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ABSTRACT
Maintaining population diversity has long been considered
fundamental to the effectiveness of evolutionary algorithms.
Recently, with the advent of novelty search, there has been
an increasing interest in sustaining behavioral diversity by
using both fitness and behavioral novelty as separate search
objectives. However, since the novelty objective explicitly
rewards diverging from other individuals, it can antagonize
the original fitness objective that rewards convergence to-
ward the solution(s). As a result, fostering behavioral diver-
sity may prevent proper exploitation of the most interest-
ing regions of the behavioral space, and thus adversely af-
fect the overall search performance. In this paper, we argue
that an antagonism between behavioral diversity and fitness
can indeed exist in semantic genetic programming applied
to symbolic regression. Minimizing error draws individuals
toward the target semantics but promoting novelty, defined
as a distance in the semantic space, scatters them away from
it. We introduce a less conflicting novelty metric, defined as
an angular distance between two program semantics with re-
spect to the target semantics. The experimental results show
that this metric, in contrast to the other considered diver-
sity promoting objectives, allows to consistently improve the
performance of genetic programming regardless of whether
it employs a syntactic or a semantic search operator.

Keywords
genetic programming; program semantics; novelty search;
diversity; geometric crossover; symbolic regression

1. INTRODUCTION
In analogy to the importance of genetic diversity in natu-

ral evolution, preserving population diversity has long been
perceived as being crucial to the performance of evolutionary
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algorithms. Intuitively, maintaining a diverse pool of candi-
date solutions provides better exploration of the search space
and thus gives more opportunities to discover novel, poten-
tially fitter individuals. On the other hand, losing diversity
can lead to the well-known problem of premature conver-
gence, where a population stagnates at local optima and is
unlikely to make any further progress.

A number of diversity maintenance techniques have been
proposed to mitigate the problem of premature convergence
[10, 26]. Most of these methods modify the selection process
by promoting the individuals that are most different from
the rest of the population. One particular approach relies
on multiobjective evaluation of individuals with two objec-
tives: the original fitness of the solution and some measure of
its novelty designed to promote diversity. Although earlier
studies measured novelty by comparing genotypes [6], recent
work has successfully employed novelty metrics based on the
distance between behaviors [16, 17, 23].

However, since behavioral novelty promotes increasing dis-
tance between behaviors while the fitness function typically
rewards minimizing distance to the target behavior, we hy-
pothesize that in some cases these two objectives can be
overly antagonistic with each other. Consequently, promot-
ing diversity can result in spreading individuals over the
behavioral space and slowing down the convergence of the
search process. In other words, under certain conditions,
employing such conflicting objectives may result in exces-
sive exploration of the entire behavioral space and insuffi-
cient exploitation of its most promising regions.

In this paper, we investigate the relationship between be-
havioral diversity and fitness of evolved individuals in the
context of genetic programming (GP), where behavior of an
individual can be identified with program semantics. In par-
ticular, we attempt to determine whether and under what
conditions promoting behavioral diversity can adversely af-
fect the search effectiveness. To this end, we consider four di-
versity promoting objectives and examine how each of them,
used along with the fitness objective, affects the performance
of tree-based GP. Moreover, we compare the fitness of pro-
grams evolved with two types of search operators: tradi-
tional subtree-swapping crossover and locally geometric se-
mantic crossover. Since fitness landscapes induced by the
latter are supposedly smoother and easier to search with
the fitness objective alone, we expect to observe different
effects of promoting diversity.
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The results obtained on a set of symbolic regression prob-
lems demonstrate that some diversity objectives can be in-
deed detrimental to the search performance, supposedly be-
cause of being overly antagonistic with the fitness objective.
In particular, we show that using straightforward Euclidean
semantic novelty metric can lead to reduced performance
with respect to the conventional genetic programming. By
contrast, the introduced angular semantic novelty metric,
designed to be less antagonistic with the fitness objective, al-
lows to consistently improve both fitness and generalization
performance, regardless of the employed search operator.

The remainder of this paper is structured as follows. The
next section describes the paradigm of semantic genetic pro-
gramming and presents geometric semantic operators. Sec-
tion 3 gives a brief overview of diversity maintenance meth-
ods applied in GP and introduces the two aforementioned
semantic novelty metrics. Sections 4 and 5 describe experi-
mental setup and present the results. Finally, sections 6 and
7 provide discussion and concluding remarks.

2. SEMANTIC GENETIC PROGRAMMING
Standard tree-based GP searches the space of programs

using traditional operators of subtree-swapping crossover
and subtree-replacing mutation. These operators are de-
signed to be generic and produce syntactically correct off-
spring regardless of the problem domain. However, their
actual effects on the behavior of the program, and thus its
fitness, are generally hard to predict. Because of the complex
genotype-phenotype mapping characterized by low locality,
even a minimal change at the syntax level may diametrically
alter program semantics. Such large phenotypic changes are
often considered problematic because, according to Fisher’s
geometric model [7], the probability of the mutation being
beneficial is inversely proportional to its magnitude.

Recently, many alternative search operators have been
proposed that take into account the effect of syntactic mod-
ifications on program semantics [1, 3, 15, 22, 30]. In order
to control the scope of behavioral change, most of these
methods adopt common definition of program semantics,
known as sampling semantics [30], which is identified with
the vector of outputs produced by a program for a sam-
ple of possible inputs. For instance, in supervised learning,
where n input-output pairs are given as a training set T =
{(x1, y1), . . . , (xn, yn)}, semantics of a program p is equal
to vector s(p) = [p(x1), . . . , p(xn)], where p(x) is a result
obtained by running program p on input x. Consequently,
each program p corresponds to a point in n-dimensional se-
mantic space and a metric d can be adopted to measure
semantic distance between two programs. Furthermore, fit-
ness of a program p can be calculated as a distance between
its semantics s(p) and the target semantics t = [y1, . . . , yn]
defined by the training set, i.e., f(p) = d(s(p), t).

Importantly, the information about program semantics
can be exploited not only at the level of search operators
but also for other purposes, e.g, to maintain semantic di-
versity [11], to initialize the population [2] or to drive the
selection process [18]. All such semantic-aware methods are
collectively captured by the umbrella term of semantic ge-
netic programming [31]. Recently, a paradigm of behavioral
program synthesis [13] has been proposed, which extends
semantic GP by using information not only about final pro-
gram results but also about behavioral characteristics of pro-
gram execution.

2.1 Geometric Semantic Operators
One particularly interesting class of semantic-aware search

operators are geometric semantic operators introduced by
Moraglio et al. [22]. These operators not only incorpo-
rate knowledge about program semantics but also exploit
geometric structure of the semantic space endowed by a
metric-based fitness function. As a result, fitness landscapes
seen by these operators are smooth conic landscapes, which
are in principle easy to search. In particular, a geomet-
ric semantic crossover under the metric d guarantees that
semantics of each offspring p′ is located in the d-metric seg-
ment connecting semantics of its parents p1 and p2, i.e.,
d(s(p1), s(p2)) = d(s(p1), s(p′)) + d(s(p′), s(p2))

Although exact geometric crossover has been proposed
[22], its practical applicability is limited because it leads
to exponential growth of the program size. For this reason,
alternative operators exist that employ heuristic methods
to produce an approximately geometric offspring [14, 15].
Previous studies demonstrate that such approximately geo-
metric operators can be still effective while producing much
shorter offspring programs than exactly geometric ones.

2.2 Locally Geometric Crossover
In this paper we use Locally Geometric Crossover (LGX)

proposed by Krawiec and Pawlak [15]. This operator is ar-
guably the easiest to implement among existing approxi-
mately geometric crossover operators. Before applying a
crossover, a library of short programs (procedures) must
be created. Typically, a static library is generated by enu-
merating all possible trees lower than a predefined height.
Alternatively, a dynamic library could be created at each
generation from all subtrees existing in the population.

Given two parents p1 and p2, the operator starts by iden-
tifying their structurally common region, i.e., the largest
region where the parent trees have the same topology. Two
crossover points are selected by drawing a pair of corre-
sponding nodes from the common region. Then, for the
subtrees p′1 and p′2 rooted at the crossover points, semantics
of the midpoint between them (i.e., semantically interme-
diate subprogram) is calculated as sm = (s(p′1) + s(p′2)) / 2.
The library is searched for programs that are semantically
closest to sm according to adopted metric d. From a set of k
closest programs found in a library, a random one is selected
and used to replace subtrees p′1 and p′2 in both parents, pro-
ducing two offspring. In a rare situation when both subtrees
p′1 and p′2 are semantically equivalent, a random procedure
is drawn from a library.

3. PROMOTING DIVERSITY IN GP
Diversity maintenance has been a long-standing issue in

GP and a number of methods have been proposed to pre-
serve diversity in a population [4]. Most of the early stud-
ies in this area focus on genotypic diversity, which refers
to structural differences between programs in a population
[6, 21]. In recent years, with the advent of semantic GP,
more attention has been paid to semantic or behavioral di-
versity [2, 9, 11, 19]. The notion of semantic diversity is
particularly important in GP, because the mapping between
programs and their semantics is usually a complex, non-
injective function. In particular, since many syntactically
different programs may exhibit the same behavior, geno-
typic diversity does not necessarily imply semantic diversity
while the converse is often true.
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Despite the assumed importance of semantic diversity [31],
there have been few empirical investigations into effects of
promoting behavioral diversity on the effectiveness of genetic
programming. Moreover, almost all of the studied methods
are limited to ensuring that the genetic operators do not
produce offspring that is semantically equivalent to their
parents [1, 30, 11, 9]. To the best of our knowledge, the
only exception is the work of Nguyen et al. [24]. The authors
apply both syntactic and semantic distance metrics in the
fitness sharing mechanism and demonstrate that only using
the latter improves GP performance on selected symbolic
regression problems.

Here, rather than fitness sharing we adopt multiobjective
approach treating diversity as a separate objective. In the
following we describe four considered variants of multiobjec-
tive GP, which differ only with respect to the objective used
to encourage diversity. In particular, two of the objectives
(age and structural density) have already proved success-
ful in improving GP performance. Additionally, we propose
two other objectives which are essentially behavioral novelty
metrics designed to promote semantic diversity.

3.1 Age-Fitness Pareto Optimization
Age-Fitness Pareto Optimization (AFPO, [27]) is a mul-

tiobjective method that relies on the concept of genotypic
age of an individual, defined as the number of generations
its genetic material has been in the population [10]. The age
attribute is intended to protect young individuals before be-
ing dominated by older already optimized solutions. Each
randomly initialized individual starts with age of one which
is then incremented by one every generation. An offspring
inherits age of the older parent.

The AFPO algorithm is based on the ParetoGP method
which was originally proposed to address the issue of bloat
in GP [28]. The algorithm starts with a population of n ran-
domly initialized individuals. In each generation, it proceeds
by selecting random parents from the population and apply-
ing crossover and mutation operators (with certain probabil-
ity) to produce n− 1 offspring. The offspring, together with
a single randomly initialized individual, are added to the
population extending its size to 2n. Then, Pareto tourna-
ment selection is iteratively applied by randomly selecting
a subset of individuals and removing the dominated ones
until the size of the population is reduced back to n. To
determine which individuals are dominated, the algorithm
identifies the Pareto front using two objectives (both mini-
mized): age and fitness (distance to the target semantics).

3.2 Density-Fitness Pareto Optimization
Recently, Burks and Punch [5] proposed an alternative

variant of the AFPO algorithm called Density-Fitness Pareto
Optimization (DFPO). This method relies on the idea of a
genetic marker, which refers to concatenated fragments of a
program tree. The authors used markers based on the top-
most part of a tree and calculated structural density of each
individual as a fraction of individuals in the population that
share the same marker. Employing such a density measure
as a minimized objective is intended to maintain a specific
form of structural diversity focused on the rooted portions
of the trees. According to the reported results obtained on
three different problems (including symbolic regression), us-
ing density instead of age allows DFPO to further improve
the performance achieved by AFPO.

↵
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Figure 1: Residual vectors in two-dimensional se-
mantic space where fitness is expressed using Eu-
clidean distance.

3.3 Novelty-Fitness Pareto Optimization
Inspired by novelty search [16], we propose two behavioral

novelty metrics that can be used as search objectives. Since
both objectives refer to the distribution of programs in the
semantic space, maximizing them is intended to promote
some form of behavioral diversity. The bi-objective algo-
rithm employing fitness and a behavioral novelty objective
is termed Novelty-Fitness Pareto Optimization.

Euclidean Semantic Novelty. Since in this work we
focus on real-valued symbolic regression problems, the se-
mantic space is n-dimensional real space. Consequently,
we can calculate behavioral distance between programs as
a Euclidean distance between their semantics. We define
Euclidean semantic novelty of a program p as a mean Eu-
clidean distance between its semantics s(p) and semantics of
its k nearest neighbors in the semantic space:

ρ(p) =
1

k

k∑
i=1

d(s(p), s(µi)),

where k is user-defined parameter and µi is i-th nearest pro-
gram with respect to the semantic distance.

Angular Semantic Novelty. The second proposed nov-
elty metric focuses on angles in the semantic space (see Fig.
1). Measuring angular distance between program seman-
tics has been recently applied in GP [25] but not for the
purpose of maintaining diversity. For each program p, we
define residual vector r(p) as a difference between target se-
mantics and the program semantics, i.e., r(p) = t−s(p). We
define angular semantic novelty of a program p as a mean
angle between its residual vector r(p) and residual vectors of
its k nearest neighbors with respect to the angular distance:

ρ(p) =
1

k

k∑
i=1

arccos
r(p) · r(µi)

‖r(p)‖‖r(µi)‖
.
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Table 1: Symbolic regression benchmarks.

Problem Objective function

Quartic 4x4 + 3x3 + 2x2 + x

Nonic
∑9

1 x
i

R1 (x+ 1)3/(x2 − x+ 1)

R2 (x5 − 3x3 + 1)/(x2 + 1)

Keijzer-4 x3e−x cos(x) sin(x)(sin2(x) cos(x)− 1)

We expect that using this novelty metric as an additional
search objective can be beneficial for two reasons. First, this
objective is less conflicting with fitness than Euclidean se-
mantic novelty — a population of very fit individuals can at
the same time exhibit high angular semantic diversity. Sec-
ond, promoting large angles between residual vectors makes
it more likely that the parents occupy the opposite slopes of
the fitness landscape, which is advantageous for geometric
semantic crossover. For instance, consider three programs
illustrated in Fig. 1. Let us assume that p1 is the first parent
and we need to pick the second parent among programs p2
and p3, which are equally fit (have the same distance to the
target semantics). By considering possible offspring p1 × p3
and p1 × p2, it can be observed that fitness of the geomet-
ric offspring is inversely proportional to the angle between
residual vectors of its parents.

4. EXPERIMENTAL SETUP
The main goal of the experiments is to investigate whether

and how promoting particular forms of diversity affect the
fitness of programs evolved with tree-based GP. For this pur-
pose, we analyze the performance of multiobjective diver-
sity promoting methods described in Section 3 and compare
them to the standard GP driven by the fitness objective
alone. All the considered algorithms were implemented as
an extension1 of the Distributed Evolutionary Algorithms in
Python (DEAP) framework [8].

4.1 Symbolic Regression Problems
We consider five univariate symbolic regression problems

that are adopted from previous studies [5, 20]. Selected
benchmarks (see Table 1) include polynomial, rational and
trigonometric functions. For each problem, fitness was cal-
culated as Euclidean distance to the target semantics on 20
training cases distributed equidistantly in the [−1, 1] inter-
val. The only exception is Keijzer-4, for which the training
cases were sampled from the range [0, 10].

4.2 Genetic Programming Variants
We compare the performance of the following five vari-

ants of tree-based GP. Four of them rely on multiobjective
fitness evaluation where one of the objectives actively pro-
motes some form of diversity. These setups differ only with
respect this objective. All the other settings remain un-
changed and they are summarized in Table 2.

GP. To observe the relative impact of promoting diver-
sity, as a baseline method we use standard generational tree-
based GP with single-objective tournament selection.

1The source code necessary for reproducing our results is
available at https://github.com/mszubert/gecco 2016.

Table 2: Genetic programming settings

Parameter Value

population size 256
generations 1000

initialization
ramped half-and-half
height range 2− 6

instruction set {+,−,×, /, exp, log, sin, cos}
tournament size 7
crossover probability 0.9
reproduction probability 0.1
mutation probability 0.0

node selection
90% internal nodes
10% leaves

maximum tree height 17
maximum tree size 300
number of runs 100

AFPO. Age-Fitness Pareto Optimization algorithm de-
scribed in Section 3.1.

DFPO. Density-Fitness Pareto Optimization algorithm
(see Section 3.2). To calculate the density objective, genetic
markers were constructed using first three levels of each tree.

ESNFPO. Novelty-Fitness Pareto Optimization (see Sec-
tion 3.3) with Euclidean semantic novelty objective using
k = 15 nearest neighbors to calculate novelty score.

ASNFPO. Novelty-Fitness Pareto Optimization (see Sec-
tion 3.3) with angular semantic novelty objective using k =
15 nearest neighbors to calculate novelty score.

4.3 Search Operators
To gain deeper understanding about usefulness of diver-

sity under different conditions, we combine each of the con-
sidered GP variants with the following search operators.

Standard syntactic crossover. Traditional subtree-
swapping crossover operator with Koza-style node selection:
0.9 probability of choosing an internal node [12].

Geometric semantic crossover. Locally geometric se-
mantic crossover (LGX, see Section 2.2) based on a static
precomputed library of procedures. The library is generated
by enumerating all possible trees of height at most 3, built
from the given instruction set. When queried with a desired
semantics, library returns a random program among k = 8
with closest semantics.

4.4 Diversity Measures
To analyze the relationship between behavioral diversity

of a population and fitness of evolved programs, the follow-
ing diversity measures were calculated for each generation.

Median Euclidean Semantic Distance. To assess Eu-
clidean semantic diversity we calculate median of semantic
distances between each pair of programs in the population.

Mean Angular Semantic Distance. Angular seman-
tic diversity is measured as a mean angle between residual
vectors of each pair of programs in the population.

5. RESULTS
In order to conduct an accurate analysis of the relation-

ship between diversity and performance, we conducted 100
independent runs (with different random seeds) of each of
10 considered configurations (5 GP variants × 2 crossover
operators) on each of 5 symbolic regression problems.
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5.1 Search Performance
Figure 2 shows the average best-of-generation fitness (cal-

culated as a Euclidean distance to the target) achieved by
particular methods on different benchmark problems, with
95% confidence intervals marked as semi-transparent bands.
The left part of the figure illustrates the results obtained
with traditional subtree-swapping crossover. Clearly, each of
the considered diversity promoting methods significantly im-
proves the performance of the standard GP algorithm. The
best performance is achieved either by DFPO or ASNFPO,
depending on the problem. The impact of promoting diver-
sity on the fitness of evolved solutions is much less clear in
the case of LGX crossover (right part of Figure 2). The only
method that consistently improves the results of the baseline
GP algorithm on all considered problems is ASNFPO. All
the other diversity preserving approaches are detrimental to
the search performance at least on some benchmarks.

Further observations can be made by comparing the re-
sults achieved by the same algorithm but equipped with
different crossover operators. The largest performance im-
provement is observed for the standard GP algorithm, which
when equipped with the LGX operator, achieves signifi-
cantly higher convergence speed and final performance. As
a matter of fact, it converges so quickly, that if the runs
were stopped after 100 generations, it would be the best of
the considered setups. Besides GP, the only other method
that regularly benefits from replacing traditional syntactic
crossover with geometric semantic crossover is ASNFPO.
Importantly, the synergistic interplay of LGX crossover and
the angular semantic novelty objective leads to the best over-
all results in terms of the ultimate achieved fitness.

5.2 Diversity Analysis
To analyze the relationship between behavioral diversity

and fitness, we assessed diversity of populations evolved by
particular methods using measures listed in Section 4.4. Ta-
ble 3 shows Spearman correlation coefficients calculated be-
tween behavioral diversity measured at selected generations
and best fitness in the last generation of each run.

In the context of the Euclidean semantic distance mea-
sure (left part of Table 3), correlation is stronger for seman-
tic crossover than for standard syntactic crossover. More
importantly, at the end of runs correlation is positive —
large Euclidean semantic diversity is seen with high (bad)
fitness values. This observation is consistent with relatively
weak performance achieved by ESNFPO method which uses
Euclidean semantic novelty objective to promote behavioral
diversity. Taken together, these results suggest that high
levels of Euclidean semantic diversity can not be considered
as being generally beneficial to the search performance.

Moreover, it can be noticed that at the beginning of runs
correlation coefficients are much lower (sometimes even neg-
ative) and only later start to increase. Therefore, behav-
ioral diversity may play different role at different evolution-
ary times. Indeed, further analysis revealed that in the most
successful runs, Euclidean semantic diversity stays relatively
high in the early, exploratory phase of evolution but then
gradually decreases which corresponds to exploitation of the
most promising parts of the behavioral space. Thus, high di-
versity at the beginning of the evolution may be not only less
harmful but even advantageous. On the other hand, keep-
ing diversity high throughout entire runs typically leads to
inferior performance.
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Figure 2: Average best fitness achieved by different
variants of multiobjective GP equipped with either
standard syntactic crossover (left column) or locally
geometric semantic crossover (right column).
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Table 3: Correlation between best fitness (lowest error) in the last generation and behavioral diversity mea-
sured at selected generations as: 1) median euclidean semantic distance 2) mean angular semantic distance.

Median Euclidean Semantic Distance Mean Angular Semantic Distance

Standard syntactic crossover Geometric semantic crossover Standard syntactic crossover Geometric semantic crossover

qua non kei r1 r2 qua non kei r1 r2 qua non kei r1 r2 qua non kei r1 r2

0 −.017 −.034 −.003 −.003 +.031 +.002 +.044 −.012 −.066 +.003 +.010 −.002 +.042 −.010 +.041 −.031 +.061 −.015 −.101 +.001

10 +.010 −.003 −.283 −.227 −.353 −.119 −.203 +.004 −.127 −.131 +.153 +.173 −.427 −.009 −.220 −.464 −.533 −.115 −.499 −.421

25 −.072 −.082 −.250 −.222 −.201 −.109 −.272 +.036 +.026 −.196 −.263 −.187 −.375 −.300 −.547 −.585 −.642 −.324 −.610 −.570

50 +.021 +.071 −.261 −.037 −.078 −.065 −.222 −.227 +.232 −.300 −.392 −.358 −.477 −.448 −.609 −.651 −.675 −.607 −.680 −.624

100 +.018 +.109 −.242 +.015 −.002 +.119 +.027 −.233 +.334 −.080 −.457 −.450 −.600 −.515 −.649 −.654 −.647 −.610 −.677 −.599

250 +.087 +.204 −.121 +.134 +.134 +.393 +.381 +.000 +.502 +.214 −.519 −.441 −.639 −.533 −.650 −.630 −.560 −.599 −.607 −.578

500 +.123 +.265 −.031 +.204 +.180 +.489 +.567 +.177 +.558 +.257 −.587 −.463 −.663 −.478 −.635 −.533 −.456 −.513 −.506 −.530

g
e
n
e
ra

ti
o
n

1000 +.175 +.296 +.020 +.243 +.229 +.630 +.694 +.251 +.567 +.380 −.549 −.411 −.658 −.376 −.607 −.284 −.251 −.266 −.301 −.324

The second form of behavioral diversity we investigate is
angular semantic diversity. The right part of Table 3 il-
lustrates relatively strong negative correlation between this
diversity measure and final fitness of evolved programs, re-
gardless of the type of employed crossover operator. Since
high levels of angular semantic diversity are frequently seen
with low (good) fitness, we can hypothesize that this form
of diversity facilitates genetic programming. Together with
high performance of the ASNFPO method, these results
provide empirical evidence that angular semantic diversity
tends to be more useful than Euclidean semantic diversity.

5.3 Generalization Performance
In order to assess generalization performance of evolved

programs, we calculated the root-mean-square error com-
mitted by the best-of-run individuals on 1 000 tests drawn
uniformly from the same range as for the training set. Table
4 shows median training error, test error and size (number
of nodes) of the individuals evolved by particular methods.
To confirm statistically significant differences between the
results obtained by the five compared GP variants, for each
problem and crossover operator we conducted the Kruskal-
Wallis test followed by a post-hoc analysis using pairwise
Mann-Whitney tests (with sequential Bonferroni correction).
We set the level of significance at p ≤ 0.05. Table 4 shows
with an underline the results that were found significantly
better than those achieved by every other GP variant.

On most problems, the significantly lowest test error is
obtained by either DFPO or ASNFPO. Interestingly, while
DFPO achieves the highest generalization performance in
the context of standard crossover, ASNFPO is the winner
among methods paired with the LGX operator. These re-
sults suggest that there is a synergy between particular vari-
ation operators and diversity promoting methods. Tradi-
tional syntactic crossover is able to exploit structural di-
versity maintained by DFPO, whereas semantic crossover
benefits from angular semantic diversity. Another impor-
tant observation is that ASNFPO is the only method that
achieves higher generalization performance than standard
GP on all problems, regardless of the crossover operator.

Finally, by comparing training and test errors achieved
on particular benchmarks, we can observe that AFPO and
DFPO methods overfit less than the other methods. One
reason explaining less severe overfitting is that these two
methods tend to produce shorter programs than the other
methods (especially when equipped with the LGX opera-
tor). In particular, AFPO usually produces the significantly
smallest trees among the considered methods.

6. DISCUSSION
One of the most interesting findings from experiments

is the discrepancy between results obtained with different
crossover operators (see left vs. right part of Fig. 2 and up-
per vs. lower part of Table 4). With traditional crossover,
all the considered diversity promoting methods improve the
performance of standard GP. On the other hand, with geo-
metric crossover, ASNFPO is the only algorithm that consis-
tently outperforms standard GP on all five symbolic regres-
sion problems. These findings raise the following questions:
Why is angular semantic novelty so effective in the context
of geometric crossover? Why are other diversity objectives
beneficial with one crossover operator while being detrimen-
tal with another? We attempt to answer these questions by
referring to the notion of fitness-diversity antagonism.

For the purpose of this discussion, let us say that there is
an antagonism between fitness and diversity in a given pop-
ulation if improving fitness of any single individual is im-
possible without reducing population diversity. Under this
definition, angular semantic diversity is never antagonistic
with fitness. Indeed, by moving program semantics straight
in the direction of the target (along residual vectors), angu-
lar semantic diversity does not change while fitness of any
solution can be arbitrarily improved. In contrast, Euclidean
semantic diversity is at least sometimes antagonistic with
fitness — there are populations which can not be optimized
without reducing their diversity. Indeed, minimizing error
pulls individuals toward the target semantics but maximiz-
ing Euclidean diversity scatters them away from it.

Intuitively, one could expect that antagonistic diversity
objectives would be detrimental to the search performance.
However, this may not be the case in deceptive fitness land-
scapes, where local fitness gradient is misleading. In such a
situation, increasing semantic distance to the target (fitness)
can in fact reduce the distance to the target measured in
the search space seen by specific operators. We hypothesize
that semantically-blind standard crossover induces relatively
rugged and deceptive landscape. This hypothesis would to
some extent explain why any type of diversity objective, re-
gardless of its antagonism, improves the search performance
in the context of this crossover operator.

On the other hand, according to Moraglio et al. [22], ge-
ometric semantic operators see cone landscapes which are
easy to search by fitness objective alone as they are not
deceptive at all. Even though we employ approximately ge-
ometric crossover, we expect that the corresponding fitness
landscape is still much smoother than the one induced by
traditional crossover. In such landscapes fitness-diversity
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Table 4: Median training error, test error and size of best-of-run individuals. For each problem and crossover
operator the best results are shown in bold. Underline indicates statistically significant superiority.

quartic nonic keijzer-4 r1 r2

train test size train test size train test size train test size train test size

GP 0.071 0.088 124 0.059 0.062 94 0.057 0.284 229 0.040 0.059 92 0.060 0.064 75
AFPO 0.031 0.034 72 0.022 0.027 84 0.024 0.111 121 0.019 0.019 69 0.016 0.016 77
DFPO 0.008 0.009 123 0.009 0.013 138 0.015 0.089 161 0.009 0.009 100 0.008 0.008 135
ESNFPO 0.026 0.050 128 0.029 0.052 125 0.015 0.210 143 0.018 0.030 111 0.016 0.022 87

s
t
a
n
d
a
r
d

ASNFPO 0.019 0.059 136 0.011 0.043 137 0.012 0.169 166 0.009 0.023 127 0.007 0.015 125

GP 0.011 0.033 284 0.010 0.029 295 0.012 0.415 300 0.010 0.019 257 0.005 0.005 183
AFPO 0.033 0.032 78 0.034 0.032 63 0.020 0.198 144 0.023 0.021 66 0.010 0.009 61
DFPO 0.016 0.016 89 0.019 0.018 86 0.010 0.340 248 0.011 0.011 83 0.005 0.005 80
ESNFPO 0.023 0.028 185 0.018 0.023 188 0.010 0.508 287 0.017 0.018 149 0.006 0.007 153

c
r
o
s
s
o
v
e
r

g
e
o
m

e
t
r
ic

ASNFPO 0.005 0.008 186 0.005 0.011 226 0.005 0.379 293 0.005 0.007 202 0.002 0.002 192

antagonism is much more likely to be detrimental. This
would explain weak performance achieved by using antago-
nistic Euclidean semantic novelty objective. Since angular
semantic novelty, by contrast, is the only diversity objective
known to be non-antagonistic, it proves successful in the
context of the geometric crossover operator.

Finally, let us discuss two other reasons that could ex-
plain aforementioned discrepancy in results. First, by ana-
lyzing how fitness of perfectly geometric offspring depends
on the angular distance between its parents (cf. Fig. 1),
we expect that geometric crossover operator is able to effec-
tively exploit angular semantic diversity. Another synergis-
tic combination involves structural diversity (promoted by
the DFPO algorithm) and traditional syntactic crossover op-
erator. Both combinations of diversity objective and search
operator result in superior performance when compared to
other considered methods. Second, the reason why diversity
maintenance plays such an important (and beneficial) role
in GP equipped with traditional crossover is that in our ex-
periments we do not employ any mutation operator which
could supply new genetic material and explicitly sustain ge-
netic diversity in a population. In absence of mutation, we
expect that standard GP with subtree-swapping crossover
is particularly vulnerable to the problem of premature con-
vergence. This problem is less severe with locally geometric
crossover because it relies on a large library of procedures
which provides the population with new subtrees acting as
a simple diversity preserving mechanism.

7. CONCLUSIONS
In recent years, the issue of behavioral diversity and its

impact on the performance of evolutionary algorithms has
been studied in many different contexts [17, 23, 29]. To the
best of our knowledge, this is the first study that investi-
gates the role of behavioral diversity in genetic programming
equipped with semantic search operators. The main goal of
this work was to determine whether and under what con-
ditions promoting behavioral diversity can adversely affect
the performance of GP applied to symbolic regression.

The most important finding is that using an additional
diversity promoting objective can be indeed detrimental to
the search performance. However, such a situation was ob-
served only when both of the following conditions were met.
First, a specific search operator was employed, which sup-
posedly induced a smooth, non-deceptive fitness landscape.
Second, the behavioral diversity objective was inherently an-

tagonistic with the fitness objective. On the other hand, by
introducing a non-antagonistic angular semantic novelty ob-
jective, we were able to improve the results regardless of the
employed search operator. Importantly, this objective was
the only one that proved successful in the context of locally
geometric crossover operator.

The major limitation of this study is that our experimen-
tal investigations were conducted using a small set of five
univariate symbolic regression benchmarks. Although pro-
moting angular semantic diversity proved useful in this con-
text, further work is needed to verify whether these results
could be extended to more complex real-world problems.
In particular, it would be interesting to analyze how much
dimensionality of both feature space and semantic space
impacts the performance of particular diversity promoting
methods. Another direction of future research would be to
investigate the importance of behavioral diversity for other
semantic search operators.

In a broader perspective, our investigation indicates that a
diversity objective needs to be carefully chosen with respect
to the problem at hand and employed search algorithm. As
demonstrated by this study, using objectives that are an-
tagonistic with fitness was detrimental to the performance
of semantic GP. However, we expect that with increasing de-
ceptiveness in the fitness landscape, the consequences of us-
ing antagonistic objectives become more difficult to predict.
In particular, one could hypothesize that in highly decep-
tive fitness landscapes antagonistic diversity objectives are
more likely to be beneficial. This would be consistent with
previous studies demonstrating that in extremely deceptive
cases a successful way to increase search effectiveness is to
ignore fitness and use a novelty objective alone [16].
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