
Physical Scaffolding Accelerates
the Evolution of Robot Behavior

David Buckingham*,**
Tufts University

Josh Bongard†

University of Vermont

Keywords
Reality gap, minimal cognition, scaffolding,
evolution, simulation

Abstract In some evolutionary robotics experiments, evolved
robots are transferred from simulation to reality, while sensor/motor
data flows back from reality to improve the next transferral. We
envision a generalization of this approach: a simulation-to-reality
pipeline. In this pipeline, increasingly embodied agents flow up
through a sequence of increasingly physically realistic simulators,
while data flows back down to improve the next transferral between
neighboring simulators; physical reality is the last link in this chain. As
a first proof of concept, we introduce a two-link chain: A fast yet
low-fidelity (lo-fi) simulator hosts minimally embodied agents, which
gradually evolve controllers and morphologies to colonize a slow yet
high-fidelity (hi-fi) simulator. The agents are thus physically scaffolded.
We show here that, given the same computational budget, these
physically scaffolded robots reach higher performance in the hi-fi
simulator than do robots that only evolve in the hi-fi simulator,
but only for a sufficiently difficult task. These results suggest that
a simulation-to-reality pipeline may strike a good balance between
accelerating evolution in simulation while anchoring the results
in reality, free the investigator from having to prespecify the
robotʼs morphology, and pave the way to scalable, automated,
robot-generating systems.

1 Introduction

Evolutionary robotics [29] evaluates and modifies a large number of robots in some task environ-
ment to find those that exhibit desired behavior. Computer simulations of robots and their task
environments are frequently used in lieu of physical robots to save time and avoid damage to hard-
ware. However, significant challenges arise when solutions evolved in simulation are transferred to
physical robots. Evolution often exploits inaccuracies in a simulation so that when agents that were
successful in simulation are instantiated as physical robots, crossing the so-called reality gap [21], their
performance deteriorates.

Various approaches have been proposed to combat the reality gap problem, including proactive
methods that increase robustness of behavior before transferral [21, 27], retroactive methods that
return data obtained from reality to increase the likelihood of success during the next transferral
[5, 26, 11], and extreme methods that abandon simulation altogether [35, 7]. Here, we propose a

* Contact author.
** Department of Computer Science, Tufts University, Medford, MA 02155. E-mail: david.buckingham@tufts.edu
† Department of Computer Science, University of Vermont, 205 Farrell Hall, Burlington, VT 05405. E-mail: josh.bongard@uvm.edu

© 2017 Massachusetts Institute of Technology Artificial Life 23: 351–373 (2017) doi:10.1162/ARTL_a_00236

D
ow

nloaded from
 http://direct.m

it.edu/artl/article-pdf/23/3/351/1666847/artl_a_00236.pdf by guest on 04 Septem
ber 2021

new method: Establish a chain of task environments, beginning with minimally embodied agents
hosted in low-fidelity simulations, progressing to more embodied agents hosted in higher-fidelity
simulations, and concluding with the automated manufacture of physical robots (Figure 1). Mini-
mally embodied agents are less realistic, more abstract representations of real robots. They can be
simulated with fewer computational resources than their higher-fidelity counterparts, but are similar
enough that at least some aspects of agent control apply across simulations or in reality.

Second, this chain should be bidirectional, with agents flowing gradually forward toward manu-
facture, but also backward to receive more simulation, during the evolutionary process. Thus,
sensor/motor data generated in one simulator (or in reality) may flow backward to a previous sim-
ulator and be used to improve the likelihood of the successful future transferral of agents between
these neighboring stages.

Third, in all stages of the pipeline, agents are evolved to exhibit the same desired behavior. While
evolution should reward agents for their ability to perform the desired task, it should also reward
them for being evaluated in simulations with higher fidelity, that is, for being farther along the chain
of task environments. If this is successfully implemented, one should observe agents of increasing
ability and transferability in lower-fidelity simulations invading and displacing less capable and less
transferable agents in higher-fidelity simulations (and reality). Here, ability refers generally to a con-
trollerʼs performance with respect to a behavioral task in one or more environments, while trans-
ferability implies similar performance between environments.

Finally, the morphologies of embodied agents in the intermediate simulators should evolve along
with their controllers. If a controller is transferred forward from a non- or minimally embodied agent
into the body of an embodied agent in a neighboring simulator, that body may either hinder or
facilitate that transferral. In other words, one morphology may support exploitation achieved by
evolution in the lower-fidelity simulator, while another morphology may invalidate that exploitation.
Consider an example: Energy-efficient walking may evolve in a simple biped in which the legs are
approximated as point masses. The controller that generates this walking behavior may fail when
transferred into a more realistic bipedal robot with nonuniform mass distributions along its legs.
However, it may transfer well into a different, more realistic bipedal robot that has uniform mass
distributions along its legs. Thus, morphologies may evolve that facilitate the flow of controllers
forward along the pipeline by enabling the retention of the controllersʼ function in increasingly
high-fidelity simulations. The best of these morphologies can then be manufactured and the best
controllers emplaced within them.

We hypothesize that such a pipeline may be superior to existing methods for the following rea-
son. Evolution in simulation, coupled with a few physical trials, can in some cases reduce the time

Figure 1. The proposed simulation-to-reality pipeline. (a) A fast yet crude lo-fi simulation hosts non-embodied agents.
(b) A slower yet more accurate hi-fi simulation hosts embodied agents. (c) A physical instantiation of one of the em-
bodied agents. (d) Controllers and/or bodies may flow up into the more accurate simulators. (e) Data may flow back
down to the cruder simulations to ease subsequent transferrals. (f) 3D printers may transfer embodied agents from
simulation to reality. (g) Data flows back from reality to ease the next simulation-to-reality transferral. (h) The pipeline
is scalable and may include many simulations to smooth the physicality gradient. This report describes our implemen-
tation of parts (a), (b), (d), and (e) of this diagram. (Robot photo, by Randy Montoya, of the Precision Urban Hopper
robot developed by Sandia National Laboratories and Boston Dynamics.)

D. Buckingham and J. Bongard Physical Scaffolding Accelerates the Evolution of Robot Behavior

352 Artificial Life Volume 23, Number 3

D
ow

nloaded from
 http://direct.m

it.edu/artl/article-pdf/23/3/351/1666847/artl_a_00236.pdf by guest on 04 Septem
ber 2021

required to reach some level of functionality with respect to performing evolution all on a physical
robot [5, 26, 11]. By extension, then, evolution in a faster, lo-fi simulator with gradual transferral to a
slower, hi-fi simulator may produce embodied agents of equal functionality in less time than evolv-
ing only in the hi-fi simulator. This performance advantage will only be obtained, however, if the
lo-fi simulation is a good scaffold for the hi-fi simulation, that is, if agents that evolve to perform a
behavior in the lo-fi simulator before being transferred to the hi-fi simulator are able to re-evolve this
behavior in their new environment more rapidly than if they had never been exposed to the lo-fi
simulator.

We refer to this process as physical scaffolding: Agents gradually evolve to become increasingly
embodied in higher-fidelity simulators (and eventually in reality) if appropriate morphologies evolve
to house and pass on evolving controllers arriving from lower-fidelity simulators. We introduce this
term to distinguish this phenomenon from robot shaping or environmental scaffolding [13, 36], in
which the robotʼs task environment gradually becomes more challenging, and from morphological
scaffolding [3, 6], in which the robotʼs morphology becomes more complex in the same task
environment.

As a first step toward demonstrating the performance benefits of such a pipeline, we investigated
a two-simulator chain composed of a lo-fi and a hi-fi simulator. We tested the hypothesis that, given
a fixed computational budget, evolution scaffolded by the lo-fi simulation yields robots in the hi-fi
simulation that outperform those produced by evolution without scaffolding. We found that this
is indeed the case, but only at a sufficient level of task difficulty, and only if the bodies of the
embodied agents are evolved along with their controllers.

The rest of this article is organized as follows: The next section provides a literature review to
place this work in context. Section 3 describes our methods. Section 4 provides our results. We
discuss these results in Section 5, and provide concluding remarks in Section 6.

2 Related Work

We have developed a novel type of evolutionary scaffolding to address the reality gap, and applied it
to a minimal cognition problem. Previous work has evolved solutions to minimal cognition prob-
lems in minimal simulations. Our technique uses minimal simulations as a scaffold to help produce
minimally cognitive behaviors in a more realistic simulation. In this section, we discuss related work
relevant to the reality gap problem, scaffolding, and minimal cognition.

2.1 The Reality Gap
The reality gap problem [21] refers to the challenge of transferring a robot (or just its controller)
evolved in simulation to reality while retaining its behavior. If evolution in simulation produces a
robot that performs a particular behavior in simulation, it will usually not perform the same behavior
once instantiated as a physical robot in the real world. First, even the best simulations cannot capture
all parts of the dynamical interaction between a robotʼs controller, its body, and the surrounding
environment. Furthermore, the real world introduces unpredictable features into this interaction,
such as sensor noise, air currents, and vibrations. Finally, evolutionary algorithms can discover
and exploit unrealistic nuances of physics engines, leading to high performance on fitness functions
that do not correspond to real-world possibilities. Efforts to address the reality gap problem include
avoiding simulation altogether, constraining or dynamically modifying the simulation so that it ac-
curately models aspects of robot behavior most important for successful transfer to reality, and
evolving the robot in multiple simulations or in both simulation and reality.

One approach is to forgo simulation (or minimize its use) and instead evaluate controllers on
physical robots. For example, there has been extensive work evolving behaviors directly on Khepera
robots [29]. Hornby et al. [18] evolved gaits on the quadrupedal AIBO robot that were robust
enough to withstand transfer to other AIBO robots and to walking on new types of surfaces. These
results demonstrate that evolutionary robotics can avoid the reality gap problem by not using

D. Buckingham and J. Bongard Physical Scaffolding Accelerates the Evolution of Robot Behavior

Artificial Life Volume 23, Number 3 353

D
ow

nloaded from
 http://direct.m

it.edu/artl/article-pdf/23/3/351/1666847/artl_a_00236.pdf by guest on 04 Septem
ber 2021

simulation: Robot behavior can be effectively evolved directly on hardware. However, the large
number of trials needed for evolution discourages the use of physical robots during the training
period [28]: Evolution in simulation can be much faster, easier, and cheaper. For example, in Hornby
et al. [18] an evolutionary run consisting of 500 evaluations required approximately 25 h, whereas
evaluations in simulation might be several orders of magnitude faster.

Others have tried to shrink the size of the reality gap by explicitly constraining the solution space.
The Golem project [34] used simulation to evolve robot controllers and morphologies simulta-
neously. They used a quasi-static simulation, which required the robot to be statically stable at each
time frame. Although this constrained possible behaviors, such quasi-static motion is more easily
transferred to reality. Francesca et al. [16] framed the reality gap problem in the context of a
bias-variance tradeoff. They proposed to inject bias into the robot design process in order to de-
crease the variance. This injection of bias involved reducing the representational power of the con-
troller by using probabilistic finite state machines instead of neural networks, thereby mitigating
overfitting to the simulated environment. They used this technique to produce swarm robot con-
trollers having comparable performance in simulation and in reality for aggregation and foraging
tasks. The application of this technique to a specific problem requires an “expert” to adapt it to
the given robotic platform and to pair it with an appropriate optimization process. Boeing et al.
[4] explicitly constrained their evolutionary search space to produce approximate control solutions.
This allowed evolution in simulation of a spline-based control system for bipedal locomotion that
could effectively cross the reality gap.

Other work has focused on evolving agents that are robust to differences between simulation and
reality. Jakobi et al. [21] used a physics-based simulation to evolve controllers for a Khepera robot to
perform obstacle-avoidance and light-seeking tasks, and added noise to the simulated sensors. The
simulation, which was based on empirical measurements of the physical system, captured important
features of the Kheperaʼs interactions with the environment but excluded other details that would
unnecessarily burden computation. Varying amounts of noise were added, affecting the quality of
the transfer. Because parts of the physical system not relevant to the target behavior either were not
modeled or were obscured by noise, evolution could not exploit them, and controllers were success-
fully transferred. In later work [22–24], varying levels of noise were used in conjunction with min-
imal simulations to cross the reality gap. The use of models that captured only some parts of the
environment forced evolution only to use certain key aspects of the agent-environment dynamics
and not to rely on parts of the simulation that might not correspond to reality.

Sometimes evolution begun in simulation can be continued in reality to correct losses suffered
during the transfer. Pollack et al. [33] used coevolution to simultaneously evolve robot bodies and
controllers in simulation. Successful agents were then produced as physical robots whose controllers
were subjected to further evolution. Thus, evolution in physical robots fine-tuned the results of
evolution in simulation, facilitating transfer across the reality gap. Miglino et al. [28] addressed
the reality gap in an object-avoidance task, using a Khepera robot and a simple simulated environ-
ment. The simulation was tuned to the dynamics of a particular robot-environment interaction by
sampling the physical robotʼs sensors and actuators. The gap between simulation and reality was
further reduced by adding noise to the simulated sensors. If a decrease in performance still occurred
when the controller was transferred to the real environment, perfectly performing results were ob-
tained by continuing the evolutionary process with the physical robot. Floreano and Urzelai [15]
evolved robot neural controllers that used synaptic plasticity to develop new behaviors “on the
fly.” These plastic controllers were then transferred to physical robots, where they could adapt
online to new conditions.

More recently, Koos et al. [25, 26] used a multi-objective evolutionary algorithm to search simul-
taneously for controllers that produced the desired behavior and for controllers with high transfer-
ability. Transferability was defined by a simulation-to-reality disparity measure that was evaluated
with a surrogate model of the true simulation-to-reality disparity. Evaluation of physical robot be-
havior was needed only to develop these surrogate models. Their results suggest an antagonism
between fitness in simulation and transferability: Because the fitness function in simulation is only

D. Buckingham and J. Bongard Physical Scaffolding Accelerates the Evolution of Robot Behavior

354 Artificial Life Volume 23, Number 3

D
ow

nloaded from
 http://direct.m

it.edu/artl/article-pdf/23/3/351/1666847/artl_a_00236.pdf by guest on 04 Septem
ber 2021

an approximation of reality, it is necessarily “misleading,” and the best solutions in simulation may
not perform well in reality.

Some experiments have subjected robot controllers to multiple simulation environments. Celis
and Bongard [10] employed two different simulators that made different assumptions about how to
approximate physical laws. Quadrupedal robots were then evolved to succeed in both simulators. It
is possible that by using multiple simulators, evolution could be prevented from exploiting inaccu-
racies that are unique to one of them. By extension, the resulting evolved controllers might then
transfer well to reality, although this last step was not conducted.

In another approach to the reality gap problem, Bongard et al. [5] evolved the simulator itself to
better approximate reality. This not only enabled a physical robot to evolve a simulation of itself,
which it then used to evolve fast gaits, but it also re-evolved the simulation to reflect unexpected
damage and recover locomotion despite the injury. In a related project, Cully et al. [11] developed an
intelligent trial-and-error algorithm that allowed a robot to adapt quickly to physical damage or novel
environmental conditions. Before the robot was deployed, a simulation of the robot was used to
create a map of the space of high-performing behaviors. Because they had not yet been tested in
reality, the predicted performance of points on the map was initially assigned a low confidence.
When the robot was damaged, an information acquisition function balanced exploration of low-
confidence areas of the map and exploitation of points with expected high performance, allowing
for the rapid discovery of compensating behaviors. Zagal et al. [42] combined evaluation in physical
robots and in simulation into a single evolutionary framework. This framework automated the de-
termination of simulation characteristics to capture relevant features of the physical system. It in-
volved three simultaneous optimization processes: learning of the robot controller to minimize error
in a simulated environment, learning of the robot controller to minimize error in a physical robot,
and learning of simulator parameters to minimize differences between the fitness obtained in reality
and in simulation. This technique obtained locomotive gaits more than double the speed of a man-
ually developed gait.

Izquierdo and Bührmann [20] evolved a single controller to perform two qualitatively different
behaviors when placed in different simulated bodies. In a one-legged body the controller performed
legged locomotion, and in a wheeled body the controller performed chemotaxis. Further analysis
showed that the behaviors were a product of coupled dynamics between controller, body, and en-
vironment. While this work was not intended to address the reality gap problem, it demonstrates that
evolution can discover controllers that are robust to different body plans because behavior emerges
from controller-body-environment interactions. This suggests that controllers may be able to cross
the reality gap even if this involves significant changes in the task environment, as long as the
dynamical interactions between the controller, body, and environment also change in a way that
produces effective behavior.

2.2 Scaffolding
Doncieux and Mouret [12] reviewed evolutionary robotics strategies that focus on selective pres-
sures during evolution, including efforts to address the reality gap problem. They distinguished be-
tween “goal refiners,” which change the final solution of evolution, and “process helpers,” which try
to improve search efficiency. These categories were further divided into task-specific approaches,
which exploit qualities of a specific goal task, and task-agnostic approaches, which can be applied to
any evolutionary robotics problem. This work presented scaffolding as a type of incremental evo-
lution, where a target task is split into subtasks to be evolved in order, thereby applying selective
pressure to avoid premature convergence.

Adopting the terminology of Doncieux and Mouret [12], scaffolding is a “process helper” that
provides changing structure to an agent to help it learn how to perform a task. In general, scaffolding
facilitates learning by introducing gradation into a learning process [36] or, in the context of evolu-
tionary robotics, an evolutionary process. In our physical scaffolding method, the lo-fi simulator acts
as a scaffold to help controllers gradually acquire behavior to be performed in the hi-fi simulator.

D. Buckingham and J. Bongard Physical Scaffolding Accelerates the Evolution of Robot Behavior

Artificial Life Volume 23, Number 3 355

D
ow

nloaded from
 http://direct.m

it.edu/artl/article-pdf/23/3/351/1666847/artl_a_00236.pdf by guest on 04 Septem
ber 2021

Other kinds of scaffolds are also employed in evolutionary robotics. Approaches include making the
desired task easier, adding terms to the fitness function, and simplifying the robotʼs morphology.

Singh [38] trained a robot on a succession of tasks, each of which required some subset of the
previously learned tasks plus a new task. This series of elemental tasks in turn made up a composite
task. Singh [38] used the term “shaping” to describe this technique, in reference to similar proce-
dures used by psychologists to train animals. The elemental tasks were Markovian decision tasks
(MDTs), where an agent specifies a control policy for a finite-state, discrete-time, stochastic dynam-
ical system to maximize a cumulative payoff. Composite tasks were ordered sequences of MDTs. A
novel learning technique, the CQ-learning architecture, used elemental tasks and subsequences of
tasks to solve composite tasks, and could also learn elemental tasks on which it had not been trained.

Saksida et al. [36] used “behavior editing” to train a robot to perform multiple complex tasks, all
derived from a single “innate” task. Human trainers used instrumental conditioning to supervise the
learning process, using rewards to shape the robotʼs behavior. Robot behaviors consisted of chains
of abstract states connected to each other by transition links, and possibly associated with concrete
actions (e.g., raise arm) by activation links. This model produced different aspects of shaping by
using several learning mechanisms: modifying state transitions; modifying preconditions that deter-
mine how stimuli cause behaviors; fading, where a target is slowly moved farther away; stimulus
discrimination and generalization; and shaping action topography, where rewards are used to adjust
individual actions. Behaviors learned included “follow the trainer,” discriminating toys based on
color, and playing fetch.

Dorigo and Colombetti [14] used “shaping” gradually to teach a robot to perform complex
behavior patterns composed of simpler behaviors. Learning was implemented by an evolutionary
algorithm which generated networks of classifier systems to control the robotʼs behavior. In holistic
shaping, the whole network of classifier systems was trained together. In modular shaping, different
components were trained separately. Unlike classical reinforcement learning, this shaping technique
involved an external trainer, implemented as a reinforcement program, which made suggestions to
be translated into effective classifier systems through learning. Similarly, investigators in the field of
developmental robotics often introduce learning gradients such that their robots gradually acquire
complex skills [9].

In the work of Berthouze and Lungarella [3], a humanoid robot learned a swinging task by ex-
ploring oscillator parameters to control joints. The discovered behavior was robust to the addition of
nonlinear perturbations only if the number of degrees of freedom subject to exploration was varied:
Alternate freezing and freeing of the degrees of freedom was enforced during the learning process.
A progressive release of degrees of freedom, without alternating freezing and freedom, was not
sufficient to cope with the perturbations.

Bongard [6] found that morphological change can facilitate the evolution of legged phototaxis
behavior. Early in evolution, robots grew from anguilliform into legged robots during their lifetime.
Over evolutionary time, the anguilliform stage was gradually lost, so that during the later stages of
evolution the robots did not grow during their lifetime. Successful gaits for legged robots were
found more rapidly, and the gaits were more robust to perturbing noise, than in evolving populations
of legged robots that did not go through the anguilliform stage.

2.3 Minimal Cognition
Minimal cognition tasks are as simple as possible while still involving cognitively interesting issues.
For evolutionary robotics, minimally cognitive behaviors may compose necessary qualities of agents
able to interact intelligently with a cognitively challenging world.

Beer [2] evolved dynamical neural networks to perform simplified versions of visually guided
orientation, object discrimination, and accurate pointing toward objects. Slocum et al. [39] extended
this work to a wider range of more complicated minimally cognitive tasks. These included the
perception of affordances, self/non-self-discrimination, short-term memory, and selective attention.

D. Buckingham and J. Bongard Physical Scaffolding Accelerates the Evolution of Robot Behavior

356 Artificial Life Volume 23, Number 3

D
ow

nloaded from
 http://direct.m

it.edu/artl/article-pdf/23/3/351/1666847/artl_a_00236.pdf by guest on 04 Septem
ber 2021

Tuci et al. [40] evolved a controller for a minimal, two-dimensional model of a Khepera robot to
exhibit learning behavior. The task environment required the robot to move to a goal location that
could only be perceived once the robot reached it. A landmark light source could always be per-
ceived. In landmark-near trials the light source was on the same side of the environment as the goal;
in landmark-far trials it was on the opposite side. All trials within a set of trials were either landmark-
near or landmark-far: The robot had to learn which condition pertained to a set of trials in order to
perform well. Previous efforts to evolve solutions to this task had been unsuccessful [41]. Tuci et al.
[40] accomplished it by adding a scaling factor to the fitness function to increase the fitness score
in the landmark-near environment. This adjustment applied evolutionary pressure for solutions
to pay attention to the light source, a prerequisite to learning to use the light source to distinguish
landmark-near from landmark-far environments.

Buhrmann et al. [8] used a minimal model of active categorical perception to illustrate four pro-
posed “sensorimotor contingencies,” relations pertaining to agent-environment interaction and be-
havior. The first describes an open-loop relationship between sensory input changes and motor
activity. Another closes the loop by including changes internal to the agent. The third relation applies
the coordination of sensorimotor patterns to tasks. The final relation organizes behaviors by nor-
matively comparing such task-oriented patterns. In the active categorical perception task, the agent
moved along a one-dimensional environment and used a single sensor to detect two bell-shaped
gradients. The agent had to employ an active sensorimotor strategy to discriminate between wide
and narrow shapes.

Iizuka et al. [19] used a minimal simulation to extend a previous [30] homeostatic adaptation
model. A Khepera-like agent facing a phototaxis task was equipped with photosensors and an arti-
ficial neural network controller with adjustable weights. When low sensor activity caused controller
neural activity to fall out of homeostatic range, the weights were varied until homeostasis was re-
stored. The resulting phototaxis behavior was robust even to swapping the positions of the photo-
sensors on the agent during evaluation.

3 Methods

In this section, we describe our physical scaffolding method, evolutionary algorithm, task environ-
ments, and robot controller. Physical scaffolding is a novel means to address the reality gap. It helps
agents learn a desired behavior by gradually changing the structure of the task environment in which
the behavior is performed. Our experimental setup tests the effectiveness of physical scaffolding
using a two-step simulation pipeline. In each simulation, the agent must perform the same minimal
cognition task: selective attention. Solving selective attention requires an agent to determine which
of two moving targets will reach it first, track and intercept that target, and then intercept the other
target. The first (lo-fi) simulation presents selective attention abstractly, while the second (hi-fi) sim-
ulation presents the same task more concretely, in a more physically realistic setting. We tested the
pipeline by comparing experimental and control conditions. In the experimental condition, the evo-
lutionary algorithm implemented simulation scaffolding by automatically transitioning the evaluation
of robot controllers between less realistic and more realistic task environments over the course of
evolution. In the control condition, controllers were only evaluated in the hi-fi simulation: The lo-fi
simulation was not used.

3.1 Physical Scaffolding
Physical scaffolding uses a simpler simulation to improve the evolutionary search for desired behav-
ior in a more realistic simulation, or in reality, by automating the transition over evolutionary time
from less realistic to more realistic embodiment. In evolutionary robotics, a genome is a data struc-
ture containing genes that parameterize the controller and/or morphology of a specific robot. Evo-
lution can explore the space of possible robots by modifying genomes [29]. In our experiments,
robot controllers in both the hi-fi and the lo-fi simulators were specified by evolved genomes.

D. Buckingham and J. Bongard Physical Scaffolding Accelerates the Evolution of Robot Behavior

Artificial Life Volume 23, Number 3 357

D
ow

nloaded from
 http://direct.m

it.edu/artl/article-pdf/23/3/351/1666847/artl_a_00236.pdf by guest on 04 Septem
ber 2021

We discuss our evolutionary algorithm in more detail in Section 3.4. Our physical scaffolding scheme
augments the genomes that specify agent controllers with two sets of additional information. First,
genes were added to the genome specifying parameters for the hi-fi simulation. These permitted
evolution to tune the hi-fi simulation to make it easier for the lo-fi simulation to scaffold it. Second,
a simulation selection vector →v was evolved alongside the genome. When the evolutionary algorithm
evaluated the genome, →v determined how much of the evaluation took place in each simulator.

Evaluation involved up to T trials, where T depended on the experiment and was one of {10, 20,
25, 30}. Which of the T trials were actually used to evaluate an individual agent and in which sim-
ulation it was evaluated were determined by →v, which was composed of ternary values (0, 1, or 2) and
had length T . An individual was evaluated on each trial according to the values of the corresponding
elements of →v as follows:

0 → skip trial
1 → evaluate trial in the lo‐f i simulator
2 → evaluate trial in the hi‐f i simulator

For example, an agent with →v ¼ 0012000011ð Þwould be evaluated in the lo-fi simulator on the third,
ninth, and tenth trials and in the hi-fi simulator on the fourth trial. The availability of the “skip trial”
option allowed more gradual increasing of task difficulty than would be possible with only two
states: Early on, an agent could achieve high fitness without accomplishing all of the trials that it
would eventually face.

An agentʼs overall performance was determined by averaging the error from trials that were not
skipped (i.e., corresponding to a →v value of 1 or 2). A multi-objective evolutionary algorithm applied
pressure simultaneously toward increased evaluation in the hi-fi simulation and toward desirable
agent behavior. Thus, the investigator did not have to determine how to transition controllers to
the hi-fi simulation.

3.2 Task Environments
Selective attention, described by Slocum et al. [39] as the most difficult minimal cognition problem
they considered, is the target behavior for our experiments. A horizontally moving agent must in-
tercept two objects moving at different horizontal and vertical velocities (Figure 2). The agent must
avoid being distracted by one object while orienting to the other. The task is complicated by two
additional problems. The passing objects problem occurs when an object that is farther away reaches
the agent first because it is moving faster. The object permanence problem occurs when one object
moves outside the agentʼs field of view while the agent is intercepting the other object. In our

Figure 2. (a) The lo-fi simulation. (b) The hi-fi simulation.

D. Buckingham and J. Bongard Physical Scaffolding Accelerates the Evolution of Robot Behavior

358 Artificial Life Volume 23, Number 3

D
ow

nloaded from
 http://direct.m

it.edu/artl/article-pdf/23/3/351/1666847/artl_a_00236.pdf by guest on 04 Septem
ber 2021

simulation pipeline, agents evolved to perform this selective attention task in the lo-fi simulator
gradually evolved the ability to retain this behavior when embodied in the hi-fi simulator.

Both the lo-fi and hi-fi simulations were implemented using the open-source Bullet Physics
Library. While the robotʼs movement range was unbounded, a box containing the extreme possible
positions of the targets, derived from Equation 3 and Table 1, was 289.5A wide and 371.875A tall,
where A refers to an arbitrary unit of distance. At the outset of each evaluation, the robot was placed
at the origin of the environment. The robot in the lo-fi simulation (Figure 2a) was modeled kine-
matically and had a diameter of 15A. The robot moved linearly along the x axis with velocity pro-
portional to output from the controller with a constant of proportionality of 5. The hi-fi simulation
used the full features of the physics engine, including friction, momentum, and collision. The robot
in this simulation (Figure 2b) consisted of a rectangular solid with dimensions length = 40A, width =
20A, and height = 5A, and four cylindrical wheels with width = 3A and variable radius. The wheels
were connected to the bottom edges of the base by rotating joints. Agent movement was con-
strained to two dimensions so that it could translate along the x and z axes and rotate around
the x and y axes, but could not translate along the y axis or rotate around the z axis. This was nec-
essary because, even though target wheel velocities were always equal, nuances in the physics engine
could otherwise cause the agent to turn and leave the y = 0 plane.

Ten proximity sensors were projected from the agentʼs center in both the lo-fi and hi-fi simu-
lators. The angles of the sensors were evenly distributed across an arc of k/6 rad. Each sensor had a
range a of 205A. If it did not intersect with a target within that distance, then its length E was equal
to a. If the sensor did intersect with a target, then E was set to the distance from the robot to the
target. The sensor returned a value according to

I ¼ 10 1 − E=að Þð Þ (1)

These sensor values were input as Ii to the 10 input neurons in the CTRNN, as shown in Equation 5.
If both targets were in the path of a sensor, the closer of the two would obscure the more distant
one.

Two targets, a and b, which were modeled kinematically, were positioned shifted along the x and
y axes relative to the robot. Each time step, both targets were displaced constant distances along
both the x and y axes. Each target was defined by

x0; yx ; yy;ω
� �

(2)

where x0 denotes the objectʼs unscaled initial x position, yx denotes the change along the x axis per
time step (horizontal speed) and could be either positive or negative, yy denotes change along the
y axis per time step (vertical speed) and was always negative, and ω denotes a scaling factor. The
actual starting position of a target was

x ¼ x0 : ωþ 1ð ÞA; y ¼ h: ωþ 1ð ÞA; z ¼ 0A (3)

where h was set to 212.5. This value was selected to place targets having ω = 0 at the extreme limit
of all of the robotʼs sensors. Since each sensor had a range of 205A, the leftmost and rightmost
sensors were angled at k/12 rad to the y axis, and the targets had a radius of 13A, an agent with
ω = 0 starting at the x position of the leftmost or rightmost sensor would barely overlap that sensor.

The targets began at positions with positive values on the y axis. As the targetsʼ y positions
changed with constant speed, they moved toward the line along which the agent could move, that
is, y = 0. The targetsʼ x positions also changed with constant speed. A controllerʼs performance
depended on minimizing the distance between the agent and each target as the targets intersected
the line on which the agent moved (Equation 4).

D. Buckingham and J. Bongard Physical Scaffolding Accelerates the Evolution of Robot Behavior

Artificial Life Volume 23, Number 3 359

D
ow

nloaded from
 http://direct.m

it.edu/artl/article-pdf/23/3/351/1666847/artl_a_00236.pdf by guest on 04 Septem
ber 2021

Table 1. Target starting position and movement parameters.

Trial

Target a Target b

x0 yx yy ω x0 yx yy ω

1 0 0.5 1 0 40 −0.5 2.5 0

2 −55 1.0 1 0 45 −0.7 2.5 0

3 55 0 1 0 −45 0 2.5 0

4 0 0 1 0 −45 0.5 2.5 0

5 −25 −0.5 1 0 45 −0.25 2.5 0

6 55 0 1 0 45 −0.7 2.5 0.75

7 −75 0.9 1 0 −45 0.25 2.5 0.75

8 0 −0.35 1 0 −10 0.35 2.5 0.75

9 25 0.5 1 0 45 −0.25 2.5 0.75

10 −55 0 1 0 −45 0.7 2.5 0.75

11 0 −0.5 1 0 0 0.5 2 0

12 −55 0.7 1 0 65 −1.0 2 0

13 −55 0 1 0 0 0 2 0

14 0 0.5 1 0 −55 0 2 0

15 −55 −0.25 1 0 55 −0.5 2 0

16 55 −0.7 1 0 −25 0 2 0.75

17 −65 0 1 0 −65 0.9 2 0.75

18 0 0.35 1 0 0 −0.35 2 0.75

19 −55 −0.25 1 0 −55 0.5 2 0.75

20 −75 0.65 1 0 −55 0 2 0.75

21 0 0.5 1 0 0 −0.5 2 0

22 −55 1.0 1 0 65 −0.7 2 0

23 55 0 1 0 −55 0 2 0

24 0 0 1 0 −55 0.5 2 0

25 −25 −0.5 1 0 25 −0.25 2 0

D. Buckingham and J. Bongard Physical Scaffolding Accelerates the Evolution of Robot Behavior

360 Artificial Life Volume 23, Number 3

D
ow

nloaded from
 http://direct.m

it.edu/artl/article-pdf/23/3/351/1666847/artl_a_00236.pdf by guest on 04 Septem
ber 2021

The error e on a specific trial t was determined according to

et ¼ xa fa
� �

− xr fa
� ��� ��þ xb fb

� �
− xr fb

� ��� �� (4)

where a and b denote the two targets, r is the agent, fi is the first time step when the y coordinate
of i was less than or equal to 0, and xi (t) is the x coordinate of i at time t.

Three aspects of this hi-fi simulation varied in the experiments reported below: the amount of
friction between the wheels and the ground (f), the wheel radius (U), and the motor gain (g). These
parameters applied only to the hi-fi simulation. The motor gain was multiplied by the controller
output (Equation 6) to determine the target angular velocity in radians per second, which was
applied equally to all four joints. In the experiments reported below, each of the morphological
parameters was either evolved or fixed. When parameters were evolved, their values were mapped
linearly from genes in the unit interval [0, 1], a range selected following previous work [20], to
the following ranges: f 2 [0, 100], U 2 [0, 10], and g 2 [0, 10]. The absolute value of the genes
was used so that, even though these parameters could evolve beyond the specified ranges, they
could not become negative. In experiments where these morphological parameters were not
evolved, they were fixed at the following values: f = 162.972, U = 2.268, g = 21.180. These values
were determined by a separate evolutionary run where a controller evolved using the lo-fi simulation
was transferred to the hi-fi simulation. Genes specifying the controller were then held constant while
the three morphological parameters were evolved in the hi-fi simulation until the error approached
that in the lo-fi simulation. This required only a few minutes of evolution in the hi-fi simulator.

Figure 3 plots the behavior of a single evolved controller in each of the two simulation environ-
ments. Behavior in the two environments is markedly different: The agent in the lo-fi simulation
changes direction frequently and rapidly, while the hi-fi agent changes direction more gradually.
The hi-fi agent is more constrained by the laws of physics than the lo-fi agent: It has mass and momen-
tum, and its wheels can slip or lift off the ground entirely. Nevertheless, the controller is able to intercept
the targets in both environments.

3.3 Controller
Agents were controlled by a continuous-time recurrent neural network (CTRNN) [1] defined by the
following state equation:

H i
:
y i ¼ −yi þ

XN

j¼1

wjij g j yj þ uj
� �� �

þ Ii ; i ¼ 1;…;N (5)

Table 1. (continued)

Trial

Target a Target b

x0 yx yy ω x0 yx yy ω

26 55 0 1 0 25 −0.7 2 0.75

27 −75 0.9 1 0 −35 0.25 2 0.75

28 0 −0.35 1 0 0 0.35 2 0.75

29 25 0.5 1 0 25 −0.25 2 0.75

30 −55 0 1 0 −35 0.7 2 0.75

Notes. Each trial contained two targets. Each target was defined by x0 (the initial x position), yx (change along the
x axis each time step), y y (change along the y axis each time step), and ω (y-axis offset).

D. Buckingham and J. Bongard Physical Scaffolding Accelerates the Evolution of Robot Behavior

Artificial Life Volume 23, Number 3 361

D
ow

nloaded from
 http://direct.m

it.edu/artl/article-pdf/23/3/351/1666847/artl_a_00236.pdf by guest on 04 Septem
ber 2021

where yi is the value of the i th neuron; j(x) = (1 + e−x)−1 is a sigmoidal function which, when
supplied with the value of yi , produces the neuronʼs output; Hi is its time constant; wji is the strength
of the connection from the j th to the i th neuron; g i is that neuronʼs gain; ui is its bias; and Ii is an
external input from a sensor. For the hidden and output neurons, I was fixed at 0. For each of the
input neurons, I was associated with a sensor.

There were 10 input neurons, 10 hidden neurons, and two output neurons. Input neurons projected
to both the hidden neurons and the output neurons, the hidden neurons were fully interconnected
and projected to the output neurons, and the output neurons were fully interconnected. Neuron
states were initialized to 0. The CTRNN was integrated using the forward Euler method with an
integration step size of 0.333.

The CTRNN was parameterized by →c , a vector of real numbers generated by the evolutionary algo-
rithm. Elements of →c (genes) in the range [0, 1] were mapped linearly into CTRNN parameters with the
following ranges: connection weights 2 [−5, 5], input neuron biases 2 [−10, 0], hidden and output neu-
ron biases2 [−5, 5], gains2 [1, 5], and time constants2 [1, 2]. All input neurons shared a single gain and
a single bias. The gains of the output neurons were fixed at 1. Because genes could assume values outside
[0, 1] during the course of evolution, the CTRNN parameters could also move outside these initial
ranges. Nevertheless, gains were always clipped to be greater than zero, and time constants were clipped
to be greater than one. The CTRNN was bilaterally symmetric: On each side of the axis of symmetry
were five input neurons, five hidden neurons, and one output neuron. Each neuron and each synapse
had a mirrored counterpart with equal neuron parameters and connection weights. This symmetry
halved the number of genes encoding the CTRNN.1 The output of the CTRNN was calculated as

output ¼ j ga ya þ uað Þð Þ− j gb yb þ ubð Þð Þ (6)

where a and b index the two output neurons.

1 This CTRNN architecture was taken from Slocum et al. [39] with the following minor changes: We used 10 input neurons and sensors
instead of 9. We used an integration step size of 0.333 instead of 0.1. Our initial gene range was [0, 1] instead of [−1, 1]. We mapped
biases to [−5, 5] instead of [−10, 0].

Figure 3. Comparison of behaviors for a single controller, for a single trial, placed in the lo-fi and hi-fi simulators.
Stars mark the time and x position of targets when they reach the agent at y = 0.

D. Buckingham and J. Bongard Physical Scaffolding Accelerates the Evolution of Robot Behavior

362 Artificial Life Volume 23, Number 3

D
ow

nloaded from
 http://direct.m

it.edu/artl/article-pdf/23/3/351/1666847/artl_a_00236.pdf by guest on 04 Septem
ber 2021

3.4 Evolutionary Algorithm
An evolutionary algorithm is an iterative, metaheuristic algorithm. It uses mechanisms inspired by
biological evolution to explore a parameter space in search of effective solutions to some problem. A
variety of possible solutions are evaluated, and those that perform well are selected and modified to
produce new solutions, which are in turn evaluated and reproduced in an iterative process. Evolu-
tionary algorithms are not guaranteed to converge on an optimal solution. However, by combining
variation with performance-based selection, they can find effective solutions to many problems.
Evolutionary algorithms are particularly useful for exploring very large search spaces like robot con-
troller parameterization.

We used age-fitness Pareto optimization (AFPO) [37], a multi-objective evolutionary algorithm designed
to prevent early convergence by regularly introducing new genetic material into the population. Each
generation, AFPO creates a new individual with age 1 and adds it to the population while incrementing
the age of all other solutions. In order to maintain new genetic material in the population, the selection
and reproduction process balances the objectives of low error and low age. We augmented AFPO by
adding a third objective: maximize physicality, where physicality is defined as sum(→v), the sum of the
simulation selection vector. The evolutionary algorithm used age (i.e., the number of generations a
genome has been subject to evolution since being randomly generated), along with error and physicality,
to select controllers for reproduction. Selection was based on identifying non-dominated solutions: A
solution dominated another if it had lower age, lower error, and higher sum(→v), and a solution was
non-dominated only if it was not dominated by any other solution in the population. That is, a
solution was selected for reproduction only if no other solution surpassed it in all three objectives.

An evolutionary run was initialized by creating an empty population of genomes (individuals).
Then, each generation of the evolutionary cycle proceeded as follows:

1. Increment the age of all individuals in the population.

2. Generate a new individual with age one, evaluate it, and add it to the population.

3. Until the number of individuals equals the population size,

(a) select a parent individual that was not created by replication this generation,

(b) replicate the parent and mutate it to create a child,

(c) evaluate the child and add it to the population.

4. Remove all dominated individuals from the population, leaving a non-dominated front.

5. Unless the time limit has been reached, return to the first step.

The initial population size was 400. In the event that the size of the non-dominated front reached
this population limit, the limit was automatically increased by 25. This was necessary because if the
non-dominated front constituted the entire population, neither the introduction of new genetic ma-
terial (step 2) nor reproduction with mutation (step 3) would be possible, and population change
would cease.

Each individual consisted of a three-part genome: →c , a vector of 142 real values that param-
eterized the CTRNN;

→

k, a vector of three real values that specified the morphological parameters
of the hi-fi simulation; and →v , the simulation selection vector defined in Section 3.2. When a new
individual was generated, elements of →c and

→

k were drawn from a uniform distribution in [0, 1]. One
element of →v was selected at random and set to 1, while the remaining elements were set to 0.

When an individual was reproduced, mutation was applied to each part of the genome. Each
element of →c was mutated with probability 0.05 by adding to it a value drawn from a Gaussian
distribution with a mean of A = 0 and a standard deviation of j = 1. Each element of

→

k was
mutated with probability 0.2 by adding to it a value drawn from a Gaussian distribution with A = 0
and j = 0.5. Mutation was free to move elements of →c and

→

k outside their original range of

D. Buckingham and J. Bongard Physical Scaffolding Accelerates the Evolution of Robot Behavior

Artificial Life Volume 23, Number 3 363

D
ow

nloaded from
 http://direct.m

it.edu/artl/article-pdf/23/3/351/1666847/artl_a_00236.pdf by guest on 04 Septem
ber 2021

[0, 1]. Each element of →v was mutated with probability 0.1 by adding to it, with equal proba-
bility, either 1 or 2. This addition occurred modulo 2, so that elements of →v were always integers
in the range [0, 2].

4 Results

For each of the experiments described below, thirty independent evolutionary runs were performed
each for a control condition and for an experimental condition. In the experimental condition, sim-
ulation scaffolding was employed as discussed in Section 3.2. In the control condition, simulation
scaffolding was suppressed. This was accomplished by discarding the lo-fi simulator and redefining
the elements of →v as follows:

0 → skip trial
1 → evaluate trial in the hi‐f i simulator
2 → evaluate trial in the hi‐f i simulator

Figure 4 shows the behavior of a typical, successfully evolved controller. The controller solves
the selective attention task in both the lo-fi simulator and the hi-fi simulator.

We measured performance with respect to a fixed computational budget measured in CPU hours
of evaluation time. Evaluation time is defined as the accumulated CPU time spent running simula-
tions to evaluate agents. This included time used by the CPU to execute simulation code and system
calls made by the simulation, but excluded time while the CPU was idle or executing other code such
as the evolutionary algorithm. We used evaluation time to measure performance because it is a com-
mon constraint in evolutionary robotics experiments, whether evaluation takes place in simulation or
on physical robots. The actual time each experiment ran was bounded by a wall-clock time limit, and
the total evaluation time varied. We truncated the results of all experiments to the minimum total
evaluation time so that the amount of evaluation time considered for each experiment was 13 h.

First, we conducted vary-trials experiments where all three morphological parameters were
evolved and the number of trials, T , was varied in {10, 20, 25, 30}, that is, there were four
vary-trials experiments. The purpose of these experiments was to determine the number of trials
needed for physical scaffolding to improve evolution. Increasing the number of trials made the
learning task more difficult, because solutions were evaluated on a greater number of tasks. Thus,
increasing the number of trials to 30 increased the error generally, but also increased the advantage of
physical scaffolding over the control condition. Given that some trials could be more or less difficult
than others, and in order to ensure that each set of trials was strictly more difficult than any smaller set,
each set included all smaller sets. For experiments where T ¼ 10, only the first ten trials were used; for

Figure 4. Time series showing a single evaluation of a typical successful, evolved controller performing the selective
attention task. (a) The minimally embodied agent in the lo-fi simulator. (b) The more embodied agent in the hi-fi sim-
ulator. This example demonstrates both the passing object problem and the object permanence problem.

D. Buckingham and J. Bongard Physical Scaffolding Accelerates the Evolution of Robot Behavior

364 Artificial Life Volume 23, Number 3

D
ow

nloaded from
 http://direct.m

it.edu/artl/article-pdf/23/3/351/1666847/artl_a_00236.pdf by guest on 04 Septem
ber 2021

experiments where T ¼ 20, the first 20 trials were used; and for experiments where T ¼ 25, the first
25 trials were used (Table 1).

Second, we conducted vary-parameters experiments where T was held at 30 and the subset of the
morphological parameters subject to evolution varied. We will use the notation M = {F,R,G} to
indicate all eight possible combinations of evolved and constant morphological parameters, where F,
R, and G are binary values indicating whether the friction, wheel radius, and gain parameters,
respectively, were evolved. For example, M = {1,0,1} indicates the case where the friction and gain
were evolved, but the wheel radius was held constant. We ran experiments for each possible com-
bination of evolved and fixed parameters, without redoing the case where all parameters were
evolved, that is, M = {1,1,1}. Thus, we conducted 23 − 1 = 7 vary-parameter experiments.

During an evolutionary run, the best error was recorded at the end of each hour of evaluation
time. The best error was determined to be the lowest error among the individuals whose →v contained
all 2ʼs. If no such individual existed, the one with the lowest error among those with the largest sum
(→v) was reevaluated with all elements in its →v set to 2 to determine the best error.

The vary-trials performance showed that physical scaffolding improved performance when 30
evaluation trials were used, while the vary-parameters performance showed that physical scaffolding
improved performance for M = {1,0,0} and M = {1,1,1}. These observations are demonstrated in
Figures 5 and 6. Figure 5 shows the best error averaged across 30 runs for each condition of each
vary-trials experiment. Figure 6 shows the best error averaged across 30 runs for each condition of
each vary-parameters experiment. Error bars show 95% confidence intervals. Asterisks indicate
p-values for a t-test with the alternative hypothesis that the best error was lower in the experimental
condition than in the control condition. A single asterisk indicates a p-value below 0.05, double
asterisks indicate a p-value below 0.01, and triple asterisks indicate a p-value below 0.001.

The assumption of independence implied by these methods might be unjustified, since the
performance of a run at some point in the evolutionary process could be correlated with earlier
or later performance. However, given that the samples were taken an hour apart (typically, ap-
proximately 70 generations) while the best agents were usually about half an hour old (typically,
30–40 generations), we present the results of hourly comparisons. Nevertheless, we will draw our
main conclusions from analysis of performance at the final, 13-h time point. At the final time point,
physical scaffolding produced lower error when the control method T was 30 and M was either
{1,1,1} or {1,0,0}.

Evolution tended to select for greater friction, smaller wheels, and less motor gain when scaf-
folding was used, suggesting that such values increase transferability. This is demonstrated by the
final evolved values of the genes corresponding to f, U, and g presented in Table 2. The p-values are
from t-tests with the alternative hypothesis that the difference between the control mean and the
experimental mean is nonzero. Low p-values indicate a statistically significant difference between the
values of the experimental and control conditions.

Individuals gradually transitioned to an increasing number of hi-fi simulations as they evolved.
However, the order in which hi-fi trials were added varied between individuals. Furthermore, for any
given trial the transition from being skipped, to lo-fi simulation, to hi-fi simulation was not mono-
tonic. This is demonstrated by Figures 7 and 8, which show the evolution of the simulation selection
vector →v over the lifetime of the most successful individual from nine randomly selected control
and experimental runs, respectively, with T ¼ 30 and M = {1,1,1}. Columns show the state of →v
from when the individual is first produced (leftmost column) to the end of the evolutionary run
(rightmost column): Black indicates a value of 0 (skip trial), dark gray indicates 1 (lo-fi for experi-
mental, hi-fi for control), and light gray indicates 2 (hi-fi).

5 Discussion

Our experiments tested the simulation-to-reality pipeline by performing one set of experiments vary-
ing the number of trials used to evaluate controllers and a second set of experiments varying the set

D. Buckingham and J. Bongard Physical Scaffolding Accelerates the Evolution of Robot Behavior

Artificial Life Volume 23, Number 3 365

D
ow

nloaded from
 http://direct.m

it.edu/artl/article-pdf/23/3/351/1666847/artl_a_00236.pdf by guest on 04 Septem
ber 2021

of morphological parameters subject to evolution. We compared the errors of the best evolved
solutions from an experimental condition that employed our physical scaffolding technique against
a control condition that did not use physical scaffolding. Results show that physical scaffolding
decreased error for some of the experimental treatments. Among the experiments varying the number
of evaluation trials, physical scaffolding outperformed the control condition when 30 trials were
used. When the evolved set of morphological parameters varied, physical scaffolding helped when
ground friction alone was evolved or when ground friction, wheel size, and motor gain were all
evolved.

Overall, in the vary-trials experimentsʼ performance decreased as the number of trials increased.
This indicates that evaluation on more trials is in some sense more difficult than on fewer trials. In
experiments with T ¼ 10, T ¼ 20, and T ¼ 25, error decreases as the amount of computation time
increases, but there is no statistically significant (p < 0.05) difference between the control and
experimental conditions. Evolution works but it is not improved by the physical scaffolding regime.

Figure 5. Vary-trials results. Error for control (no physical scaffolding) and experimental (with physical scaffolding) con-
ditions with 10, 20, 25, and 30 evaluation trials. All three morphological parameters were subject to evolution. Asterisks
indicate p-values below 0.05, and double asterisks indicate p-values below 0.01, for the alternative hypothesis that the
experimental condition had lower error than the control condition. Results were averaged over 30 experimental
repetitions. Error bars indicate 95% confidence intervals.

D. Buckingham and J. Bongard Physical Scaffolding Accelerates the Evolution of Robot Behavior

366 Artificial Life Volume 23, Number 3

D
ow

nloaded from
 http://direct.m

it.edu/artl/article-pdf/23/3/351/1666847/artl_a_00236.pdf by guest on 04 Septem
ber 2021

A significant difference in performance does emerge, however, when T is increased to 30. At the
final measured time point (13 h), the error of agents evolved with physical scaffolding is lower than
that of agents without (p < 0.05), given an equivalent computational budget. This difference in per-
formance begins to emerge after about 8 h of evolution. Thus, physical scaffolding improves evolved

Figure 6. Vary-parameters results. Error with and without physical scaffolding. Results are shown with each subset of the
three morphological parameters subject to evolution. Single asterisks indicate p-values below 0.05, double asterisks
indicate p-values below 0.01, and triple asterisks indicate p-values below 0.001 for the alternative hypothesis that
the experimental condition had lower error than the control condition. Results were averaged over 30 experimental
repetitions. Error bars indicate 95% confidence intervals.

Table 2. Mean and standard deviation of the hi-fi morphological parameters evolved with T ¼ 30 and M = {1,1,1}.

Control mean Experimental mean Control st. dev. Experimental st. dev. p-value

Friction 0.7305 1.0972 0.9999 1.6269 0.03063

Radius 0.4120 0.0130 1.0644 0.7739 0.04465

Gain 0.3148 0.0690 0.7611 1.2800 0.37861

D. Buckingham and J. Bongard Physical Scaffolding Accelerates the Evolution of Robot Behavior

Artificial Life Volume 23, Number 3 367

D
ow

nloaded from
 http://direct.m

it.edu/artl/article-pdf/23/3/351/1666847/artl_a_00236.pdf by guest on 04 Septem
ber 2021

performance, but only given a sufficiently difficult task and sufficient time. This suggests a
relationship between the complexity of the target behavior and the usefulness of our scaffolding tech-
nique. If the task is too simple, evolution can find solutions with low error equally well with or without
scaffolding. As the task becomes more complex, the value of the scaffold increases. Moreover, it
should be noted that the evolutionary improvement is specifically due to simulation scaffolding.
Environmental scaffolding, in which robots may be evaluated in only a subset of the available trials,
is possible in both the control and experimental conditions.

Scaffolding only provided an advantage when ground friction was the only evolved morpholog-
ical parameter (M = {1,0,0}), or when all three of the morphological parameters considered were
evolved (M = {1,1,1}). These results show that the body of the robot and its physical environment
significantly influence controller transferability. This phenomenon can be seen in Figure 3, where the
agent in the lo-fi simulation makes abrupt changes in direction while the agent in the hi-fi simulation,
because of its mass properties, exhibits less abrupt changes. Thus, evolution must find morpholog-
ical parameters that enable the hi-fi agent to move in a similar manner to the lo-fi agent in order to
increase the probability of transferability. When friction was evolved with either wheel radius (M =
{1,1,0}) or motor gain (M = {1,0,1}), but not both, scaffolding did not provide an advantage. It is
possible that, given the fixed value used for the wheel radius, it was difficult for evolution simulta-
neously to find effective values for friction and motor gain. Similarly, given the fixed value used for
the motor gain, it may have been difficult to find effective values for friction and wheel radius.

Figure 7. Evolution of →v for the best evolved individual from nine control condition runs. T ¼ 30, M = {1,1,1}. Columns
show the state of →v from when the individual is first produced (leftmost column) to the end of the evolutionary run
(rightmost column): Red indicates a value of 0 (skip trial), blue indicates 1 (lo-fi for experimental, hi-fi for control), and
gray indicates 2 (hi-fi).

D. Buckingham and J. Bongard Physical Scaffolding Accelerates the Evolution of Robot Behavior

368 Artificial Life Volume 23, Number 3

D
ow

nloaded from
 http://direct.m

it.edu/artl/article-pdf/23/3/351/1666847/artl_a_00236.pdf by guest on 04 Septem
ber 2021

Statistics describing the evolved hi-fi simulation parameters (Table 2) suggest that evolution may
have preferred greater friction, smaller wheels, and less motor gain when scaffolding was used.
However, there may be changes in morphology that occurred within a lineage during evolution that
are not reflected in these final morphological parameter values. For example, a hi-fi agent may evolve
high motor gain to achieve rapid changes in acceleration like the lo-fi agent, but its offspring may
evolve lower motor gains to enable success in a few of the remaining unsolved trials. This may result
in final motor gain values that are very similar to those observed in the control runs without sim-
ulation scaffolding. Note that, because these parameters apply only to the hi-fi simulation, evaluation
in the lo-fi simulation introduces noise into their evolutionary trajectories; only the hi-fi simulation
exerts meaningful evolutionary pressure on these variables.

Rather than removing physical and environmental scaffolding according to a fixed schedule, we
have demonstrated how the amount of scaffolding can be placed under evolutionary control and
thus automated. This places evolutionary pressure on agents to solve the task in the hi-fi simulation
in a way that facilitates transferability from the lo-fi simulation. Furthermore, the ability of mutation
to decrease the values of elements of →v allows for agents to move “backwards” in the pipeline as
depicted by arrows e and g in Figure 1, bringing genetic material evolved in the hi-fi simulation back
into the lo-fi simulation.

Figures 7 and 8 provide some insight into how agents moved along the simulation-to-reality pipe-
line. In general, →v evolved from all 0ʼs with a single 1, to all 2ʼs, over about 30 to 40 generations.
That is, the best agents gradually transitioned from experiencing a single trial to experiencing all trials
in the hi-fi simulator. In the experimental condition, a period in the lo-fi simulation often intervened
before the hi-fi simulation, although in some cases evolution bypassed the lo-fi simulation. This

Figure 8. Evolution of →v for the best evolved individual from nine experimental condition runs. T ¼ 30, M = {1,1,1}.

D. Buckingham and J. Bongard Physical Scaffolding Accelerates the Evolution of Robot Behavior

Artificial Life Volume 23, Number 3 369

D
ow

nloaded from
 http://direct.m

it.edu/artl/article-pdf/23/3/351/1666847/artl_a_00236.pdf by guest on 04 Septem
ber 2021

progression was not monotonic. Values of →v sometimes decreased from 2 to 1, or even 0, before
returning to 2, corresponding to temporary backwards movement through the physical scaffolding
pipeline. No clear trends emerge distinguishing the 30 trials. Patterns could be possible: for example,
trial 13 seems usually to be selected for evaluation earlier than most trials, suggesting that this trial
might be relatively easy. However, further analysis is needed to understand the forces governing the
route taken by →v during evolution.

Scaling up to tasks that require many more than 30 trials to evolve robustness as well as success
raises a challenge. As the number of trials grows, so too does the number of possible values for sum
(→v) (Figure 9). This greatly magnifies the number of non-dominated solutions that may exist in the
population, thus necessitating a further increase in population size. Managing the size of the non-
dominated front will thus be a priority area for future investigation.

In the proposed framework, the utility of a given morphology is its ability to facilitate the flow of
controllers up the pipeline. In other work (e.g., [32, 31, 17]), morphologies have been designed or
evolved to facilitate “morphological computation”: the ability of the body to perform computations
that would otherwise have to be explicitly performed by the controller. In future work it would be
worthwhile to investigate whether morphologies evolve, within this paradigm, that support both
functions.

Future work will investigate how our method scales to even more challenging tasks, to yield ro-
bustness as well as success. We will also subject more aspects of the simulations to evolutionary
control by increasing the number of evolved parameters. Which simulation parameters facilitate
transferability—and how those parameters differ for different tasks and robots—will also be studied.
The pipeline will be expanded to admit three or more stages, or perhaps a physicality continuum that
could be increased in a continuous, rather than a discrete, manner. These advances will allow a more
gradual transition from the most abstract and computationally fast simulations up to extremely re-
alistic models. The effects of the “skip trial” option in the simulation selection vector should be
further explored to determine whether evolution should have the option of ignoring some trials
during evaluation. Finally, the pipeline should be integrated with rapid prototyping technologies
to allow for the deployment of physical robots and the collection of sensor/motor data to automat-
ically improve the pipeline itself. These approaches promise to move us closer to an automated
evolutionary process capable of crossing the reality gap.

Figure 9. Size of the non-dominated front over evolutionary time. Averages across all vary-trials experiments.

D. Buckingham and J. Bongard Physical Scaffolding Accelerates the Evolution of Robot Behavior

370 Artificial Life Volume 23, Number 3

D
ow

nloaded from
 http://direct.m

it.edu/artl/article-pdf/23/3/351/1666847/artl_a_00236.pdf by guest on 04 Septem
ber 2021

6 Conclusion

This work demonstrates the feasibility of constructing a simulation-to-reality pipeline for evolution-
ary robotics, in which increasingly embodied agents evolve upward through increasingly physically
realistic simulations, and the most promising agents are manufactured and deployed. We have dem-
onstrated the feasibility of this approach by developing a technique that uses a low-physicality sim-
ulation to scaffold a high-physicality simulation, implementing a single step of the proposed pipeline.
Scaffolding accelerates evolution by offloading some of the evaluation of agent behavior from the
computationally demanding high-physicality simulation to the faster and more efficient low-
physicality simulation.

We found that scaffolding did not help when the task behavior was relatively simple or when
certain parameters of the high-physicality simulation were not under evolutionary control. However,
given a fixed computational budget, a relatively complex target behavior, and the ability to tune
the right simulation parameters to improve the scaffold, evolution produced better-performing
simulated robots using physical scaffolding than without it.

Acknowledgments
We would like to thank the Vermont Advanced Computing Core, which is supported by NASA
(NNX06AC88G) at the University of Vermont, for providing high-performance computing
resources that have contributed to this work. We would like to acknowledge support from the
NSF through grant PECASE-0953837.

References
1. Beer, R. D., & Gallagher, J. C. (1992). Evolving dynamical neural networks for adaptive behavior. Adaptive

Behavior, 1(1), 91–122.

2. Beer, R. (1996). Toward the evolution of dynamical neural networks for minimally cognitive behavior.
In P. Maes, M. J. Mataric, J.-A. Meyere, J. Pollack, & S. W. Wilson (Eds.), From animals to animats 4:
Proceedings of the Fourth International Conference on Simulation of Adaptive Behavior (pp. 421–429). Cambridge, MA:
MIT Press.

3. Berthouze, L., & Lungarella, M. (2004). Motor skill acquisition under environmental perturbations: On the
necessity of alternate freezing and freeing of degrees of freedom. Adaptive Behavior, 12(1), 47–64.

4. Boeing, A., Hanham, S., & Bräunl, T. (2004). Evolving autonomous biped control from simulation to
reality. In S. Mukhopadhyay & G. S. Gupta (Eds.), Proceedings of the 2nd International Conference on Autonomous
Robots and Agents (pp. 440–445). Palmerston North, New Zealand: Massey University.

5. Bongard, J., Zykov, V., & Lipson, H. (2006). Resilient machines through continuous self-modeling. Science,
314(5802), 1118–1121.

6. Bongard, J. (2011). Morphological change in machines accelerates the evolution of robust behavior.
Proceedings of the National Academy of Sciences of the U.S.A., 108(4), 1234–1239.

7. Brodbeck, L., Hauser, S., & Iida, F. (2015). Morphological evolution of physical robots through model-free
phenotype development. PloS One, 10(6), e0128444.

8. Buhrmann, T., Di Paolo, E. A., & Barandiaran, X. (2013). A dynamical systems account of sensorimotor
contingencies. Frontiers in Psychology, 4(1), 285.

9. Cangelosi, A., Schlesinger, M., & Smith, L. B. (2015). Developmental robotics: From babies to robots. Cambridge,
MA: MIT Press.

10. Celis, S. E., & Bongard, J. (2012). Not all physics simulators can be wrong in the same way. In T. Soule
(Ed.), Proceedings of the 14th Annual Conference Companion on Genetic and Evolutionary Computation (pp. 659–660).
New York: ACM.

11. Cully, A., Clune, J., Tarapore, D., & Mouret, J.-B. (2015). Robots that can adapt like animals. Nature,
521(7553), 503–507.

12. Doncieux, S., & Mouret, J.-B. (2014). Beyond black-box optimization: A review of selective pressures for
evolutionary robotics. Evolutionary Intelligence, 7(2), 71–93.

D. Buckingham and J. Bongard Physical Scaffolding Accelerates the Evolution of Robot Behavior

Artificial Life Volume 23, Number 3 371

D
ow

nloaded from
 http://direct.m

it.edu/artl/article-pdf/23/3/351/1666847/artl_a_00236.pdf by guest on 04 Septem
ber 2021

13. Dorigo, M., & Colombetti, M. (1994). Robot shaping: Developing autonomous agents through learning.
Artificial Intelligence, 71(2), 321–370.

14. Dorigo, M., & Colombetti, M. (1998). Robot shaping: An experiment in behavior engineering. Cambridge, MA:
MIT Press.

15. Floreano, D., & Urzelai, J. (2001). Evolution of plastic control networks. Autonomous Robots, 11(3), 311–317.

16. Francesca, G., Brambilla, M., Brutschy, A., Trianni, V., & Birattari, M. (2014). Automode: A novel
approach to the automatic design of control software for robot swarms. Swarm Intelligence, 8(2), 89–112.

17. Hauser, H., Ijspeert, A. J., Füchslin, R. M., Pfeifer, R., & Maass, W. (2011). Towards a theoretical
foundation for morphological computation with compliant bodies. Biological Cybernetics, 105(5–6), 355–370.

18. Hornby, G. S., Takamura, S., Yokono, J., Hanagata, O., Yamamoto, T., & Fujita, M. (2000). Evolving
robust gaits with AIBO. In B. Carlisle & O. Khatib (Eds.), IEEE International Conference on Robotics and
Automation: Proceedings (pp. 3040–3045). Piscataway, NJ: IEEE.

19. Iizuka, H., Ando, H., & Maeda, T. (2013). Extended homeostatic adaptation model with metabolic
causation in plasticity mechanism—toward constructing a dynamic neural network model for mental
imagery. Adaptive Behavior, 21(4), 263–273.

20. Izquierdo, E., & Bührmann, T. (2008). Analysis of a dynamical recurrent neural network evolved for two
qualitatively different tasks: Walking and chemotaxis. In S. Bullock, J. Noble, R. A. Watson, & M. A. Bedau
(Eds.), Artificial life XI: Proceedings of the 11th International Conference on the Simulation and Synthesis of Living
Systems (pp. 257–264). Cambridge, MA: MIT Press.

21. Jakobi, N., Husbands, P., & Harvey, I. (1995). Noise and the reality gap: The use of simulation in
evolutionary robotics. In F. Morán, A. Moreno, J. J. Merelo, & P. Chacón (Eds.), Advances in artificial life:
Third European Conference on Artificial Life, Proceedings (pp. 704–720). Berlin, Heidelberg: Springer.

22. Jakobi, N. (1997). Evolutionary robotics and the radical envelope-of-noise hypothesis. Adaptive Behavior,
6(2), 325–368.

23. Jakobi, N. (1998). Minimal simulations for evolutionary robotics. Unpublished doctoral dissertation, University of
Sussex, Falmer, East Sussex.

24. Jakobi, N. (1998). Running across the reality gap: Octopod locomotion evolved in a minimal simulation.
In P. Husbands & J.-A. Meyer (Eds.), Evolutionary robotics: First European Workshop, Proceedings (pp. 39–58).
Berlin, Heidelberg: Springer.

25. Koos, S., Mouret, J.-B., & Doncieux, S. (2010). Crossing the reality gap in evolutionary robotics by
promoting transferable controllers. In M. Pelikan & J. Branke (Eds.), Proceedings of the 12th Annual Conference
on Genetic and Evolutionary Computation (pp. 119–126). New York: ACM.

26. Koos, S., Mouret, J.-B., & Doncieux, S. (2013). The transferability approach: Crossing the reality gap in
evolutionary robotics. IEEE Transactions on Evolutionary Computation, 17(1), 122–145.

27. Lehman, J., Risi, S., DʼAmbrosio, D., & Stanley, K. O. (2013). Encouraging reactivity to create robust
machines. Adaptive Behavior, 21(1), 484–500.

28. Miglino, O., Lund, H. H., & Nolfi, S. (1995). Evolving mobile robots in simulated and real environments.
Artificial Life, 2(4), 417–434.

29. Nolfi, S., & Floreano, D. (2000). Evolutionary robotics: The biology, intelligence, and technology of self-organizing
machines. Cambridge, MA: MIT Press.

30. Paolo, E. A. D. (2000). Homeostatic adaptation to inversion of the visual field and other sensorimotor
disruptions. In J.-A. Meyer, A. Berthoz, D. Floreano, H. L. Roitblat, & S. W. Wilson (Eds.), From animals to
animats 6: Proceedings of the Sixth International Conference on the Simulation of Adaptive Behavior (pp. 440–449).
Cambridge, MA: MIT Press.

31. Paul, C. (2006). Morphological computation: A basis for the analysis of morphology and control
requirements. Robotics and Autonomous Systems, 54(8), 619–630.

32. Pfeifer, R., Iida, F., & Gómez, G. (2006). Morphological computation for adaptive behavior and cognition.
International Congress Series, 1291(1), 22–29.

33. Pollack, J. B., Lipson, H., Ficici, S., Funes, P., Hornby, G., & Watson, R. A. (2000). Evolutionary
techniques in physical robotics. In G. S. Hornby, L. Sekanina, & P. C. Haddow (Eds.), Evolvable systems:
From biology to hardware (pp. 175–186). Berlin, Heidelberg: Springer.

D. Buckingham and J. Bongard Physical Scaffolding Accelerates the Evolution of Robot Behavior

372 Artificial Life Volume 23, Number 3

D
ow

nloaded from
 http://direct.m

it.edu/artl/article-pdf/23/3/351/1666847/artl_a_00236.pdf by guest on 04 Septem
ber 2021

34. Pollack, J. B., & Lipson, H. (2000). The Golem project: Evolving hardware bodies and brains. In J. Lohn,
A. Stoica, D. Keymeulen, & S. Colombano (Eds.), Proceedings of the Second NASA/DoD Workshop on Evolvable
Hardware (pp. 37–42). Piscataway, NJ: IEEE.

35. Rieffel, J., & Sayles, D. (2010). Evofab: A fully embodied evolutionary fabricator. In G. Tempesti, A. M.
Tyrrell, & J. F. Miller (Eds.), Evolvable systems: From biology to hardware: 9th International Conference, ICES 2010,
Proceedings (pp. 372–380). Berlin, Heidelberg: Springer.

36. Saksida, L. M., Raymond, S. M., & Touretzky, D. S. (1997). Shaping robot behavior using principles from
instrumental conditioning. Robotics and Autonomous Systems, 22(3), 231–249.

37. Schmidt, M., & Lipson, H. (2011). Age-fitness Pareto optimization. In R. Riolo, T. McConaghy, &
E. Vladislavleva (Eds.), Genetic programming theory and practice VIII (pp. 129–146). New York: Springer.

38. Singh, S. P. (1992). Transfer of learning by composing solutions of elemental sequential tasks. Machine
Learning, 8(3–4), 323–339.

39. Slocum, A. C., Downey, D. C., & Beer, R. D. (2000). Further experiments in the evolution of minimally
cognitive behavior: From perceiving affordances to selective attention. In J.-A. Meyer, A. Berthoz,
D. Floreano, H. L. Roitblat, & S. W. Wilson (Eds.), From animals to animats 6: Proceedings of the Sixth
International Conference on the Simulation of Adaptive Behavior (pp. 430–439). Cambridge, MA: MIT Press.

40. Tuci, E., Quinn, M., & Harvey, I. (2002). An evolutionary ecological approach to the study of learning
behavior using a robot-based model. Adaptive Behavior, 10(3–4), 201–221.

41. Yamauchi, B., & Beer, R. (1994). Integrating reactive, sequential, and learning behavior using dynamical
neural networks. In D. Cliff, P. Husbands, J.-A. Meyer, & S. W. Wilson (Eds.), From animals to animats 3:
Proceedings of the Third International Conference on Simulation of Adpative Behavior (pp. 382–391). Cambridge, MA:
MIT Press.

42. Zagal, J. C., Ruiz-del-Solar, J., & Vallejos, P. (2004). Back to reality: Crossing the reality gap in evolutionary
robotics. In J. Santos-Victor & M. I. Ribeiro (Eds.), Intelligent autonomous vehicles 2004 (IAV 2004): A
proceedings volume from the 5th IFAC/EURON Symposium (on CD-ROM). Amsterdam: Elsevier.

D. Buckingham and J. Bongard Physical Scaffolding Accelerates the Evolution of Robot Behavior

Artificial Life Volume 23, Number 3 373

D
ow

nloaded from
 http://direct.m

it.edu/artl/article-pdf/23/3/351/1666847/artl_a_00236.pdf by guest on 04 Septem
ber 2021

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

