
Robots can ground crowd-proposed symbols by forming theories of group mind

Joey Anetsberger and Josh Bongard

University of Vermont, Burlington, VT 05401
janetsbe@uvm.edu

Abstract

The non-embodied approach to teaching machines language
is to train them on large text corpora. However, this approach
has yielded limited results. The embodied approach, in con-
trast, involves teaching machines to ground abstract symbols
in their sensory-motor experiences, but how—or whether—
humans achieve this remains largely unknown. We posit that
one avenue for achieving this is to view language acquisition
as a three-way interaction between linguistic, sensorimotor,
and social dynamics: when an agent acts in response to a
heard word, it is considered to have successfully grounded
that symbol if it can predict how observers who understand
that word will respond to the action. Here we introduce a
methodology for testing this hypothesis: human observers is-
sue arbitrary commands to simulated robots via the web, and
provide positive or negative reinforcement in response to the
robot’s resulting action. Then, the robots are trained to pre-
dict crowd response to these action-word pairs. We show that
robots do learn to ground at least one of these crowd-issued
commands: an association between ‘jump’, minimization of
tactile sensation, and positive crowd response was learned.
The automated, open-ended, and crowd-based aspects of this
approach suggest it can be scaled up in future to increasingly
capable robots and more abstract language1.

Introduction
Language has been a central concern in Artificial Intelli-
gence research since the field’s inception in the 1950s. Like
many other aspects of cognition, it has been addressed with
non-embodied and embodied approaches. Non-embodied
approaches typically train agents on large pre-existing text
corpora (Guha and Lenat, 1993; Collobert and Weston,
2008), or on conversations those agents attempt to conduct
with humans (Shawar and Atwell, 2003). However, this ap-
proach has yielded limited results.

The embodied approach to language acquisition involves
helping agents to detect correlations between particular sub-
sets of sensorimotor experiences and categories, to which
words can be attached. However, how or whether humans

1A video summary of the work described here is available
at youtu.be/j3sB85ENgA8 and the source code is available at
github.com/Janetsbe/AnetsbergerAlife2016Code.

do this, and how best to enable robots to do this, remains an
open question.

The Symbol Grounding Problem
The symbol grounding problem is a long-standing open
problem in cognition. It concerns how we can assign mean-
ing to parts of language—symbols—without succumbing to
an infinite regress. That is, some symbols must at some point
be grounded in something, such as categorical or iconic rep-
resentations, rather than deriving meaning from other sym-
bols. This is a major problem with the cognitivist approach
to intelligence (Harnad, 1990).

Evidence is starting to appear in the literature that sug-
gests that, for humans at least, sensorimotor experience
is the ‘soil’ in which language symbols are ultimately
grounded. For example, Pulvermüller and Fadiga (2010)
describe how spoken language may be closely coupled to
neural circuits related to motor functions. Cangelosi and
Harnad (2001) have provided theoretical arguments for why
sensorimotor experience provides such good grounding for
language. First, agents perform ‘sensorimotor toil’: they ac-
quire knowledge of categories (though not symbols to repre-
sent them) through the costly effort of learning through ac-
tion and feedback. They then perform symbolic theft: these
categories are given symbolic representations and shared by
those who have performed the necessary toil or who have
themselves “stolen” from others. However, exactly how this
can be instantiated in machines remains an open question.

Sensorimotor Grounding
Steels (2008) claims that a solution to the symbol grounding
problem has been found through the creation of robots who
can respond appropriately to human-provided commands.
However, it is not clear how such approaches can scale up to
more complex robots, large numbers of human tutors, and
increasingly abstract language. In this paper we introduce
a methodolody that may, in future work, help to support all
three. The novelty of our approach in its present form is how
it allows people to teach robots aspects of human language
of the crowd’s choosing.

https://youtu.be/j3sB85ENgA8
https://github.com/Janetsbe/AnetsbergerAlife2016Code

In other work involving non-human languages, Steels has
demonstrated a scalable approach to language acquisition
among robots (Steels et al., 2002). The robots participate in
language games through which they converge on agreement
as to the meaning of words generated by the group. Simi-
larly, Schulz et al. (2012) has shown that robots can jointly
form words for relative locations and then draw on the com-
binatorial power of symbols to dictate directions to novel
locations by combining these words in novel ways. Whether
or how these robot-generated languages could help them un-
derstand human languages however has not been addressed.
Here, we focus on robots learning human languages.

Crowdsourcing language acquisition.
Despite these initial successes in teaching robots language
(or having them teach themselves), there are many open
questions that remain. How should robots (or how do hu-
mans) ground abstract language in action? Lakoff and John-
son (2008) have argued that embodied metaphors (such as
“do not jump to conclusions”) hint that we ground even ab-
stract language in sensorimotor experience, but the mecha-
nisms by which this occurs are unclear. How does the ac-
quisition of some symbols facilitate the acquisition of oth-
ers? Do caregivers spontaneously constrain their utterances
to scaffold language learners (Roy et al., 2009)?

These and other questions can only be addressed by scal-
able, open-ended and automated infrastructure which en-
ables large numbers of people to teach large numbers of
(possibly increasingly abstract) language to increasingly
complex robots capable of a broadening set of sensorimo-
tor experiences. Here we introduce such an experimental
apparatus that relies on crowdsourcing. Through the web,
observers propose arbitrary, natural language commands to
robots and provide positive or negative reinforcement for the
resulting actions. The robots then learn to predict which ac-
tions, under which commands, are likely to generate positive
crowd reinforcement. Various hypotheses about language
acquisition can then be tested using this apparatus. Here,
we first test the hypothesis as to whether robots can indeed
ground these crowd-proposed symbols by forming theories
of their group mind.

Crowdsourcing has recently been exploited for training
robots to interact with humans (Breazeal et al., 2013; Toris
et al., 2014), but not for grounding language symbols. We
have demonstrated that web participants can collectively de-
sign and optimize robots, despite the lack of any explicit
reward to the human participants for doing so (Wagy and
Bongard, 2014, 2015). In other work we have shown that
robots can be trained to form theories of mind about an indi-
vidual human trainer (Hornby and Bongard, 2012), and even
disambiguate between two trainers who disagree about how
to reinforce the robot’s behavior (Bernatskiy et al., 2014).
However, in (Hornby and Bongard, 2012) and Bernatskiy
et al. (2014) the robots only learned theories of mind about

synthetic trainers: bots who stood in for actual human train-
ers. Here we demonstrate that, with the right cyberinfras-
tructure, robots can successfully ground symbols provided
by actual human caregivers.

This research was conducted in two phases. First, subjects
were recruited to a web interface through which they could
issue commands to the robots and reinforce the resulting be-
haviors. The data generated by this process was then used to
train models to predict the crowd’s response to a given com-
mand and set of actions. See Fig. 1 for a summary of this
two-part methodology.

Phase I: Crowd Deployment
In order to allow subjects to see and interact with the
robotics simulation, the Twitch.tv2 video streaming web ser-
vice was selected. Twitch is a popular internet service for
observing others play video games or perform other skilled
tasks. Twitch in turn has given rise to “Twitch Plays...” in-
terfaces through which subjects can collectively observe as
well as play interactive video games by voting on the next
move in the game. It was hoped that the wide appeal and fa-
miliarity of this interface would incentivize large-scale par-
ticipation. In the work described here, we broadcast a live
stream from a robotics simulation; subjects could then in-
teract with the robots observed in the stream using live chat
(Fig. 2; a video snippet from the deployment can be seen
here.).

Phase I Methods
The crowd deployment commenced on October 29th, 2015.
The video stream ran continuously and saw use for 22 days.
The experiment was terminated then as user traffic had be-
come negligible. During the crowd deployment, subjects
were shown a single robotics simulation to collectively in-
teract with through text input. Subjects were allowed to
provide candidate commands and reinforcement signals to
the simulation (see Table 1 for terminology used throughout
this paper). Candidate commands were strings representing
votes for what behavior a subject wanted the robot to be eval-
uated against. These votes were tallied over a three minute
interval; the most frequently-issued candidate command at
the end of this period became the new, issued command. An
issued command was some string dictating how the subjects
should reinforce behaviors over the next three minute period.
Reinforcement signals were strings indicating whether sub-
jects considered the robot they were viewing to be obeying
the issued command (‘y’) or not (‘n’).

Robot Simulation. The simulation was developed in the
Unity3D3 engine, with its default graphics renderer, physics
engine, and collision solver. It consisted of a scene con-
taining all elements of the simulation: a floor, start loca-

2 www.twitch.tv
3www.unity3d.com

https://www.youtube.com/watch?v=3oAzIKMD6NU
http://www.twitch.tv
http://www.unity3d.com

Figure 1: Summary of the methodology. Deployment: A master program generates robot controllers, which animate one robot
in a physics simulation after another. The video resulting from the simulation is piped in real time to www.twitch.tv, where
the human subjects issue the robots commands and reinforcement. Data Set: The simulations generate a data set comprised of
the robots themselves (R), the commands issued to them (C), the controllers run on those robots under those commands (N),
and the reinforcement signals provided by the subjects (S). Rerun in Engine: All robots which had been issued the command
“jump”, and received at least one reinforcement signal, were re-simulated. Sensor Data: The resulting touch sensor data (T)
was recorded and added to the data set, along with the normalized reinforcement signal (o). Training: The time series touch
sensor data for a randomly-selected half of these controllers were employed to train a recurrent neural network to predict (o′ijk)
the crowd’s actual response (oijk) to each controller using CMA-ES. Testing: The ability of the trained RNN to ground the
symbol “jump” was tested by measuring its ability to predict crowd response to the other half of the controllers.

tion marker, a robot, a camera, and GUI elements providing
users with instructions and feedback. Fig. 2 reports a typical
scene during deployment. All data pertaining to the robot,
its controller, and GUI elements were sent to the simula-
tion by the master program. The simulation ran more or less
continously for the 22 days. The simulation was continously
recorded and sent as a live video feed to Twitch.tv.

The simulation featured two robot types (Fig. 3). The
simple robot was formed of three rigid bodies and two rota-
tional hinge joints. Each body segment was 2.5 × .6 × 3.0
units in size. The simple robot’s joints rotated through the
sagittal plane, thus restricting movement to forward and
backward motion. However, due to asymmetries in collision
resolution, the simple robot had the ability to slowly turn,
so constraints were imposed in the simulation to frustrate
turning. The complex robot consisted of seven segments
(three body segments and four legs) and six hinge joints,
and was allowed to move about the horizontal plane. Its
body segments and leg segments measured 1.2×.4×3.0 and
.6× .4× 3.0 units respectively. Both robots were equipped
with nonfunctional eyes to provide subjects with a robot-
centric frame of reference through which to issue commands
(e.g. ‘move forward’).

During the 22 days of deployment, the two robots alter-
nated every hour: the crowd saw the simple robot for an
hour, then the complex robot for an hour, then the simple

robot again, and so on. During each hour period, the com-
mand issued to the robot changed every three minutes.

During each three minute period, all candidate com-
mand votes were counted, recorded, and cleared. The most
frequently-input candidate command during this period was
issued to the robot for the next three minute period. Within
a three minute period, six random controller were evalu-
ated on the robot, each for 30 seconds. We henceforth refer
to each of these as a ‘robot evaluation’. The total number
of positive and negative reinforcement signals issued in re-
sponse to each robot evaluation was recorded.

A robot’s controller was defined as an N × 3 matrix with
dimension sizes corresponding to the number of joints and
three parameters which dictated a given joint’s amplitude
(α), frequency (β), and phase offset (γ). Thus, each joint at
each time step t was issued a desired angle α sin (βt+ γ),
where α ∈ [.6, 1.5];β ∈ [.01, .09]; and γ ∈ [−10π, 10π].
These constants were drawn from these ranges randomly us-
ing a uniform distribution and populated the matrix for each
controller. The ranges were selected to maximize variation
in behavior. Thus, the subjects observed random behaviors
(rather than evolved or learned ones) in this study.

The robot’s color was changed whenever the controller
was changed. The colors cycled through blue, orange, and
violet, and then back to blue. Subjects were instructed to in-
dicate the color of the robot that they were reinforcing. For

Figure 2: The interface, as seen by participants interacting with the simulation. a) The simulation video feed. b) A panel
prompting participants to command what the robot should do next. At this point, one subject has proposed ‘walk forward’ as
the next command, and two other subjects have voted for this. After a five-minute period, the most popular command takes
effect. c) A panel prompting users to provide positive (‘y’) or negative (‘n’) reinforcement for the current action under the
current command, which here is ‘walk forward’. Votes for either signal allow subjects to see how others are reinforcing this
action. d) Twitch’s chat interface, through which subjects send commands, reinforcement, or other miscellaneous chatter.

Figure 3: The “simple” (left) and “complex” (right) robot
body types. Body segments were connected through hinge
joints with normals as indicated by the vectors.

example if the user wished to positively reinforce the blue
robot, she would type ‘by’. If she wished to negatively rein-
force it, she would type ‘bn’. Because video streams broad-
cast through Twitch are delayed for approximately ten to
twenty seconds with variation between viewers, this coded
input allowed for correct assignment of reinforcement to a
controller despite the delay. That is, subjects likely observed
a controller (and provided reinforcement to it) after it had al-
ready terminated on the host computer.

The simulation’s GUI provided directions and feedback
to the subjects. In the command panel, the subjects were
told: “If you want to command the next robots, just tell them
what to do in chat”. In the reinforcement panel, the subjects
were told: “If you want to teach the [v]iolet [or [o]range
or [b]lue] robot, say ‘vy’ if yes, it’s obeying the command:
[command]. Say ‘vn’ if no, it’s not.”

Video Streaming and Chat Capture. Video streaming
was done on Twitch.tv, an internet video streaming service.
The service allows a host user to broadcast a live video
stream to an arbitrary number of internet users who may
(optionally) talk to each other and the host through an em-
bedded IRC service. Twitch was used due to its established
user base, chat functionality, available API, as well as the
existence of the previously mentioned “Twitch Plays” phe-
nomenon.

Video streaming was done using FFSplit4 to capture
and encode video of the simulation being run on the host
machine and stream it to Twitch, where it was viewed by
subjects. Subjects saw this simulation and were able to in-
teract with it through Twitch’s chat service. Subjects were

4http://www.ffsplit.com

Term Definition
Subject Any Twitch user who provided either a re-

inforcement signal or candidate command.
Robot type Ri, i ∈ {0, 1}, The simple (R0) and com-

plex (R1) robots.
Candidate
command

A string entered by a participant. Consid-
ered a vote for a future issued command.

Issued
command

Cij . The jth [c]ommand the ith robot was
evaluated against.

Controller Nijk. The kth co[n]troller issued to the ith
robot under command j. A matrix of coeffi-
cients used to dictate a robot’s movements.

Robot
evaluation

The 30-second simulation resulting from a
controller issued to a robot under a given
command. Six such evaluations were per-
formed for each issued command.

Reinforce-
ment
signal

Sijkl, for l ∈ {0, 1}. The number of nega-
tive (l = 0) and positive (l = 1) reinforce-
ments collected from subjects in response to
the kth controller under the jth command.

Normalized
reinf. sig-
nal

oijk ∈ [−1, 1].
oijk =

|Sijk1|−|Sijk0|
|Sijk1|+|Sijk0|

Touch sen-
sor data

Tijk. Touch sensor data generated by robot
i under command j with controller k.

Predictive
model

A recurrent neural network (RNN) which
predicts oijk given Tijk. Its output, o′ijk,
is an estimation of the crowd’s response to
robot evaluation ijk.

Table 1: Terminology used throughout this paper.

allowed to provide any combination of characters to the chat.
Any string of length greater than two or less than thirty that
were not part of Twitch’s default filtered word list were con-
sidered candidate commands. Subjects could provide com-
mands and reinforcement at any time.

Subjects provided reinforcement though specific coded
input. This consisted of strings of length two which matched
the pattern of (b|o|v)(y|n) where the first character repre-
sented the color of a robot (blue, orange, or violet), and the
second either yes or no. Further, only reinforcement signals
corresponding to the current or immediately previous robot
evaluation were counted. For example, if the current evalu-
ation’s color was blue and the previous evaluation had been
orange, the following strings would have been parsed as re-
inforcement signals: ‘on’, ‘oy’, ‘bn’, and ‘by’.

Recruitment and Incentivization. Subjects were re-
cruited through Reddit, a popular internet message board
site consisting of hundreds of sub-sites (called subreddits)
which generally limit posts to a specific topic. Posts were
issued to relevant subreddits directing subjects towards this

main post on the artificial subreddit5. Here, subjects
were directed to an agreement page which sent them to the
twitch channel6.

Subjects were incentivized to interact with the system by
adding features to the GUI which were meant to provide the
subjects with a sense of involvement with the simulation.
This was done by displaying subjects’ user names when
valid input was given. This showed subjects that their input
was being counted and used; their actions had an impact.
For the scope and scale of this study, this seemed sufficient.

Phase I Results
The crowd deployment lasted 22 days. During this time, at
least 6,388 robot evaluations were seen by hundreds of sub-
jects, who provided hundreds of commands and thousands
of reinforcement signals. Table 2 reports the relevant val-
ues.

General Figures Values
Subjects 424
Robot evaluations sent 57,108
Robot evaluations observed ≥ 6,388
Subject inputs 16,449
Commands Values
Candidate commands entered 8943
Candidate commands/subject ≈ 21.1
Distinct commands issued 266
Most frequently issued
commands

jump (385)
walk forward (58)
move forward (41)
run (26)
crawl forward (20).

Reinforcement signals Values
Reinforcement signals entered 7503
Mean reinforcement signals/eval. ≈ 1.18
Mean reinf. signals/subject ≈ 17.7
Proportion of positive reinforce-
ment

o = 0.28

Table 2: Crowd deployment participation results.

Participation produced a data set in which 6,388 con-
trollers received at least one reinforcement signal. From this
data set, no significant differences were found between how
the crowd interacted with the simple and the complex robots:
both had similar distributions in their spread and frequency
of commands, and both received similar consistency of rein-
forcement.

Phase II: Offline Learning
In the second phase of this experiment, models were trained
to ground symbols by learning relationships between com-

5 www.reddit.com/r/artificial
6www.twitch.tv/janetsbe

https://www.reddit.com/r/artificial/comments/3qpm87/twitch_plays_robotics/
http://www.reddit.com/r/artificial/
http://www.twitch.tv/janetsbe

mands, sensor data, and reinforcement.
The most commonly issued command for both robots was

“jump”: 1072 simple and 698 complex robot controllers
were evaluated under this command. Data belonging to
robots given this command were used to test whether the
crowd was able to provide trainable input. Due to the on-
line nature of the live deployment, some robot evaluations
were prematurely terminated and did not remain visible to
the crowd for their full thirty seconds. These were discarded,
resulting in 1037 simple and 675 complex robot evaluations
used during this phase. Since each controller directly de-
termined the robot’s behavior for the duration of its run, any
controller could be re-evaluated to obtain any additional data
not recorded during the live deployment.

Phase II Methods
During this phase, the goal was to determine if there exists
features in the “jump” data set which could be used to train a
model that predicts the crowd’s response. A recurrent neural
network (RNN) was employed as such a model (Fig. 1). It
was trained such that, when supplied with sensor data gen-
erated by a controller, it outputs a successful prediction of
the normalized reinforcement signal oijk (Table 1).

Since the chosen command was “jump”, it seemed
likely that this command should have some relationship to
whether, when and how the robot contacts the floor. For this
reason touch sensor data was recorded for these controllers.

All of the controllers evaluated under the command
“jump” and which received at least one reinforcement signal
in return were then re-evaluated with touch sensors added
to the robots. If a body segment touched the ground, its
touch sensor recorded a value of 1; otherwise a 0 was
recorded. This was stored in matrix Tijk such that element
tijkmn ∈ 0, 1 indicated whether body part n contacted the
ground at time stepm for controllerNijk. Each of these con-
trollers was re-evaluated for the same duration as its original
run during deployment. Since the master program gather-
ing data from the Twitch channel was also controlling the
simulation’s timing, there was some slight variation in the
duration of each robot evaluation, which resulted in slight
variations in the time step length. Thus, m ranged between
3350 and 3761 and 3133 to 3719 for the simple and com-
plex robots respectively. During model training and testing,
sensor data was thus truncated to m = 3350 and m = 3133
for the simple and complex robots respectively to make data
consistent in shape for each robot type.

Model training. Offline learning was conducted sepa-
rately for the simple and complex robot types. For each
of the two robots, half of their controllers were assigned
randomly to the training set. This was repeated 100 times,
leading to 100 models trained on 100 partially-overlapping
training sets. The RNN associated with the simple robot
had three input nodes (corresponding to the number of touch

sensors and body segments) and one output node, with
one synapse from each input to the output, and a recurrent
synapse on the output node. The RNN trained and tested on
the complex robot had seven input nodes and was otherwise
identical. A graphical representation of this RNN for the
simple robot’s data can be seen in Fig. 1.

During training, each controller in the training set for Ri

had its sensor data run through the neural network such that
the network was updated m times. Then, the output node’s
value was read out as o′i, the predicted normalized reinforce-
ment signal for the ith controller based on its sensor data.
This was done for each controller in the training set. Using
this, the error for the model was calculated using the follow-
ing objective function:

e =

(Ny∑
i=1

|oi − o′i|
2Ny

+

Nn∑
j=1

|oj − o′j |
2Nn

)
/2 (1)

Since the normalized reinforcement signals mostly con-
sisted of unanimous negative reinforcement (oi = −1), ac-
counting for 77.7% and 77.8% of robot evaluations for the
simple and complex robots respectively, this error function
weighed two subsets of the training set equally in calculat-
ing error to avoid over-fitting the model to output−1 for any
set of sensor values. One subset consists of all robot evalua-
tions with oi = −1 (of which there were Nn) and the other
for all others (oi > −1; Ny), which must by definition con-
tain at least one positive reinforcement signal. In doing so,
the error calculation weighs both groupings equally and an
constant output of oi = −1 for every controller would result
in, at best, e = 0.5. Error is, then, the sum of differences
in each group, averaged, where o is the actual normalized
reinforcement signal for each robot evaluation and o′ is the
model’s prediction.

The popular, continuous-value optimization method
CMA-ES (Hansen et al., 2003) was used to train RNNs
against each of the 100 training sets, for both robots, result-
ing in 200 runs of CMA-ES. For each run, a random initial
solution array was used. Synaptic weights were bounded on
[−1, 1], with an initial step size of 0.1. At the termination of
each run, the RNN with lowest error was extracted, leading
to 100 RNNs for each robot.

Phase II Results
The ability of these 200 models to generalize their predic-
tions to unseen controllers was measured as follows. The
mean error of each model when exposed to its testing set
was first computed using Eqn. 1. Then these errors for the
100 models for each robot were in turn averaged. The re-
sulting mean errors are reported as ‘experiment’ in Fig. 4.

In order to determine the accuracy of these predictions,
the models were also exposed to the same testing set, but
the normalized reinforcement signals in the set were ran-
domly permuted (‘permuted control’ in Fig. 4). A second

Figure 4: Results from the predictive model on unseen test
data, the permuted test data set, and random RNNs on test
data. *** denotes p < .001 as reported by a Student’s T-test.

control experiment was also conducted in which RNNs with
randomly-assigned synapses also made predictions on the
same, unpermuted test sets (‘random control’ in Fig. 4).

Discussion
Fig. 4 shows that both robots employed here were able to
successfully ground at least one symbol (‘jump’) in their
own sensorimotor experiences. Further, since this symbol
and its meaning were provided solely by human subjects,
this suggests that the crowd reached some implicit, mutually
agreed upon recognition of this category of behavior in the
robots, and that they were able to pass this category on to
non-humanoid robots through a simple interface in a short
time period, with no explicit reward from the investigators.

Precisely how the robots may have grounded “jump” re-
mains unknown. It may be the case that robots who tended
to spend less time touching the ground were more likely to
be positively reinforced by the crowd. This hypothesis is
supported by the finding that there is a negative correlation
between the proportion of time a robot spent with at least one
body segment touching the ground and the crowd’s normal-
ized reinforcement signal, for both robots (Fig. 5). Despite
this, it is unclear whether the models learned this relation-
ship, or instead discovered some more subtle function of the
touch sensor data that better predicts the crowd’s response.
In a similar manner, it is not clear if each robot grounded
this symbol in the same way.

Conclusions and Future Work
Here we have demonstrated a unique methodology for
enabling robots to gradually acquire language: crowd-
generated language symbols are grounded by detecting
correlations between sensorimotor experience and crowd-
generated reinforcement.

Given the unconstrained nature of the interface, the sub-
jects could have tried to teach the robots unlearnable com-
mands such as ‘xyzf’ or ’prove Fermat’s Last Theorem’.

Figure 5: Comparison of normalized reward signal and
proportion of time grounded for the 1037 simple and 675
complex robots with the ”jump” command. Proportion of
time grounded is the number of time steps where at least
one sensor value is 1 divided by the total number of time
steps. These values are negatively correlated with p < .001.

Despite the fact that there was a long tail of infrequently-
proposed commands such as these, the most frequently-
issued commands (Table 2) were motoric as well as appro-
priate for the robot’s morphology (as opposed to ‘clap your
hands’). This suggests that the observed behavioral limita-
tions of the robots may have steered the crowd toward at
least one command that, with sufficient reinforcement, was
learnable (‘jump’). This observation accords with Roy et al.
(2009), who showed that three human caregivers constrained
their utterances given the current language abilities of a hu-
man child.

Because of the recent success of deep learning ap-
proaches, much work in AI has become focused on recogni-
tion rather than understanding. Furthermore, recognition is
much easier to measure than understanding: The ability of
an algorithm to recognize human faces in an image is much
easier to quantify than its understanding of humans. Our ap-
proach is predicated on the speculation that understanding—
even the understanding of abstract concepts—is ultimately
grounded in sensorimotor experience. We provide a method
for quantifying this in the domain of language: the robots
tested here understand the word ‘jump’ in the sense that they
have learned an association between that word, a set of ac-

tions generated in response to that word, and the crowd’s
responses to those actions.

For this paper, a small subset of the overall data set ac-
quired during deployment was analyzed. However, many
other potentially groundable symbols were provided by the
crowd. Future work will involve instrumenting the robots
with more sensors to attempt the grounding of more of these
symbols, and expanding the models such that they can po-
tentially ground more than one symbol, or detect semantic
similarities between grounded symbols. Further, since we
have data corresponding to different morphologies, we may
be able to discover if morphology impacts the way a robot
grounds symbols. In subsequent deployments of the sys-
tem we also plan to enable robots to ground symbols in real
time rather than retroactively. Also, we wish to exploit the
fact that the models form a theory of group mind about the
crowd to minimize user fatigue: one robot should be able to
predict how the crowd will react to another robot, even be-
fore the latter robot is shown to them. In this way, not every
robot would need to be reinforced by the crowd.

Finally, we wish to investigate how increasingly complex
robot morphologies, task environments, and behaviors influ-
ence the crowd’s behavior such that they incrementally train
the robots to understand increasingly abstract language.

Acknowledgments. This work was supported by the Na-
tional Science Foundation under projects PECASE-0953837
and INSPIRE-1344227.

References
Bernatskiy, A., Hornby, G. S., and Bongard, J. C. (2014).

Improving robot behavior optimization by combining
user preferences. In ALIFE 14: The Fourteenth Confer-
ence on the Synthesis and Simulation of Living Systems,
volume 14, pages 726–733.

Breazeal, C., DePalma, N., Orkin, J., Chernova, S., and
Jung, M. (2013). Crowdsourcing human-robot inter-
action: New methods and system evaluation in a pub-
lic environment. Journal of Human-Robot Interaction,
2(1):82–111.

Cangelosi, A. and Harnad, S. (2001). The adaptive advan-
tage of symbolic theft over sensorimotor toil: Ground-
ing language in perceptual categories. Evolution of
Communication, 4(1):117–142.

Collobert, R. and Weston, J. (2008). A unified architecture
for natural language processing: Deep neural networks
with multitask learning. In Proceedings of the 25th
International Conference on Machine Learning, pages
160–167. ACM.

Guha, R. V. and Lenat, D. B. (1993). Cyc: A midterm report.
In Readings in Knowledge Acquisition and Learning,
pages 839–866. Morgan Kaufmann Publishers Inc.

Hansen, N., Müller, S. D., and Koumoutsakos, P. (2003).
Reducing the time complexity of the derandomized
evolution strategy with covariance matrix adaptation
(CMA-ES). Evolutionary Computation, 11(1):1–18.

Harnad, S. (1990). The symbol grounding problem. Physica
D: Nonlinear Phenomena, 42(1):335–346.

Hornby, G. S. and Bongard, J. (2012). Learning compara-
tive user models for accelerating human-computer col-
laborative search. In Evolutionary and Biologically In-
spired Music, Sound, Art and Design, pages 117–128.
Springer.

Lakoff, G. and Johnson, M. (2008). Metaphors We Live By.
University of Chicago press.

Pulvermüller, F. and Fadiga, L. (2010). Active perception:
sensorimotor circuits as a cortical basis for language.
Nature Reviews Neuroscience, 11(5):351–360.

Roy, B. C., Frank, M. C., and Roy, D. (2009). Exploring
word learning in a high-density longitudinal corpus. In
Proceedings of the 31st Annual Meeting of the Cogni-
tive Science Society.

Schulz, R., Wyeth, G., and Wiles, J. (2012). Beyond
here-and-now: extending shared physical experiences
to shared conceptual experiences. Adaptive Behavior,
20(5):360–387.

Shawar, B. A. and Atwell, E. (2003). Using dialogue cor-
pora to train a chatbot. In Proceedings of the Corpus
Linguistics 2003 Conference, pages 681–690.

Steels, L. (2008). The symbol grounding problem has been
solved. So what’s next? In Symbols and Embodiment:
Debates on Meaning and Cognition, pages 223–244.
Academic Press, New Haven.

Steels, L., Kaplan, F., McIntyre, A., and Van Looveren, J.
(2002). Crucial factors in the origins of word-meaning.
The Transition to Language, 12:252–271.

Toris, R., Kent, D., and Chernova, S. (2014). The robot man-
agement system: A framework for conducting human-
robot interaction studies through crowdsourcing. Jour-
nal of Human-Robot Interaction, 3(2):25–49.

Wagy, M. and Bongard, J. (2014). Collective design of robot
locomotion. In ALIFE 14: The Fourteenth Conference
on the Synthesis and Simulation of Living Systems, vol-
ume 14, pages 138–145.

Wagy, M. D. and Bongard, J. C. (2015). Combining com-
putational and social effort for collaborative problem
solving. PloS ONE, 10(11):e0142524.

	Introduction
	The Symbol Grounding Problem
	Sensorimotor Grounding
	Crowdsourcing language acquisition.

	Phase I: Crowd Deployment
	Phase I Methods
	Phase I Results

	Phase II: Offline Learning
	Phase II Methods
	Phase II Results

	Discussion
	Conclusions and Future Work

