastructure, wire-
less sensor networks, and machine learning algorithms. Because snowpack distribution is highly nonlin-
ear, we focus on Genetic Programming (GP), a nonlinear, white-box, inductive machine learning
algorithm. Because we did not have access to near-real-time catchment-scale SWE data, we used avail-
able data as ground truth for machine learning in a set of experiments that are successive approximations
of our goal of catchment-wide SWE estimation. First, we used a history of maritime snowpack data col-
lected by manual snow courses. Second, we used distributed snow depth (HS) data collected automatical-
ly by wireless sensor networks. We compared the performance of GP against linear regression (LR), binary
regression trees (BT), and a widely used basic method (BM) that naively assumes non-variable snowpack.
In the first experiment set, GP and LR models predicted SWE with lower error than BM. In the second
experiment set, GP had lower error than LR, but outperformed BT only when we applied a technique that
specifically mitigated the possibility of over-fitting.

� 2015 Elsevier B.V. All rights reserved.
1. Introduction

There has been extensive research on techniques for measuring
and modeling snow because it affects many hydrological, atmo-
spheric, and biological processes (Tappeiner et al., 2001). The accu-
rate estimation of snow water equivalent at the catchment scale is
useful in many applications, including agricultural planning,
metropolitan use, flood risk evaluation, planning of hydropower
production potential, weather forecasting, and climate monitoring
(Marofi et al., 2011; Schmucki et al., 2014). More than 1/6 of people
globally depend on seasonal snow or glaciers for water supplies
(Bales et al., 2006), and in the western United States the majority
of surface water resources is derived from snowmelt (Serreze
et al., 1999). However, snow has declined across much of the US over
the last half-century (Pierce et al., 2008). The current severe drought
in California, with record low snowpack measurements over three
years, threatens water supplies throughout the state (Boxalla,
2014) and highlights the importance of snowpack research. Snow
both influences climate and responds directly to climate change
(Engeset et al., 2004). While climate change warrants increased
snowpack monitoring, existing techniques perform poorly under
extreme climatic conditions (Molotch et al., 2005; Balk and Elder,
2000), and it has been argued that the stationarity of hydrological
processes can no longer be assumed (Milly et al., 2008).
Furthermore, high costs of data gathering constrain the temporal
and spatial granularity of estimation methods. New techniques
are needed.

We propose new low-cost techniques for estimating catch-
ment-wide snow water equivalent using machine learning algo-
rithms, especially genetic programming. These algorithms use
data gathered from existing sensor infrastructure, and possibly
short-term deployments of wireless sensor networks. The
manipulation of large data sets in order to gain insight into snow
accumulation, melt, and runoff has been highlighted as a necessary
next step in mountain hydrology (Dozier, 2011). The long-term,
overarching goal of our research project is to achieve better near-
real-time (NRT), estimation of SWE at the catchment scale. By
NRT, we mean automated reporting at fine-grained timescales,
for example hourly. By better, we mean more accurate estimation
without significantly increased infrastructure cost. Our strategy is
to generate snow telemetry datasets using short-term, low-cost
field campaigns that can be used by machine learning algorithms
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to generate snowpack models. Following field campaigns and the
termination of associated measurement techniques, these models
can be used for NRT SWE estimations with no new instrumentation
overhead.

The key idea behind our approach is that machine learning
models are able to induce relationships between input parameters
and an output value, if such exist, on the basis of the ground truth
data if provided. The machine learning method we emphasize is
genetic programming (GP), which generates equations relating a
dependent variable to a set of independent variables.

In our case, we argue that if we obtain multiple years of ‘‘true’’
average SWE for a catchment, machine learning will be able to
induce a meaningful mathematical relation between telemetry,
such as proximal snow pillow reading(s), and true average SWE.
Then, in years when true average SWE is not available, inputs such
as snow pillow readings can be translated into average SWE esti-
mates for the catchment. This approach assumes interannual conti-
nuity in snow distributions over a catchment, which has been
demonstrated by previous research (Scipión et al., 2013; Tappeiner
et al., 2001; Schirmer et al., 2011). Because accurate measurements
of mean catchment SWE are generally unavailable at this time, we
use snow course and wireless sensor network data as proxies for true
average SWE to serve as ground truth for machine learning.

Thus, the ideal we aim for is a generally applicable technique for
inducing models that take as input parameters existing infrastruc-
ture NRT telemetry, such as snow pillow readings, meteorological
data, and date/time information, and output measurements of
SWE at those locations. This would allow more accurate SWE esti-
mation to be provided without additional cost beyond that of the
initial field campaign for obtaining a ground truth dataset (Fig. 1).

Several theoretical and practical challenges exist on the way to
achieving this goal. The purpose of this paper is to address them
and make progress in three particular ways.

First, we explore the issue of what sort of machine learning
approaches are best in this context. In general, we argue that tech-
niques that are able to model nonlinear relationships are needed
due to the known nonlinear nature of snow distribution in alpine
environments (Tappeiner et al., 2001; Marofi et al., 2011). We also
argue that so-called white-box tools are best, since these can pro-
vide physical insights for scientists (Schmidt et al., 2011).
Furthermore, we emphasize resiliency against over-fitting, which
is especially important given that the datasets available for
machine learning may be relatively small.

Second, we investigate what sort of input parameters should be
used by SWE estimation models, especially in light of practical con-
cerns, i.e. available telemetry and datasets. In fact, availability of
data is a key issue in this effort, and defines what is possible. We
acknowledge the importance of terrain effects in determining
snowpack distribution, influencing both accumulation and abla-
tion patterns (Winstral et al., 2013; Fassnacht et al., 2003; Marks
Fig. 1. First, the Snowcloud WSN is deployed in an area near a snow pillow. Next, data
machine learning to generate a model of snowpack distribution. Finally, after Snowclou
Snowcloud had been deployed.
et al., 1999). However, because all snow sensors and courses are
on flat or nearly flat ground, we did not include topographic data
as explicit inputs to our models. We emphasize the flexibility of
inductive machine learning, which can accommodate arbitrary
new input modalities. Only those that are predictive of the depen-
dent variable of interest will be significantly incorporated into the
generated models. In this paper we focus on several potential snow
telemetry and meteorological inputs in order to demonstrate the
applicability of our techniques to catchment-scale SWE estimation,
while considering the potential for future work to explore other
inputs such as topographic data.

Third, we grapple with the issue of ground-truth for catchment-
scale SWE and usable datasets. Constraints on our goal were
imposed by the availability of snowpack data. We are not aware
of catchment-wide SWE datasets with sufficiently fine time granu-
larity to support our ideal scenario. Although datasets such as
those provided by the Cold Land Processes Field Experiment
(National Snow & Ice Data Center, 2014) and numerous others pro-
vide catchment-scale snowpack measurements, their time granu-
larity is on the order of several months at least. Airborne
techniques in general are cost-prohibitive for real-time reporting
(Bühler et al., 2011). Although satellites are used to measure
snow-covered area and albedo (Dozier and Painter, 2004), satellite
retrievals of SWE are not feasible. Manual snow courses provide
better temporal resolution than airborne methods (e.g. biweekly)
but at low spatial resolution: snow courses measure SWE at a sin-
gle location. We highlight the Snowcloud wireless sensor network,
which measures HS (an effective predictor of SWE) in NRT (e.g.
hourly) at multiple locations distributed over an area of interest.
However, this technology is new, and available data collected by
Snowcloud deployments is limited.

2. Background and contributions

Here we briefly define and summarize the machine learning
methods used in this work. These techniques are described in more
detail, with special emphasis on GP, in Section 4. The basic method
(BM) assumes the spatial homogeneity of SWE. It naively estimates
mean catchment-wide SWE to be the same as the single-point SWE
measurement taken at a snow pillow. Linear regression (LR) fits a
least-squares linear model to training data (Hastie et al., 2009).
The prediction is a weighted linear combination of the input vari-
ables. Binary regression trees (BT) are nonlinear models which are
generated using training data (Hastie et al., 2009). A BT model par-
titions a set of predictions according to the input variables such
that a given set of input values results in a specific prediction.
Genetic Programming (GP) is a symbolic regression algorithm that
uses training data to iteratively improve a population of nonlinear
models through a combination of stochastic variation and perfor-
mance-based selection (Koza, 1992).
generated by Snowcloud, by the pillow, and potentially other sources, are used by
d has been removed, the model is used to estimate snow levels in the area where
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In our ideal situation we would use a large set of accurate mea-
surements of mean catchment SWE as ground truth to train and
evaluate models that predict mean catchment SWE in NRT.
However, the only SWE measurements available at this spatial
scale are generated by airborne techniques with time resolutions
that are insufficient for machine learning (e.g. twice per year).
Because machine learning needs a large number of samples for
model training and because we want to predict SWE in near-real-
time, we required much more frequent measurements. We there-
fore developed a series of experiments using available snowpack
data in lieu of NRT catchment-scale SWE measurements to explore
successive approximations of our ideal scenario. Approximations
of average catchment SWE, obtained via snow courses and dis-
tributed ground-based sensor readings, serve as ground truth for
machine learning in our experiments. Implicit in our work is the
importance of new methods for obtaining NRT catchment-scale
SWE ground-truthing via low-cost distributed sensor networks.
As data from NASA’s Airborne Snow Observatory (NASA Airborne
Snow Observatory, 2015) become available for a range of years,
they will provide an ideal data set for our approach.

First, we used snow course measurements, which involve the
manual collection of SWE and/or HS at a single location, as a proxy
for catchment-wide SWE. Although snow courses do not directly
measure snowpack distribution at the catchment scale, they are
likely to provide measurements that are closer to mean catchment
SWE than snow pillows measurements are. Snow courses take mul-
tiple measurements over approximately 200 m, so they involve a
much larger sample size than the single-point measurements of
snow pillows. Furthermore, pillow under-measurement or over-
measurement errors may occur when the base of the snow cover
is at melting temperature (Johnson and Marks, 2004). Thus, we
used snow course data as a first approximation of mean catchment
SWE to provide ground-truth data for machine learning. We gener-
ated models that use readily available information such as
meteorological telemetry and snow pillow measurements as input
variables. This approach, which is explored in Experiment Set I,
would allow for shorter or less frequent snow courses or for their
discontinuation and, because it uses previously collected data,
incurs no data gathering costs.

Second, we used HS data collected by the Snowcloud (Skalka
and Frolik, 2014) wireless sensor network (WSN) at sites in
Norway and California, each for only one snow season, as a proxy
for catchment-wide SWE data. Snowcloud is a WSN-based data
gathering system for snow hydrology, notable for its low-cost
and ease of deployment, developed and operated by the
University of Vermont. A network of light-weight sensor towers
(nodes) is deployed over an area of interest for a short-term
field campaign to collect spatially distributed measurements of
relevant meteorological processes (Fig. 3). In addition to HS,
Snowcloud measures air temperature, soil temperature, and solar
radiation. Mesh wireless communication allows data from the
entire network to be collected wirelessly by communication with
a single node.

We used measurements collected from Snowcloud over the
course of a single snow season to generate ground-truth estimates
for model-training. Note that it could be desirable to collect data
over multiple seasons as models trained on multi-year data may
be more robust against internal-annual variations in snowpack
distribution. Once a model has been obtained, the WSN may be
recovered for re-deployment at another site. Unlike pillows and
snow courses, Snowcloud collects NRT data from multiple
locations, potentially capturing more of the variability of snowpack
distribution than is possible with single-location measurements.
Thus, we use Snowcloud data as a second approximation of
catchment mean SWE to provide ground-truth data for machine
learning. This technique is explored in Experiment Set II.
Recent research by Kerkez et al. (2012) and Welch et al. (2013)
has developed new sensor placement strategies for monitoring
snow. Although these methods were not employed in the experi-
ments discussed in this paper, they should be considered in future
applications of our techniques.

2.1. Suitability of machine learning

Snow pillows are large, expensive, permanent installations
that measure SWE at a single location. The infrastructure for the
automatic collection of single-point SWE is well established. For
example, there are 830 Snowpack Telemetry (SNOTEL) sites in
the United States (Surveyor, 2014) and another 124 snow pillows
operated by the California Department of Water Resources.
However, the extrapolation from single-point measurements to
surrounding areas is error prone. The spatial distribution of alpine
snow cover is highly variable (Balk and Elder, 2000; Elder et al.,
1991; Jost et al., 2007), due to a variety of environmental forcing
effects, such as topography (Anderton et al., 2004), canopy cover
(Moeser, 2010), and wind and solar exposure (Moeser, 2010;
Moeser et al., 2011).

Meromy et al. (2013) studied 15 snow stations across the west-
ern United States and found that snow station biases were fre-
quently greater than 10% of the surrounding mean observed
snow depth. The flat-field areas where snow pillows are commonly
located are usually not typical of more complex nearby terrain,
causing the majority of such stations to overestimate snow depth
in their vicinity (Grünewald et al., 2013). Molotch and Bales
(2005) studied the areas surrounding six SNOTEL stations in the
Rio Grande headwaters. They found that only a small fraction of
grid elements were representative of mean grid SWE during accu-
mulation, and that no elements were representative of mean grid
SWE during both accumulation and ablation. SNOTEL stations in
the Rio Grande headwaters preferentially represent densely forest-
ed areas and experience snow cover persistence that is 14% greater
than the mean persistence of the watershed (Molotch and Bales,
2006). Rittger (2012) found that errors based on statistical rela-
tionships between point measurements of snow and streamflow
in the Sierra Nevada can reach 25–70% in one out of five years.

The relative importance of separate processes which govern
snow distribution varies over the course of a snow season. Elder
et al. (1991) summarize the various processes and explain how
their influence changes over time. During the winter, accumulation
and redistribution processes dominate. Precipitation is determined
by regional climate and latitude as well as by local orographic
effects, and redistribution by wind, avalanches, and sloughs are
the primary causes of spatial heterogeneity. In the spring, however,
snow distribution is controlled mainly by ablation. Of the many
energy sources, solar and longwave radiation dominate. This ener-
gy decreases water in a basin through sublimation and when run-
off leaves the basin. It also redistributes SWE, affecting spatial
variability. These dynamics highlight the need for NRT modeling
of snowpack, as the forcing effects that establish snow distribution
vary drastically over the course of a snow season.

However, the significant consistency of snowpack between years
encourages investment into the development of reusable statistical
models. Strong inter-annual consistency in the spatial distribution
of snow (Scipión et al., 2013), in SCA (Tappeiner et al., 2001), and in
the snow depth patterns of maximum accumulation (Schirmer
et al., 2011), have been observed in the Swiss and Italian Alps. In
the western United States, consistent wind directions can produce
stable snow accumulation patterns from year-to-year (Winstral
and Marks, 2014). These findings suggest a strong link between
accumulation patterns and geophysical terrain and indicate that
site-specific snow distribution models may be able to accurately
characterize snowpack distribution over multiple years.



Fig. 3. Snowcloud WSN sensor tower. A complete sensor stand with solar-
recharged battery power, wireless mesh communication, and multiple sensor
modalities. October 2011, Mammoth Lake, CA.
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Nevertheless, long-term changes in the patterns of snow distri-
bution may be caused by factors such as changes in vegetation or
climate change. Therefore, it may occasionally be necessary to
rerun GP and generate a new model. Techniques such as retroac-
tive SWE calculation (Rittger et al., 2011) could be used to detect
when previous models begin to perform poorly, indicating that
secular variability in the dynamics of snow distribution warrants
the development of a new model.

It may be desirable to produce non-site-specific models. Trained
at catchments where ground truth data is available, and making
use of predictor variables that vary between catchments, such as
topography, such models could then be applied to catchments
where no independent measurement of mean catchment SWE
exists. However, we did not incorporate topography because the
snow pillows are all on flat or nearly flat ground. Our work focuses
on site-specific models and use model inputs that vary over time at
a given catchment.

2.2. Why GP?

It has been demonstrated that the relationships between snow
distribution and the topographic and meteorological forcing effects
include nonlinearities (Tappeiner et al., 2001), and the spatial dis-
tribution of SWE is nonlinear because it is influenced simultane-
ously by numerous processes including accumulation, ablation,
and snow drifting (Marofi et al., 2011). GP can produce both linear
and nonlinear models. If the data used to train GP contain only lin-
ear relationships, the resulting models will be linear, and the per-
formance of GP will be similar to that of LR.

White-box models, such as those produced by GP, can be inter-
preted by human analysis, potentially yielding new information
about the modeled data (Schmidt et al., 2011). Some nonlinear
regressors, such as artificial neural networks, produce models that
are difficult or impossible to interpret. GP trees, however, can be
expressed as mathematical equations (Fig. 2). It is possible that
by examining these equations domain experts could gain novel
insight into the processes governing snow distribution.

Unlike regression techniques that constrain the form of the
regressor, GP can combine operators, variables, and constants into
arbitrary arrangements. GP does not require any assumptions
about the form that a model should take: it is left open to inductive
search. By generating models that use predictor variables in
unexpected ways, GP may help discover previously unknown
relationships among variables.
Fig. 2. These example GP trees were manually selected from the final populations of GP
model. The middle tree is a nonlinear model. The rightmost tree is a more complex non
Finally, as we will discuss further, GP may be augmented with
multi-objective optimization, which constrains GP to produce par-
simonious models. This mitigates against over-fitting, a significant
concern in the case that relatively small datasets are available for
machine learning.

While many regression techniques possess one or more of these
desirable qualities, GP possesses all of them, making it an ideal
candidate for snowpack modeling.

2.3. The primacy of snow depth

While SWE is a product of HS and density (q), it has been shown
that HS is the essential determining metric for SWE estimation.
Models have been developed to derive q estimates from HS mea-
surements (Logan, 1973; Sturm et al., 2010), and measurements
of HS are highly predictive of SWE (Adams, 1976). Analysis of the
spatial variability of HS and q has revealed that the variability of
HS is significantly greater than that of q (López-Moreno et al.,
runs conducted for Experiment Set II. The leftmost tree represents a simple linear
linear model.



Fig. 4. Genetic programming algorithm. The figure on the left demonstrates the iterative process through which GP modifies a population of solutions. On the right, a
population of four models evolves as each iteration of the GP cycle produces a new generation.
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2012). Variation of SWE is therefore overwhelmingly a product of
HS variation (Moeser et al., 2011; Molotch et al., 2005; Sturm
et al., 2010; Elder et al., 1991, 1998). The effect of q variation on
SWE is small by comparison, and estimates of areal SWE derived
from one or several SWE measurements can be greatly improved
by incorporating a larger number of HS measurements (Elder
et al., 1998; Moeser et al., 2011), which are much less labor inten-
sive than manual SWE measurements (Sturm et al., 2010).
Snowcloud, which provides ground-truth data Experiment Set II,
measures HS. Therefore, as has been done elsewhere, we use HS
as a ‘‘surrogate for SWE’’ (Winstral et al., 2002).

2.4. Related work

Moeser et al. (2011) explored three models for estimating SWE
in the area around a meteorological station using ground based
measurements. The first model used meteorological data such as
air temperature and solar radiation, tree canopy cover measure-
ments, and HS measurements collected by the Snowcloud WSN,
as well as a single-point SWE measurement. The second model
used multiple HS measurements and single-point SWE measure-
ments, but no meteorological or tree canopy data. The third model
used meteorological and tree canopy data, along with multiple HS
measurements, but no single-point SWE measurement. It was
found that increasing the number of HS measurements can
improve areal SWE measurements because HS varies more than
snow density. While this work used linear modeling; our work
expands upon it by developing nonlinear models.

Marofi et al. (2011) compared three methods for modeling SWE:
multivariate nonlinear regression (MNLR), artificial neural net-
works (ANN), and a neural network-genetic algorithm (NNGA),
where genetic algorithms were used to parameterize ANNs and
the learning process. ANN performed better than MNLR, suggesting
that computational intelligence approaches may outperform MNLR
for modeling SWE. NNGA performed better than ANN, suggesting
that evolution-inspired genetic algorithms can be used to develop
effective models of SWE. Tabari et al. (2010) estimated HS and SWE
using multiple methods and also found that NNGA provided the
best results. Unlike neural networks, GP produces white box models.

Tappeiner et al. (2001) compared the performance of LR-based
and ANN-based snowpack models, which used topographic and
meteorological data to estimate SWE. The authors compared the
results of LR with ANN to estimate the degree of necessary nonlin-
earity in SWE modeling. The ANN performed significantly better
than LR, demonstrating nonlinearity in the relationships between
topographic and meteorological variables and SWE.

Several studies have used binary regression trees to model
snowpack. Winstral et al. (2002) derived terrain-based parameters
from digital elevation models (DEM) which were used as input
variables to binary regression trees. One parameter was based on
maximum upwind slopes relative to seasonally averaged winds.
Another measured upwind breaks in slope from a given location.
Binary tree models based on these terrain-based parameters as
well as elevation, solar radiation, and slope performed better than
models based only on elevation, solar radiation, and slope. Elder
et al. (1998) modeled the distribution of SWE by merging remotely
sensed snow-covered area data with binary tree models applied to
field measurements of HS and SWE. Balk and Elder (2000) com-
bined binary regression trees with kriging of manual snow survey
measurements and snow-covered area determined by aerial pho-
tographs, to estimate SWE. Anderton et al. (2004) used binary
regression trees to relate HS and disappearance date to terrain
indices. They found that the topographic effects on snow redistri-
bution by wind primarily determined SWE distribution at the start
of the melt season which, more than melt rates, determined the
patterns of snow disappearance. Molotch et al. (2005) compared
binary regression tree models using various sources of DEMs and
found that using DEMs from different sources leads to significant
differences in modeled snowpack distribution. The most significant
differences were on ridge-tops, where the elevation values differed
across DEMs.

In Experiment Set II we compare the performance of BT to GP.
Unlike this previous work which used binary regression trees to
produce spatially distributed models of snowpack, our models pre-
dict a single value: mean HS measured by a wireless sensor
network.

Marks et al. (1999) also developed spatially distributed models.
They used topographic data to determine estimates of radiation,
temperature, humidity, wind, and precipitation for use in a coupled
energy and mass-balance model called ISNOBAL.

Recent research has made significant advances in simulating
the effects of wind on snow distribution. Winstral et al. (2009)
developed a simplified wind model that uses upwind topography
to accurately predict wind speeds. Winstral et al. (2013) developed



Table 1
CDEC snow course site descriptions.

ID EL (m) Name Asp. Exposure

CAP 2438 Caples Lake SW open meadow, low brush
GRZ 2103 Grizzly Ridge N meadow in scattered timber
KTL 2225 Kettle Rock S sloping, open meadow
MSH 2408 Mount Shasta SE grassy and rocky meadow
NTH 2835 North Lake SE grassy meadow
SPD 1585 Lake Spaulding level grassy meadow
HIG 1838 Highland Lakes NW medium sized meadow in dense timber
HYS 2012 Huysink W open meadow on one leg, opening in timber on second leg

Table 2
Experiment Set I data summary by CDEC site.

ID Pillow NCDC base Dist (Mi) Samples Years

CAP YES N/A N/A 177 1970–2011
GRZ YES N/A N/A 207 1970–2011
KTL YES N/A N/A 159 1979–2011
MSH NO Mount Shasta 5.98 137 1973–2011
NTH NO Bishop Airport 18.27 147 1973–2011
SPD NO Blue Canyon Nyack 4.56 174 1977–2011
HIG YES Mount Shasta 18.31 75 1980–2012
HYS YES Blue Canyon Nyack 9.79 111 1984–2011
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a snow distribution algorithm that uses terrain structure, vegeta-
tion, wind, and precipitation data to simulate wind-affected snow
accumulation. It accurately predicted disparate snow distribution
caused by inhomogeneous precipitation and redistribution by
wind. Winstral and Marks (2014) analyzed the effects of wind on
snow distribution. They found that high wind speeds increased
snow depth variability, that forested sites decreased variability
by moderating wind effects, and that consistent wind directions
produced accumulation patterns that were stable between years.

Sturm et al. (2010) used HS, day of the year, and climate classes,
such as Alpine, Maritime, and Tundra, to estimate snowpack densi-
ty. Estimated snowpack density was used to convert HS measure-
ments into SWE estimates.

Guan et al. (2010) found that atmospheric rivers (ARs), are asso-
ciated with intense storms that contribute a large percentage of
snow during most years. Because AR storms are relatively warm,
the participation of AR participation into snowfall versus rainfall
is sensitive to minor variation in surface air temperature.

Rittger et al. (2011) combined satellite-based measurements of
snow-covered area with energy balance calculations to retroactive-
ly calculate distributed SWE at the date of maximum accumula-
tion, using the ‘‘reconstruction’’ technique originally developed
by Martinec and Rango (1981). This calculation was then used to
evaluate the accuracy of two real-time models. They found that
at elevations below 1500 m, the real-time models overestimated
SWE because of early season melt, and at elevations above
3000 m, the real-time models underestimated SWE because they
do not sample these higher elevations. It is possible that this tech-
nique could be used to evaluate the effectiveness of the inductive
learning methods that we describe in this work.

3. Training data and model inputs

Inductive machine learning requires substantial datasets for
developing and evaluating models, and we acquired extensive
hydrological and meteorological data for use in our experiments.
We focused on two types of available datasets that are approxima-
tions of mean catchment SWE. First, we consider a record of CDEC
snow courses from the Sierra Nevada. We observe that CDEC snow
courses are intended to provide an estimation of SWE at a par-
ticular elevation (USDA, 2014), though in fact they are linear tran-
sects of SWE samples. Second, we consider a record of Snowcloud
sensor network readings from Norway and California. Snowcloud
provides distributed coverage of snow depth readings for the
deployment area, as well as fine time granularity, and can support
better estimations of mean catchment SWE than periodic snow
courses.

3.1. Experiment Set I data

Experiment Set I used data collected from eight sites across
California. There were three main types of data: SWE from manual
snow courses, SWE measurements from snow pillows, and air tem-
perature data.
The California Data Exchange Center (CDEC) provided an exten-
sive database of snow data. The snow courses that we used, which
are described in Table 1, were performed monthly, were about 200
meters long, and consisted of 10 measurements, the mean of which
was recorded. CDEC also maintains single-point SWE measurement
data from snow pillows at sites throughout California. Of the 404
snow course sites, 59 are co-located with snow pillows.

The National Climate Data Center (NCDC) maintains meteoro-
logical data, such as air temperature, wind speed, and solar radia-
tion measurements, collected at weather stations across the United
States. We used data from the four NCDC stations which are locat-
ed within 30 km of CDEC snow courses. We arbitrarily chose a
30 km cutoff because we suspected that meteorological activity
within that distance might be predictive of measurements at the
snow course. The models generated by machine learning will not
make significant use of input data that is not predictive.

Significant gaps exist in the NCDC database, and of the various
sensor modalities, air temperature data is the most complete.
Using more meteorological inputs and necessarily fewer data sam-
ples, we had previously been unable to generate effective models
of SWE. For Experiment Set I, therefore, air temperature was the
only meteorological input. Air temperature is known to be a highly
effective predictor of melt rate because it is correlated with long-
wave atmospheric radiation, the most important energy source
for snowmelt (Ohmura, 2001). Air temperature is made accessible
to the models by three variables: minTemp7, maxTemp7, and
meanTemp7, which aggregate daily values over the seven days
inclusively preceding the day for which SWE is estimated.

We used the temporal and spatial intersection of available data
from these three sources (CDEC snow courses, CDEC snow pillows,
NCDC air temperature data) to construct eight datasets, based on
eight snow course sites. These snow courses were selected because
they are coincident with either snow pillow data, NCDC air tem-
perature data, or both, over a range of time that includes a large
number of samples points (greater than 100 except for one site).
The constructed datasets are summarized in Table 2.

3.2. Experiment Set II data

Experiment Set II used HS data collected by four Snowcloud
sensor nodes in Sulitjelma, Norway between January and April,
2013. Each node sampled HS every six hours. We averaged HS



Table 3
Snowcloud deployment coordinates.

Sulitjelma, Norway Sagehen, CA

Tower Lat. Long. Tower Lat. Long.

1 67.0981 16.0488 1 39.43161 �120.23975
2 67.0983 16.0497 2 39.43155 �120.23936
3 67.0983 16.0482 3 39.43140 �120.23976
4 67.0987 16.0487 4 39.43173 �120.23882

5 39.43173 �120.23864
6 39.43204 �120.23872
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measurements from the four nodes (Table 3) and then over each
day to produce 93 estimates of mean catchment HS. These values
served as ground-truth HS for experiments at Sulitjelma.

Approximately 16 km away from the Sulitjelma Snowcloud
deployment site is Storstilla nedanför Balvatn in Nordland
County, station number 164.12.0 (Balvatn). The Balvatn station
records both HS and SWE. Daily HS measurements collected at
Balvatn compose the HS input variable to models developed for
Sulitjelma in Experiment Set II.

Six Snowcloud wireless sensor network sensor nodes were
deployed within the Sagehen Creek Field Station, near Truckee,
California, from January to May, 2010. Each node reported daily
HS measurements, which we averaged to generated 99 estimates
of mean catchment SWE. These values served as ground-truth HS
for experiments at Sagehen. Note that the same WSN data were
used by Moeser (2010).

In order to assess the significance of the source of single-point HS
input variables, we developed models for estimating mean HS at the
Sagehen Snowcloud deployment using inputs from two different
CDEC sites, Independence Camp ðIDCÞ and Huysink ðHYSÞ. IDC is
approximately 5.5 km away from the Snowcloud deployment and,
like Sagehen, is on the Eastern side of the Sierra crest. HYS is
approximately 30 km away, on the Western side of the crest.

3.3. Time of year

Because the dynamics underlying snowpack distribution vary
over the course of a snow season, for example between periods
dominated by deposition and periods dominated by ablation, we
introduce time of year (TOY) as an independent variable for both
experiment sets. This allows models to distinguish parts of the
snow season. Time of year is an integer value expressing the num-
ber of days since January 1.

3.4. Preparation of datasets

We define a dataset, D, for each experiment (each row of Table 6
and each location in each row of Table 5). Elements of a dataset D
Fig. 5. Techniques for dividing a chronologically ordered dataset i
take the form of a 3-tuple, hT; h;~pi, where T , time, specifies a calen-
dar date, h is an estimate of the true value of the independent vari-
able, and ~p is a vector of predictor variables. Although T is used to
generate predictor variables such as TOY and air temperature
statistics, it is not itself a predictor variable and is therefore not
included in ~p. T is unique in D so that no two data samples in D
have the same T:

8hT1; h1;~p1i; hT1; h2;~p2i 2 D h1 ¼ h2 and ~p1 ¼~p2 ð1Þ

In Experiment Set I, h is an approximation of mean catchment SWE
derived by manual snow course. In Experiment Set II, h is an
approximation of mean catchment HS derived from Snowcloud
WSN measurements.

Depending on the experiment, ~p includes some combination of
HS measured at a snow pillow, SWE measured at a snow pillow,
TOY (an integer value derived from T), and air temperature, (which
is composed of three variables: minTemp7, maxTemp7, and
meanTemp7). The Model inputs columns of Table 5 and Table 6 spe-
cify the contents of ~p for each experiment.

In order that a model developed from D may be evaluated on
new, unseen data, D is divided into training, ., and testing, s, sub-
sets. The training set is twice as large as the testing set. However,
GP and BT require that . be further divided into grow, g, and selec-
tion, s, subsets:

. ¼ g [ s and g \ s ¼ ; and jgj ¼ jsj ð2Þ

In all experiments, D is first divided into g; s, and s:

D¼ g[ s[s and g\ s\s¼; and jgj ¼ jsj ¼ jsj ð3Þ

For BM and LR, g and s are simply combined into . and used as
training data. As discussed in more detail in Section 4, in the case of
GP and BT g is used to generate a set of models and s is used to
determine which one should be kept and evaluated on s. In any
case, . is used to obtain a single model, which is then exposed to
s to evaluate its ability to predict unseen data.

We explored several methods for dividing D into g; s, and s.
In Experiment Set I and in the first part of Experiment Set II
(Experiment Set II: Random Division), the chronologically
ordered D is randomly shuffled and then divided into thirds,
as illustrated by Fig. 5a. This method has the effect that a large
portion of the training data is likely to be temporally proximal
to testing data.

As discussed further in Section 5, we found in Experiment Set II
that the temporal proximity between . and s caused machine
learning to map TOY values to estimates of HS. The models memor-
ized the data rather than capturing the relationships among the
data. We therefore conducted Experiment Set II: 4 Bins. Instead
of shuffling D, we maintained its ordering and divided it into four
nto g; s, and s (white, light gray, and dark gray respectively).



Table 4
GP parameters.

Parameter Value

population size 1000 (Experiment Set I), 2000 (Set II)
number of generations 3000 (Experiment Set I), 10,000 (Set II)
max tree size 30
mutation operators crossover (60%), mutation (40%)
binary operators addition, subtraction, mult., division, power
unary operators log, exponential, sine, cosine,
terminals independent variables, constants values
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chronologically contiguous bins. Each bin is then subdivided into
three chronologically contiguous subsets which are assigned to
g; s, and s. This method is illustrated by Fig. 5b. We also conducted
Experiment Set II: 3 Bins and Experiment Set II: 2 Bins, as illustrated
in Fig. 5c and d. As we move from Experiment Set II: Random
Division to Experiment Set II: 2 Bins, the division of D transitions
from finer to coarser temporal granularity. As this granularity
becomes coarser, it becomes more difficult for machine learning
to use TOY to simply memorize data. However, it also becomes
more difficult for models to capture the variation of the dynamics
of snowpack distribution over the course of a snow season.

In order to introduce stochasticity into the division D and thus
allow the repetition of experiments to produce a distributed sam-
ple of results, a randomly generated offset shifts the starting point
of the division. Fig. 5e illustrates the effect of this offset in the case
of three bins.

4. Calculation

In this section we first describe how we compared the perfor-
mance of different snowpack modeling techniques. We then
describe the various modeling techniques that we used, with spe-
cial emphasis on GP.

4.1. Comparing estimation methods

In order to compare the performance of two machine learning
techniques, M and M0, on a dataset D;D is divided into complemen-
tary subsets . and s. Methods M and M0 are applied to . to produce
estimators ĥ and ĥ0. This process may be deterministic or nondeter-
ministic. In Experiment Set I and Experiment Set II: Random
Division, nondeterminism is introduced by the random division of
D. GP introduces further nondeterminism by the stochasticity of
the GP algorithm. The BT algorithm is deterministic when a single
input variable is used, but nondeterministic when applied to mul-
tiple input variables. Estimators ĥ and ĥ0 are applied to s to deter-
mine the mean absolute errors of the estimators MAEðĥÞ and
MAEðĥ0Þ, as we will discuss in Section 4.2.

This process of randomly dividing D and applying M and M0 to
obtain MAEðĥÞ and MAEðĥ0Þ is repeated 30 times, resulting in vec-
tors of estimator errors ~eM and ~eM0 each with cardinality 30. We
consider~eM and~eM0 to be statistical samples of errors drawn from
the population of errors that method M and M0 could produce given
D. We chose to collect 30 samples because a sample size of at least
30 allows the Central Limit Theorem to be safely applied without
assuming a normal population distribution, permitting the applica-
tion of the one-sample t-test to calculate confidence intervals and
the paired two-sample t test to test hypotheses.

The means of ~eM and ~eM0 are unbiased estimates of the true
population means lM and l0M . To find out if M0 outperforms M on
dataset D we pose the hypotheses:

H0 : l0M ¼ lM ðNull hypothesisÞ
Ha : l0M < lM ðalternative hypothesisÞ

and apply the Student’s t-test for paired samples to~eM and~eM0 . If the
Null hypothesis is rejected, we say that method M0 produces lower
error (performs better) on dataset D than does M. We report the p-
value, the probability that we have performed a Type I error by
rejecting a true Null hypothesis.

4.2. Evaluating estimator error

Recall that an element d of dataset D takes the form hT; h;~pi and
that D has been divided into . and s. An estimation method M is
applied to . � D to generate an estimator ĥ, which is a function
from predictor variables ~p to dependent variable y, an estimate
of h.

ĥ :~p! y y � h

The error of ĥ on an input vector is the difference between the
estimate it produces and ground truth.

Eĥð~pÞ ¼ ĥð~pÞ � h ð4Þ

The error is calculated on each sample in s to determine the mean
absolute error of the estimator:

MAEðĥÞ ¼
Pk

i¼1jEĥð~piÞj
k

ð5Þ

where

s ¼ ðd1; . . . ;dkÞ and ~pi 2 di 2 s � D
4.3. Basic method

The basic method (BM) assumes that SWE as measured at a snow
pillow is representative of catchment-wide SWE. It naively esti-
mates ground truth (snow course-derived) SWE to be the same
as the independent variable (snow pillow-derived) SWE measure-
ment. Error in the predictive power of BM expresses the difference
between snow pillow measurements and snow course SWE mea-
surements. If x represent SWE measured at the snow pillow, then

x 2~p and ĥð~pÞ ¼ x ð6Þ

Unlike the more sophisticated machine learning techniques, BM
does not make use of training data to generate a model.

4.4. Linear regression

Linear regression (LR) fits a least-squares linear model to train-
ing data which is then evaluated on test data (Hastie et al.,
2009). LR expresses the linear relationships between independent
and dependent variables. We used the gsl_multifit_linear function
from the GNU Scientific Library (GSL, 2014) to perform LR. We
include LR in order to gain insight into the data we are using. LR
will perform less well than nonlinear techniques only if the mod-
eled data contain nonlinear relationships.

4.5. Genetic programming

GP is an evolutionary algorithm, inspired by biological evolu-
tion, that iteratively evolves populations of parse trees to perform
symbolic regression (Koza, 1992) (see Fig. 4). In this work, the trees
are snowpack models, estimator functions, that use available inde-
pendent variables to estimate mean SWE (Experiment Set I) or HS
(Experiment Set II) at the catchment scale. Tree terminals are input
variables and constants, while internal nodes are arithmetic opera-
tors. The operators we used are listed in Table 4.
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We used the lil-gp Genetic Programming System (System,
2013), an open source implementation of GP, in order that we
might make any needed modifications. We modified lil-gp to
implement multi-objective Pareto optimization.

GP begins by generating a starting population of randomly con-
structed trees. Each tree in the population is evaluated on training
data to determine its fitness, defined as the inverse of mean error.
Trees are selected according to their size and fitness to produce the
population for the next generation. Genetic operators make
stochastic modifications to the new trees, randomly perturbing
their fitness values. The genetic operators we used were mutation
and crossover. Mutation, which is applied to 40% of new trees,
selects a subtree at random and replaces it with new, randomly
generated subtree. In crossover, which is applied instead of muta-
tion 60% of the time, two parent trees exchange subtrees, resulting
in two novel offspring. Crossover allows recombination of subtrees
from existing models while mutation introduces new subtrees to
the population, maintaining genetic diversity. Because it is likely
that subtrees taken from existing, partially evolved models will
be more useful than new, randomly generated subtrees, crossover
is applied more frequently than mutation. This process is iterated
over many evolutionary generations, each time replacing the
population with a new population of altered trees. Over time, this
produces populations of increasing fitness.

The average wall-clock time for one experiment using the
Vermont Advanced Computing Core (VACC) supercomputer was
333 s for Experiment Set I (3000 generations) and 1207 s for
Experiment Set II (10,000 generations). The total wall-clock time
for all of Experiment Set I was approximately 89 h. The total
wall-clock time for all of Experiment Set II was approximately
321 h. Because GP is a stochastic optimization method, its compu-
tation complexity is unclear. However, recent work has begun to
address this problem (Neumann et al., 2011; Durrett et al., 2010).

One challenge facing GP, like all techniques for deriving a model
from training data, is over-fitting. An over-fit model performs well
on training data but does not generalize well and fails on unseen
data. It memorizes values instead of capturing the mathematical
relationships among the data.

The size of a GP model (number of nodes in a tree) constrains its
complexity and fitness. Trees that are too small are too simple to
accurately model the data and are under-fit. They perform poorly
on both training and testing data. Trees that become too large per-
form extremely well on training data but, due to over-fitting, per-
form poorly on unseen data. Somewhere between these extremes
lies the best, non-over-fit model.

In order to explore the gradient from small, under-fit models to
large, over-fit models, we added multi-objective Pareto optimiza-
tion to lil-gp. Pareto optimization applies evolutionary pressure
toward multiple simultaneous goals, in this case low error and
small model size, by producing a population (front) of non-
dominated models. A tree is dominated by another tree if it is infe-
rior by all objectives, i.e. it is both larger and has lower fitness. A
Pareto front (non-dominated front) consists of a set of trees such
that no tree is dominated by any other tree on the front. The
non-dominated trees are selected at each GP generation so that
each population is a non-dominated front, including the final
population. The result of GP is therefore a set of trees of various
sizes. We set an absolute upper bound at size 30 because we had
observed that models with size larger than 30 were consistently
over-fit. Arranged from smallest to largest, the error of these trees
on the training data decreases monotonically. Error on unseen
data, however, will decrease only to a point, and will then increase
beyond some tree size as the models become over-fitted.

At this point is the tree size that will maximize performance on
. without over-fitting. Models no bigger than this can express
features common to both training and testing data but cannot
express features that are unique to the training data. However, this
size threshold is not known while generating models because test
data are not available. It must remain unseen for model testing. We
therefore developed a novel selection set method for selecting a sin-
gle model from the Pareto front. In the selection set method, the
training data are further divided into two subsets of equal size, a
growth set, g, and a selection set, s (Eq. 2). GP is applied to g to
obtain a Pareto front. Each model on the front is then evaluated
on s. GP returns the model that performs best (lowest error) on s.
We used the election set method in all experiments.

4.6. Binary regression trees

We include BT in Experiment Set II in order to compare GP to
another nonlinear, less computationally demanding, modeling
technique. Erxleben et al. (2002) compared the performances of
four spatial interpolation methods to estimate SWE and found that
a method combining binary regression trees with geostatistical
methods was more accurate than other methods. We used the
DecisionTreeRegressor class of the Scikit-learn machine learning
module for Python (Pedregosa et al., 2011). This software imple-
ments the Classification and Regression Trees (CART) algorithm,
which is similar to C4.5 (Hastie et al., 2009). BT is parameterized
by the maximum tree depth; we used default options for other
parameters. As with GP, the data for BT was divided into g, s, and
s. For each experiment, a set of trees was trained on g such that
the nth tree had a maximum depth of n. The maximum value of
n was determined by incrementing n until further increase did
not result in larger trees. The maximum value of n varied between
7 and 13.

Like the Pareto front produced by GP with multi-objective opti-
mization, this methods results in a gradient of models ranging
from very small models with high error on g to very large models
with low error on g. Each is evaluated on s and the one with the
lowest error is returned by BT to be evaluated on s in order to
determine model error. Thus, we applied the same selection set
method to BT as to GP in order to discourage over-fitting and to
provide similar exposure to the data so that the performance of
the techniques may be compared. Note, however, that in the case
of GP, multi-objective optimization applies pressure toward model
parsimony continuously over the course of the evolution of a
population of models. In the case of BT, the selection set method
was applied once to a set of models after they have been generated.
5. Experiments: descriptions and results

In this section we describe the experiments we conducted and
report the results.

5.1. Experiment Set I

In Experiment Set I measurements from snow courses provided
ground-truth SWE data. We developed models to predict snow
course SWE at eight different sites in California where snow cours-
es had been conducted (Table 1). Three sites ðCAP;GRZ;KTLÞ are
located at snow pillows but are not near any NCDC weather sta-
tions. Three sites ðNTH;SPD;MSHÞ are near NCDC stations but
are not at snow pillows. Two of the snow course sites
ðHYS and HIGÞ are located at snow pillows and are also near
NCDC stations.

First, we conducted experiments at sites with snow pillows but
without weather stations ðCAP;GRZ;KTLÞ. These experiments
explored how well linear and nonlinear models predict snow



Table 5
Experiment Set I summary.

Experiment Model inputs Locations

a air temp. MSH;NTH;SPD;HIG;HYS
b TOY all
c pillow CAP;GRZ;KTL;HIG;HYS
d air temp., TOY MSH;NTH;SPD;HIG;HYS
e air temp., pillow HIG;HYS
f TOY, pillow CAP;GRZ;KTL;HIG;HYS
g air temp., TOY, pillow HIG;HYS
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course-derived ground truth SWE using only snow pillow measure-
ments. Inputs to the models were pillow SWE and TOY. At each site
we developed models with three combinations of input variables:
TOY alone, pillow SWE alone, and TOY combined with pillow SWE.
In each case, we compared the performance of GP, LR, and BM.

Second, we conducted experiments at sites near weather sta-
tions but without snow pillows ðKTL;MSH;NTHÞ. These experi-
ments explored how well linear and nonlinear models predict
snow course-derived ground truth SWE using air temperature data
without access to snow pillow SWE measurements. Inputs to the
models were air temperature and TOY. At each site we develop
models with three combinations of input variables: temperature
alone, TOY alone, and temperature combined with TOY. In each
case, we compare the performance of GP to LR.
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Third, we conducted experiments at sites that are near weather
stations and have snow pillows (HIG, HYS). These experiments
explored how well linear and nonlinear models predict snow
course-derived ground truth SWE using both pillow SWE measure-
ments and air temperature data. Inputs to the models were SWE,
air temperature, and TOY. At each site we develop models with sev-
en unique combinations of input variables: temperature alone, TOY
alone, pillow SWE alone, temperature and TOY together, tem-
perature and pillow SWE together, TOY and pillow SWE together,
and, finally, temperature, TOY, and pillow SWE together.

Table 5 summarizes Experiment Set I. Each experiment was
repeated 30 times to generate error samples for each method.
Figs. 6–9 plot the mean values of the samples. Error bars indicate
95% confidence intervals, i.e. sample mean �ðSEM� 1:96Þ. GP
and LR had similar error, but both had lower error than BM with
p-value less than 0:001 in all cases.

The mean ground truth SWE value in mm at each site was:
CAP : 1145;GRZ : 1256;KTL : 687;MSH : 1747;NTH : 337;SPD :

697;HIG : 594;HYS : 1065:.
5.2. Experiment Set II

In Experiment Set II models predicted HS instead of SWE. While
research on the influence of meteorological factors on snowpack
distribution is extensive (Logan, 1973; Elder et al., 1991;
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Schmucki et al., 2014; Hock and Noetzli, 1997), the inclusion of
meteorological inputs does not always improve snowpack model
performance (Moeser, 2010), and the inclusion of air temperature
data did not improve model performance in Experiment Set I.
Therefore, in Experiment Set II we focus on TOY and single-point
HS measurements as predictors of mean catchment HS. Instead of
manual snow course data as in Experiment Set I, ground-truth data
are derived from HS measurements collected by the Snowcloud
WSN. We compared the performance of three machine learning
techniques: LR, BT, and GP.

We developed estimators to predict HS at two sites: Sulitjelma,
Norway and the Sagehen Experimental Forest, California. At
Sulitjelma, model inputs were combinations of HS at Balvatn and
TOY. At Sagehen, model inputs were combinations of HS at HYS,
HS at IDC, and TOY. Table 6 summarizes Experiment Set II. We
repeated each experiment four times (Random Division, 4 Bins, 3
Bins, 2 Bins) and each of these 30 times to generate error samples.

Figs. 10–13 plot the mean values of the samples, i.e. the error of
the modeling techniques on testing data. Error bars indicate 95%
confidence intervals, i.e. sample mean �ðSEM� 1:96Þ. Stars indi-
cate p-values for the Student’s paired t-test with the hypothesis
Table 6
Experiment Set II summary.

Experiment Location Model inputs

a Sulitjelma, Norway TOY
b Sulitjelma, Norway HS at Balvatn
c Sulitjelma, Norway HS at Balvatn, TOY
d Sagehen, California TOY
e Sagehen, California HS at HYS
f Sagehen, California HS at IDC
g Sagehen, California HS at HYS, TOY
h Sagehen, California HS at IDC, TOY
the GP does not have lower error than BT, i.e. the probability that
GP does not outperform BT. One star, ⁄, indicates that p is less than
0.05, ⁄⁄ indicates that p is less than 0.01, and ⁄⁄⁄ indicates that p is
less than 0.001. Similarly, plus signs indicate p-values for the
hypothesis that GP does not have lower error than LR, i.e. the prob-
ability that GP does not outperform LR. One plus sign, +, indicates
that p is less than 0.05, and ++ indicates that p is less than 0.01. The
mean ground truth HS value at Sulitjelma was 1.1900 m. The mean
ground truth HS value at Sagehen was 0.728 m.

Figs. 14–17 plot the mean sizes of the models whose perfor-
mance is reported in Figs. 10–13. In the case of GP and BT, these
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are the models selected using the selection set method. For GP,
model size is the number of nodes in the GP tree. For BT, model size
is the number of nodes in the binary tree. For LR, model size is the
number of operators and values, specifically 5 in the case of a sin-
gle independent variable and 9 in the case of two independent
variables. Stars indicate p-values for the Student’s paired t-test
with the hypothesis the GP models are not smaller than BT models.
One star, ⁄, indicates that p is less than 0.05, ⁄⁄ indicates that p is
less than 0.01, and ⁄⁄⁄ indicates that p is less than 0.001.

6. Discussion

In this section we discuss the results of our experiments, offer
some hypotheses to explain our findings, and suggest possible next
steps for continued research.

6.1. Experiment Set I

In Experiment Set I GP performed at least as well as other meth-
ods in all experiments. This result was expected because GP is cap-
able of generating the same models as LR and BM. We did not
perform hypothesis tests comparing GP with LR because visual
inspection of error means and 95% confidence intervals (Figs. 6–
9) suggests that the methods performed similarly. At the sites
where a snow pillow was present, the performance of BM was
evaluated. At all of these sites, in all of the experiments where pil-
low SWE was an input variable (b, c, f), both LR and GP performed
better (p-value less than 0.001) than BM.

These results suggest that machine learning techniques can be
used to develop models that predict mean catchment SWE more
accurately than BM. In general, models performed better when
snow pillow data were included. However, GP did not outperform
LR.

Because LR performed as well as GP in Experiment Set I, we sus-
pected strict linearity among the explanatory relationships in the
data. We hypothesize that because snow courses measure SWE
only at a single location, they failed to capture existing nonlin-
earities, and that even though the relationships underlying snow-
pack distribution are nonlinear, our Experiment Set 1 data is
linear. We therefore did not further pursue nonlinear modeling,
such as BT, in Experiment Set 1.

6.2. Experiment Set II

First we conducted Experiment Set II: Random Division. GP out-
performed LR in every experiment except in Norway when the only
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model input was HS at Balvatn. In every experiment in California
where TOY was an input, BT has much lower error than either GP
or LR. In all experiments where TOY was an input, the resulting
BT models were very large. GP also had lower error and larger
model sizes when TOY was used then when TOY was not used.
We had originally introduced the TOY variable to allow models to
distinguish different parts of the season. However, we hypothe-
sized the BT, and to a lesser extent GP, were abusing the TOY vari-
able to memorize snow data by mapping TOY data to ground truth
HS. Even though training and testing data were technically distinct,
many of the samples in the testing data were temporally or spatial-
ly proximal to samples in the training data. The testing data were
not truly unseen with respect to the TOY variable. Even though
models generalized well to the testing data, they were over-fitting
to the TOY variable and would likely not generalize to truly unseen
data, e.g. from another snow season.

To test this hypothesis and address the possible problem of
over-fitting to the TOY variable, we repeated Experiment Set II
three more times. In Experiment Set II: 4 Bins, 3 Bins, and 2 Bins,
we successively decreased the temporal overlap between training
and testing data and increase the coarseness of the temporal gran-
ularity of the division into training and testing data. Proceeding
through this sequence, it became more difficult for machine learn-
ing to memorize HS data by over-fitting to the TOY variable. At the
same time, BT error increased and the performance of GP with
respect to BT improved. These results suggest that GP is more resi-
lient against over-fitting than BT, possible as a result of multi-ob-
jective optimization. Furthermore, when the ability of machine
learning to exploit the TOY variable by memorizing HS the data
were minimized, GP significantly outperformed both LR and BT.

6.3. Future work

We believe that the preliminary results discussed in this work
are promising and warrant further research into of the applicability
of GP to snowpack modeling.

This work should be expanded into a multi-year study.
Although Experiment I used snow course data collected over sever-
al years, Snowcloud data used in Experiment II was limited to sin-
gle snow season. A multi-year study would allow models trained
on Snowcloud data during one or several years to be evaluated
on unseen data from another year. Models trained on multi-year
data may be more robust to application in future years than are
models trained on single-year data. Even without collecting more
data, Experiment Set I could be modified so that models are trained
on data from earlier years and tested on data from later years.

Beyond those discussed here, there are many machine learning
techniques that should be applied to the problem of catchment-s-
cale SWE estimation. GP possesses a unique combination of desir-
able qualities, but its performance should be compared against
other methods such as ANNs, nonlinear multiple regression, and
FFX (McConaghy, 2011), a non-evolutionary symbolic regression
technology.

The only meteorological input to our models was air tem-
perature. However, meteorological data involving wind, solar
radiation, humidity, etc. are available for many locations and have
been shown to influence snow distribution (Logan, 1973; Elder
et al., 1991; Schmucki et al., 2014; Hock and Noetzli, 1997).
Future work should incorporate more potential meteorological
predictors of SWE and HS.

Topographic features significantly shape snow distribution, and
models of this relationship have been developed and used exten-
sively (Winstral et al., 2013; Marofi et al., 2011; Chang and Li,
2000; Tabari et al., 2010; Anderton et al., 2004; Grünewald et al.,
2013; Molotch et al., 2005; Elder et al., 1998). Although topograph-
ic data was not an explicit input in our experiments, models
developed with our techniques that use input variables to predict
distributed snow measurements likely express some of the rela-
tionship between topography and snowpack distribution.
Previous efforts to model snowpack using topographic data have
derived explicit model inputs from DEMs. The possibility that GP
could play an active role in determining which topographical fea-
tures to use should be explored. GP might discover new methods
for extracting information from DEMs that is predictive of snow-
pack distribution. It is possible that machine learning could use
topographic and other data to produce non-cite-specific models,
which are trained on data from one or more site and then applied
to other sites.

Schwaerzel and Bylander (2006) developed high-order statisti-
cal functions for GP to model financial data. These allowed GP
models to dynamically select and aggregate a slice of time series
data. Future work should apply these techniques to allow GP to
determine how to select and aggregate meteorological and topo-
graphic data. We made air temperature available to GP by means
of functions that aggregate daily measurements over an arbitrary
seven day window. Instead, GP could inductively discover how
models should dynamically select and aggregate a section of time
series data according to changing circumstances.
7. Conclusion

In this paper we have described novel, low-cost methods for
catchment-scale SWE estimation using machine learning algo-
rithms. The commonly used method of estimating catchment-scale
SWE from a single point measurement is error-prone because of
the spatial heterogeneity of snowpack distribution. We envision
an approach wherein short-term field campaigns collect ground-
truth data for generating snowpack models which can subsequent-
ly augment existing NRT snow telemetry. Toward this end, we
explored a suite of machine learning techniques to extrapolate
estimates of mean catchment SWE from single point SWE measure-
ments and other available data and pursued three key research
directions. First, we addressed the question of which machine
learning approaches are best for this problem. Second, we dis-
cussed and pursued the use of a range of possible input para-
meters. Finally, we grappled with the issue of ground-truthing
given limited datasets.

We compared the performance of a basic method (BM) which
assumes no spatial variability of SWE, linear regression (LR),
Genetic Programming (GP), and binary regression trees (BT). We
emphasize GP because it produces nonlinear, white-box models
without requiring assumptions about model form. GP can be aug-
mented with multi-objective optimization to constrain model
complexity and mitigate over-fitting. We found that machine
learning techniques generally outperformed BM, demonstrating
the spatial variability of SWE. Nonlinear techniques outperformed
linear models in Experiment Set II, but not in Experiment Set I, sug-
gesting that there are nonlinear relationships among the modeled
data used in Experiment Set II. Snowpack distribution at the catch-
ment scale has been shown to be highly nonlinear. It is possible
that the spatially distributed sampling technique (Snowcloud
wireless sensor network) used for ground-truthing in Experiment
Set II captured some of the nonlinearity of snowpack distribution,
while the single-location sampling (manual snow courses) used for
Experiment Set I did not.

When we naively divided our data at random to generate train-
ing and testing data, BT had much lower error than GP in experi-
ments where time of year (TOY) was an input variable. In these
cases, BT models were much larger than PG models and we sus-
pected that they were memorizing data by mapping TOY to snow
depth. When we instead divided the data into more temporally
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contiguous training and testing data in order to prevent this behav-
ior, BT model size decreased and GP outperformed BT.

We emphasize that GP can flexibly incorporate new predictors
of catchment-scale SWE into the models generated, augmenting
its capacity to extrapolate estimates of mean catchment-wide
SWE from a single point measurement. Genetic programming will
make use of input data that helps explain the dependent variable
while ignoring data that does not. Our choice of independent vari-
ables was a result of intuitive guesses combined with constraints
on available data. Topographic information was ruled out because
we were unable to determine the precise locations of snow pillows.
Multiple forms of meteorological data were available, but air tem-
perature was the most complete, allowing us to compose datasets
large enough for effective machine learning. However, the inclu-
sion of air temperature did not have a significant impact on model
performance in our first experiment set, and so we did not use any
meteorological data in our second experiment set.

Because it has been shown that the forcing effects underlying
snowpack distribution change over the course of a snow season,
we introduced time of year (TOY) as an independent variable so
that models can distinguish seasonal differences. However, we
found that nonlinear models used TOY to memorize the data by
mapping TOY to ground truth measurements instead of expressing
the underlying relationships of snowpack distribution. The ideal
solution to this problem would be a multi-year study using spatial-
ly distributed data collected by Snowcloud. However, given the
limitation of a one year dataset, we modified how data was divided
to constrain the temporal proximity of training and testing data.

We conducted two sets of experiments, using available data, as
successive approximations of our goal of near-real-time catch-
ment-scale SWE estimation. When ground truth was obtained from
distributed sampling techniques and when we were careful to
mitigate overfitting to the TOY variable, GP outperformed other
techniques.
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