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Abstract

In evolutionary robotics, controllers are often represented as
networks. Modularity is a desirable trait of such networks
because modular networks are resistant to catastrophic for-
getting and tend to have less connections than nonmodular
ones. However, these advantages can only be realized if the
control task is solvable by a modular network, and for any
given practical task the control task depends on the choice of
the robot’s morphology. Here we provide an example of a
task solvable by robots with two different morphologies. We
consider the most extreme kind of modularity – disconnect-
edness – and show that with the first morphology the task
can be solved by a disconnected controller with few connec-
tions. On the other hand, the second morphology makes the
task provably impossible for disconnected controllers and re-
quires about three times more connections. For this morphol-
ogy, most controllers that partially solve the task constitute
local optima, forming an extremely deceptive fitness land-
scape. We show empirically that in this case a connection
cost-based evolutionary algorithm for evolving modular con-
trollers is greatly slowed down compared to the first morphol-
ogy’s case. Finally, this performance gap increases as the task
is scaled up. These results show that the morphology may be
a major factor determining the performance of controller op-
timization. Although in our task the optimal morphology is
obvious to a human designer, we hypothesize that as evolu-
tionary robotics is scaled to more sophisticated tasks the opti-
mization of morphology alongside the control might become
a requirement for evolving modular controllers.

Frequently used symbols:
Ti – target orientation of ith segment;
Ai – absolute orientation of ith segment;
ri – relative orientation of ith segment (defined in eq. (2));
si – reading of the target orientation sensor measuring the
orientation of the ith segment (5);
fi – motor output for ith segment (6);
T ,A, r, s, f – corresponding N -dimensional vectors,
where
N – is a number of segments; J – sensor attachment matrix
(5); K – constantN×N matrix such filled with ones on and
below the main diagonal and zeros everywhere else (4).

Introduction
Evolutionary computation and particularly evolutionary

robotics are important research tools in the area of artifi-
cial life (Langton (1997); Lipson and Pollack (2000); Ro-
hde (2010)). A lot of research effort concerning evolution-
ary computation is dedicated to the evolution of networks.
Network representation has several advantages. First, it can
describe many kinds of systems, including controllers and
morphologies of artificial agents (e.g. Sims (1994)). Sec-
ond, it is relatively straightforward to design genetic opera-
tors such as mutation and crossover for networks. Last but
not least, a lot of models in biology are network-based, mak-
ing it easier to draw inspiration from natural evolution.

One characteristic property of biological networks that at-
tracts a lot of attention from evolutionary computation com-
munity is modularity (e.g. Girvan and Newman (2002)).
A network is structurally modular if its nodes can be di-
vided into subsets (modules) that are connected more tightly
within themselves than with the rest of the network. In com-
putational (e.g. neural, genetic regulatory) networks struc-
tural modularity often leads to weak or absent functional de-
pendence. Consequences of such weak dependence include
resistance to catastrophic forgetting both in neuroevolution-
ary setting (Kashtan and Alon (2005); Espinosa-Soto and
Wagner (2010); Clune et al. (2013)) and in learning (Ellefsen
et al. (2015)). Such resistance allows for a reduced number
of training examples (Cappelle et al. (2016)). In addition,
modular networks tend to contain less connections, which
further simplifies their optimization (Clune et al. (2013);
Bernatskiy and Bongard (2015)).

Although some techniques for evolving modular compu-
tational networks have been developed (e.g. Kashtan and
Alon (2005); Espinosa-Soto and Wagner (2010); Clune et al.
(2013); Bernatskiy and Bongard (2015)), they mostly fo-
cus on finding nearly-optimal modular solutions that are as-
sumed to be exist. In addition, to harness the full power of
the approach an appropriate modular variation of the task
is desirable, either among the training examples (Cappelle
et al. (2016)) or over the evolutionary time (Kashtan and
Alon (2005); Espinosa-Soto and Wagner (2010); Clune et al.
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(2013)). However, in practice, it cannot be assumed that
modular solutions for a given task exist, nor that the task
itself is modularly varying. Indeed, in the work presented
here, we demonstrate that there is a robotic task and a robot
morphology for which even the former assumption does not
hold.

In evolutionary robotics, controllers are often represented
as computational networks. Properties of modular networks
make modularity a desirable property of such controllers.
However, previous work (Bongard et al. (2015); Cappelle
et al. (2016)) suggests that performance of modular network
evolution techniques in this setting can vary depending on
the choice of the robot’s body.

In Bongard et al. (2015) evolution produced more modu-
lar controllers if the morphology was under the evolutionary
control. It was observed that certain morphologies enable
modular control while others do not, but it was not clear
which mechanism might be responsible for that.

In Cappelle et al. (2016), a morphology is defined to be
modular iff activation of less than all of robot’s motors re-
sults in a change of less than all of its sensors. Similarly, a
control system is modular iff a change in less than all of the
sensors induces a change in less than all of the motor neu-
rons. It is shown that the number of environments in which
the robot needs to be evaluated can be reduced significantly
if both morphology and control are fixed to be modular.

Despite these findings, many things remain unclear re-
garding the relationship between the morphology and modu-
larity. In particular, while it is known that certain morpholo-
gies are beneficial for the evolution of modular controllers,
it is not known why. Another open question is how much
worse can the performance of evolution be if a less appropri-
ate morphology is chosen. Here we fill these gaps by intro-
ducing a task and a family of robot morphologies with two
extremities. The first is a morphology for which some op-
timal controllers consist of multiple disconnected modules.
For the second morphology of interest it is provably impos-
sible for any optimal controller to be disconnected. Addi-
tionally, we show the that the latter morphology induces an
extremely deceptive fitness landscape in the space of possi-
ble controllers.

System description
Robot and task

Robots of the family described in this paper are called
Arrowbots. An Arrowbot (Fig. 1b) is a dynamic version
of road sign with multiple destinations (Fig. 1a). The task
of a road sign is to show the direction towards several fixed
objects, such as cities or mountains. In contrast, the task of
an Arrowbot is to track N objects that may move and point
towards them.

To accomplish this task the robot’s body is divided into
N segments attached to each other in series by coaxial, ac-
tuated rotary joints, forming a stack (Fig. 1b). Segment #1

a)

b)

Figure 1: a) Regular road sign with multiple destinations.
b) Arrowbot. Lines on the segments show orientations of
segments’ arrows.
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is located at the bottom of the stack. It is attached to a fixed
base.

We define the orientation of the fixed base to be zero.
For each segment i its absolute orientation angles Ai and
target orientation Ti are defined relative to this reference
(see Figure 2). If Ai = Ti, the segment points exactly
in the target direction. Denoting T ≡ [T1, T2, ..., TN ]T ,
A ≡ [A1, A2, ..., AN ]T we can reformulate the task as the
minimization of

E ≡ |T −A|, (1)

at t → ∞ for some T (t) and initial condition A(t = 0).
Throughout this work we assume constant target orienta-
tions, T (t) = const.

Each segment i is associated with two sensors: a proprio-
ceptive sensor and a target orientation sensor.

Each proprioceptive sensor measures the relative angle
ri between the orientation of its segment (ith) and the orien-
tation of the i − 1st segment below it (for segment #1, the
fixed base). Readings of these sensors are tied to absolute
orientations of segments:

A = Kr, (2)

or equivalently,
r = K−1A. (3)

Here r ≡ [r1, r2, ..., rN ]T and K is defined to be the con-
stant N × N matrix filled with ones on and below its main
diagonal and zeros above it:

Kij = 1 if i � j else 0. (4)

The determinant of this matrix is 1 for any N , so the inverse
always exists, hence the equivalence of (2) and (3).

Each target orientation sensor si outputs the angle be-
tween the orientation of whatever it is attached to and the tar-
get orientation of its segment. Each target orientation sensor
can be attached to any segment or to the fixed base.

Different ways of attaching target direction sensors give
rise to different Arrowbot morphologies. We describe them
with sensor attachment matrix J : an N × N matrix for
which any element Jij is equal to 1 if sensor si is attached
to the jth segment and 0 otherwise. There is always ex-
actly one sensor for every target direction, so every row of
J contains at most one unit entry. If ith sensor is attached to
the fixed base, then it is not attached to any of the moving
segments and all the elements of the ith row of J are zeros.

With J we can express the absolute orientations of the
parts to which the target orientation sensors are attached
as JA. Then target orientations sensor readings s ≡
[s1, s2, ..., sN ] are

s = T − JA = T − JKr. (5)

Actuated joints between the segments are the only motors
of the system. Arrowbot’s inputs are joint rotational veloc-
ities of segments relative to the segments right below them,
ṙi.

Figure 2: Arrowbot segment, top view. Solid radial line
shows the orientation of the current (ith) segment. Dashed
radial line shows the orientation of the segment right below
the current one (i − 1st). In this example, only one target
direction sensor is attached to the segment. The sensor per-
ceives the target direction of pth segment (Jpi = 1).

Control
A controlled Arrowbot is described by the following dy-

namical system:

ṙ = f(r, s(r,T )), (6)

where f(r, s) : R2N → RN is the controller and s(r,T ) is
given by (5). For the controller to solve the task (1), this dy-
namical system must have an isolated, asymptotically stable
fixed point corresponding to T = A = Kr. This translates
into several conditions, each of which must be met for every
T ∈ RN . Equilibrium at T = Kr translates to:

f(r = K−1T , s(r = K−1T ,T )) = 0. (7)

The equilibrium point must be of the attracting, or asymp-
totically stable, kind:

∃δ0 > 0 s.t. |K−1T − r(0)| < δ0 ⇒ lim
t→∞

r(t) → K−1T ,

(8)
where r(t) denotes the trajectory of the dynamical system
(6) given target orientations T and initial conditions r(0).

If some controller, in addition to satisfying these two nec-
essary conditions, also ensures that the fixed point is unique,
then the point A = T will attract all trajectories regardless
of the initial conditions r(0). Such controllers are globally
optimal for the task (1).

We characterize the connectivity of the controller using
the following formalized notion of dependence. In a sys-
tem with n variables V = {x1, x2, ..., xn} subject to some
constraints C, xi is dependent on xj iff for some setting of
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the n − 2 remaining variables x̂ and some pair of settings
x′
j �= x′′

j the sets X ′
i ≡ {xi such that {xi, x

′
j , x̂} satisfiesC}

and X ′′
i ≡ {xi such that {xi, x

′′
j , x̂} satisfiesC} do not coin-

cide. Dependencies induced by the constraint C on the vari-
ables define an undirected dependence graph G = (V,E)
where (xi, xj) ∈ E iff xi depends on xj or xj depends on
xi.

If some variable xi depends on some other variable xj and
the dependence is not satisfied by definition of these vari-
ables (as is the case, for example, for radius and diameter or
r and A), then in any implementation of the constraint C xi

is connected to xj via some kind of channel transmitting the
information about xj to the process generating xi. For ex-
ample, in a system involving two coordinates x, y of some
material body on a plane the constraint x = −y can only
be enforced by introducing some physical contraption (e.g.
a diagonal rail) which ensures that whenever y changes, x
changes accordingly. Due to this property, the connectivity
of the undirected dependence graph is the same as the con-
nectivity of any undirected graph representing the informa-
tion channels in the implementation, except possibly for sit-
uations when the implementation involves hidden variables
that are neither influenced by nor influence the variables in
V .

To investigate the connectivity of optimal Arrowbot con-
trollers we consider undirected dependence graphs on V ∗ =
{f , r, s} subject to the constraint f = f(r, s(r,T )). As we
will see, necessary conditions (7) and (8) restrict the connec-
tivity of the graphs in a way that depends on the sensor at-
tachment matrix J , i.e. on the robot’s morphology. Since the
definitions of all variables in V ∗ do not imply any automat-
ically satisfied constraints, we can draw conclusions about
the connectivity of arbitrary nonlinear controllers from the
connectivity of undirected dependence graphs.

This approach is inspired by similar tools used to treat
dynamical dependencies as well as constraints: diagrams of
immediate effect (Ashby (1960)) and functional dependence
graphs (Etesami and Kiyavash (2016)).

J=I admits disconnected optimal controllers
Attachment matrix J = I corresponds to the morphology

in which every sensor is attached to the segment for which
it tracks the target orientation. In this case each sensor si
measures its segment’s signed pointing error, Ti −Ai.

Consider a family of controllers

f(r, s) = W s, (9)

where W = diag[w11, w22, ..., wNN ] are diagonal matrices
for which all wii are positive. Then the dynamical system
(6) turns into

ṙ = WT −WKr. (10)

Right hand side of this equation turns into 0 iff T = A =
Kr, making sure that (7) and (15) are satisfied. Also, it

Figure 3: Examples of undirected dependency graphs
(UDGs). (a) UDG of one of the controllers of the family
(9) optimal for J = I; (b) UDG of one possible optimal
controller for J = 0.

shows that the fixed point T = A is unique. The Jacobian

−WK =

[−w11 0 ... 0
0 −w22 ... 0

. .
0 0 ... −wNN

][
1 0 ... 0
1 1 ... 0

. .
1 1 ... 1

]
=

=

[ −w11 0 ... 0
−w22 −w22 ... 0

. .
−wNN −wNN ... −wNN

]
.

(11)

is a triangular matrix, therefore its eigenvalues are the values
at the diagonal, −w11,−w22, ...,−wNN . All of them are
negative, so the stability condition (8) is also satisfied.

Therefore, all controllers of the family (9) are globally
optimal for the task (1).

Every controller of this family is a disconnected network
of 2N independent modules. Half of the modules connect
motors ṙi to target orientation sensors si associated with and
attached to their segments. Another half are the propriocep-
tive sensors, which are, in these controllers, not connected
to any other nodes.

There is no disconnected optimal controller for J=0
J = 0 corresponds to the case when all the target orien-

tation sensors are attached to the fixed base of the robot and
are directly measuring the target orientations, s = T . The
dependence of s on r disappears, so in this case s can be
treated as a constant vector of parameters. The dynamical
system (6) then has a fixed point whenever r = K−1s:

∀s ∈ RN

[r1, r2, .., rN ] = [s1, s2 − s1, .., sN − sN−1] ⇒
f(r, s) = 0

(12)

This also implies that for every point r ∈ RN there is a set
of parameters s = Kr such that f(r, s) = 0.

Theorem 1. Any controller f(r, s) inducing an asymp-
totically stable fixed point in (6) for any s ∈ RN and
r = K−1s has a connected undirected dependency graph.

See Appendix A for the proof.
Theorem 1 implies that for J = 0 any optimal controller

has only one connected component that is not isolated from
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sensors and motors. All sensors and motors, a total of 3N
nodes, participate in this component. Such a component
cannot be connected unless there are at least 3N − 1, which
is about three times more than what controllers for J = 0
require.

Evolution
We have shown that there are disconnected controllers

among the globally optimal ones if the robot’s morphology
is defined by the sensor attachment matrix J = I and that
there are none if J = 0. However, it is not clear if this fact
influences the complexity of optimizing the controller for
the two morphologies, particularly if the optimization algo-
rithm is designed to find modular solutions efficiently. We
investigate this using a biobjective error-connection cost op-
timization Clune et al. (2013).

Each controller is represented by a vector of 2N2 con-
nection weights encoding two N ×N matrices (Y,W ) such
that

ṙ = Y r +W s. (13)

Connection weights can take values in {−1, 0, 1}.
Controllers are evaluated in a number of environments

characterized by initial conditions r(t = 0) and target orien-
tations T . In each environment, each controller is evaluated
by substituting (5) into (13) and integrating the resulting lin-
ear ODE system with fourth order Runge-Kutta method over
a fixed time span [0, 10] with a fixed timestep of 0.1. Point-
ing errors (1) are computed for each environment at t = 10
and averaged to obtain the final evaluation e.

Following the connection cost method for evolving mod-
ular networks Clune et al. (2013), we simultaneously mini-
mize pointing error and connection cost, defined as number
of connections with nonzero weight. We use evolutionary
algorithm identical to the one described in Bernatskiy and
Bongard (2015). At each generation increment we select the
pointing error – connection cost Pareto front of the current
population and copy it into the new population. Then we
proceed to add mutated copies of networks randomly cho-
sen from Pareto front to the new population until it has the
same size as the old one.

Mutation operator either (1) replaces a value of one
nonzero weight with another (with probability of p1 = 0.5
in all our experiments), or (2) adds a nonzero weight (p2 =
0.25), or (3) removes a nonzero weight (p3 = 0.25). If an
impossible operation is attempted (e.g. nonzero weight has
to be removed from an network with no such weights), the
mutation is attempted repeatedly until it happens to perform
a possible operation.

Since the Pareto front is copied into the new population
without modification regardless of its size, it can potentially
fill the population completely and cause variation to cease.
To prevent this, a sufficiently large population size must be
chosen. Preliminary runs pointed to a population size of 50,

and that was sufficient to avoid such variation cessation in
any of the runs mentioned in this paper (see Table 1 for de-
tails).

We explored two types of initial populations – a popula-
tion of networks generated by randomly choosing weights
from {−1, 0, 1} (random setup) and a population of net-
works generated by mutating an empty network once
(sparse setup, Bernatskiy and Bongard (2015)). The lat-
ter setting trades off some initial variation to make the con-
vergence faster if the task can be solved by a sparse and/or
modular network. As we will see shortly, this leads to severe
performance penalties if the task cannot be solved by such
networks (in our case for J = 0).

Results and discussion
We investigated performance of the evolution for two

types of initial populations (random and sparse) and three
values of the number of segments parameter N = 3, 5, 10.
Since each genome encoded a linear controller in form of
two NxN matrices, the length of the genome has grown
quadratically with N and the corresponding genome sizes
were 18, 50, 200. We ran batches of 50 evolutionary runs,
500 generations each, with populations of 50 individuals.

A set of 3 environments was used to evaluate controllers,
with target orientations

T 1 = [1, 0, 0],T 2 = [0, 1, 0],T 3 = [0, 0, 1]. (14)

where the upper index indicates the number of the environ-
ment. Initial conditions were r = [0, 0, 0] in all three envi-
ronments.

The results are shown in Figure 4 and 1. It can be seen
that for J = 0 the performance of evolution is severely im-
paired, especially for the sparse initial population setting. In
this case the error level is not improved relative to the initial
conditions in any of 50 runs, while for J = I a controller
with near-zero error is found within 30 generations in all
runs.

This result can be explained by considering the difference
in response to mutation in non-optimal controllers between
the two morphologies.

For J = I the modules in the global optimum are dis-
connected and any controller that solves the task partially
can retain the partial solution after mutation. This is a phe-
nomenon called serial adaptation (Ashby (1960)). In this
case fitness landscape is convex.

The other morphology, J = 0, induces a more compli-
cated landscape. Suppose, for this morphology, that at some
point of the evolution there is a controller that successfully
reduces the pointing error of the top N − n segments of the
Arrowbot, but not for the bottom n segments. Absolute ori-
entation of nth segment An is required to compute ṙi for
i = n + 1..N . Since the task for the lower segments is
not solved yet, An =

∑n
i=1 ri will have random dynamics,
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Figure 4: Time series of the smallest error for evolution of Arrowbots with two different morphologies J = 0 and J = I .
Columns correspond to the three settings of Arrowbots’ size (3,5 and 10 segments). For the runs in the top row, the evolution
was initialized with a population of random networks; bottom row shows the performance if the initial population consists of
sparse networks. Each of 50 trajectories is plotted in a semi-transparent line. Initial conditions in all cases are such that in every
environment the error is initially equal to 1. It can be seen that for J = 0 evolution shows poor performance with random initial
population and is completely disrupted for sparse initial population, even though for J = I the optimum is found more rapidly
in this setting.

which must be exploited by the partial solution. Any muta-
tion which improves the pointing error of any of the lower
n segments will change this dynamics and likely break the
partial solution. Thus, the fitness landscape is deceptive.

An initial population of sparse networks and the pressure
to minimize the number of connections reinforce such de-
ceptiveness. Under those conditions the most likely random
behavior of the lower segments is staying at rest. This makes
exploiting it especially simple and gives the local optima

Initial population type Number of segments
N=10 N=5 N=3

random 37/38.4 21/37.6 13/41.2
sparse 28/40.3 21/40.4 13/43.0

Table 1: Variation data for the evolutionary runs shown
in Figure 4. Each cell shows maximum size of the error-
connection cost Pareto front A across all generations and all
runs and the average number of individuals mutated on each
generation, B, in format A/B. Since the maximum Pareto
front size never reaches the size of the population (50), the
variation never ceases in any of the runs.

large basins of attraction with pronounced gradients, ulti-
mately causing a complete disruption of the evolution.

Figure 5 shows how the performance of the evolution,
measured by the final total square pointing error after 500
generations, varies with the number of segments N . Opti-
mization task becomes more challenging as N grows. For
the random initial population setting and J = 0, the evo-
lution does not improve over the error of initial conditions
at N = 10 in most runs, while for J = I it does. For the
sparse initial population setting, with J = 0 evolution does
not improve in any of 3x50 runs, while for J = I it achieves
near zero pointing error in all 3x50 cases except for three
evolutionary runs performed with N = 10.

Conclusions
We have introduced Arrowbots, a task and a family of

scalable robot morphologies which exhibits strong depen-
dence of control modularity on morphology. In particular,
we have shown that within this family there is (1) a mor-
phology J = I for which there are optimal controllers con-
sisting of multiple disconnected modules and (2) a morphol-
ogy J = 0 for which any optimal controller is necessarily
connected. We have demonstrated that the performance of
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Figure 5: Final smallest errors for evolution of Arrowbots
with different number of segments N after 500 generations.
Top plot shows the performance if the evolution is initialized
with a population of random networks; bottom plot shown
the case of sparse initial population setting. It can be seen
that the task becomes increasingly more challenging as N
grows, especially for J = 0 and random initial population
setting.

the evolution of Arrowbot control for the J = 0 morphology
can be markedly worse than for the J = 1 and that the per-
formance gap grows when Arrowbots with more segments
are considered. We hypothesize that the difference in the
performance of evolution is due to the extreme deceptive-
ness of the fitness landscape which arises if the robot has the
J = 0 morphology and does not arise if J = I .

Thus, we have shown by construction that the choice of
morphology can be the decisive factor in the evolution of
modular controllers. The more aggressively the algorithm
exploits the heuristic of modularity, the more important the
morphology seems to become. Although for Arrowbots the
morphology corresponding to most modular controllers is
obvious to human designers, we hypothesize that in more
sophisticated tasks this may not be the case. Optimization of
the morphology alongside the control might be the solution
of choice for those more sophisticated tasks.
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Appendix A. Proof of Theorem 1.
Isolation: asymptotic stability (8) implies that the fixed point

r = K−1T is isolated:

∃ε > 0 : 0 < |r −K−1T | 6 ε⇒ f(r, s(r,T )) 6= 0. (15)

The statement seems to be well known in the dynamical systems
community, so I’ll only provide a sketch of the proof. Suppose
the opposite, then a fixed point r′ can be found arbitrarily close to
K−1T . Trajectories starting at r′ do not approach K−1T , which
contradict the asymptotic stability of that point.�

We begin by using this property, together with the asymptotic
isolation itself, to constrain necessary dependencies of the involved
variables. Then we show that under these constraints the undirected
dependency network must be connected.

Lemma 1. In any controller f(r, s) inducing a stable fixed point
in (6) for any s ∈ RN and r = K−1s (part 1) any motor output
fi(r, s) depends on the readings of at least one proprioceptive sen-
sor rj and (part 2) for any proprioceptive sensor ri, there is a motor
output fj(r, s) that depends on it.

Proof. Part 1: Suppose some motor output fi is independent of
all proprioceptive sensors r. Then fi is the same for all r ∈ RN .
Since we presupposed the existence of at least one fixed point, fi =
0 at the point and therefore everywhere. It follows that ri = const,
which contradicts the asymptotic convergence.

Part 2: Suppose no motor output depends on some propriocep-
tive sensor ri. For any s f(r′ ≡ K−1s, s) = 0. Now, consider a
vector

r′′ ≡ K−1s+ (0, .., ε/2, .., 0) (16)

where is the second term ε is at ith position in the vector. Since
f is independent from ri, f(r′′, s) = 0. Because ε can be chosen
arbitrarily, that means that ∀ε > 0 there is a fixed point r′′ 6= r′ in
the ε-neighborhood of r′. This contradicts isolation. �

Lemma 2. In any controller f(r, s) inducing a stable fixed point
in (6) at T = A any target orientation sensor s has at least one
motor output f that depends on it.

Proof. Suppose it is not, then there is a sensor si such that for
any two values si and s∗i ∈ R and any setting of remaining values
ŝ ∈ RN−1, r ∈ RN f(si, ŝ, r) = f(s∗i , ŝ, r). Picking an arbitrary
s ∈ RN , we can choose its ith component as si, remaining values
as ŝ and K−1s as r. By the conditions of Lemma 2, in this case
the dynamical system (6) has a fixed point, so f(si, ŝ, r) = 0.

We can also choose an arbitrary ε ∈ R and set s∗i = si+ ε, then

f(si + ε, ŝ, r) = f(si, ŝ, r) = 0. (17)

Denoting the vector s∗ to have the same values as s except for s∗i =
si + ε, we can conclude that the dynamical system ṙ = f(r, s∗)
has a fixed point at

r = K−1s = [s1, s2 − s1, ..., sN − sN−1]. (18)

However, by Lemma conditions it also has an isolated fixed point
at

r∗ ≡ K−1s∗ = [s1, s2 − s1, ...,
si + ε− si−1, si+1 − si − ε, ..., sN − sN−1].

(19)

r and r∗ are no further than 2ε from each other by any distance
measure. By choosing appropriate ε = ε′/3, we can find a fixed
point in any ε′-neighborhood of r∗, which must be an isolated fixed
point: contradiction. �.

It follows from Lemma 1 that there is one-to-one correspon-
dence between motors and proprioceptory sensors: they can be

partitioned in N pairs (fi, rj) such that every fi and every rj par-
ticipates in some pair and in each pair fi depends on rj . In each
pair (fi, rj), fi may also depend on some ss and rs other than rj .

Theorem 1. Any controller f(r, s) inducing an isolated, stable
fixed point in (6) for any s ∈ RN and r = K−1s has a connected
undirected dependencies graph.

Proof. Suppose there is a controller that has a disconnected
undirected dependencies graph. In this case the variables f , r, s
can be divided in two non-empty subsets α and β, such that no f in
α depends on any r or s in β and vice versa. Let us denote the sub-
set of all variables of type B ∈ {f, r, s} in the subset A ∈ {α, β}
as BA, e.g. a subset of all motors in α as fα. Due to Lemma 1
each of the subsets will have an equal number m of motors f and
proprioceptory sensors r: |sA| = |fA| ≡ mA for A ∈ {α, β}. We
will then have

mα +mβ = N. (20)

By Lemma 2 neither subset can be composed only of propriocep-
tive sensors, so mα and mβ are both greater than zero.

Since the motors in one set cannot depend on proprioceptive
sensors in the other, sets α and β will each form its own dynamical
system:

ṙα = fα(rα, sα),

ṙβ = fβ(rβ , sβ).
(21)

The systems are completely isolated, so the position of fixed
points of each only depends on its set of parameters, sα for the
first dynamical system and sβ for the second. Let us investigate the
minimal sizes of these sets. One of the subsets α, β will contain
r1; let us pick α to be definite. In this case the fixed point condition
for the α system is

fαi1(r
α
1 = s1, ..., s

α) = 0,

fαi2(r
α
j2 = sj2 − sj2−1, ..., s

α) = 0,

...

fαimα (r
α
jmα

= sjmα − sjmα−1, ..., s
α) = 0.

(22)

The number of parameters in sα should be at least the number of
parameters through which rα is expressed; otherwise, due to the
necessary dependence of fs on their corresponding rs, there will
be a value of some s for which not all conditions (22) hold. Each
condition adds at least one s into the expression for rα, therefore

|sα| > mα. (23)

The other subset β does not contain r1. Same reasoning applied
to β leads to the following conditions:

fβi1(r
β
j1

= sj1 − sj1−1, ..., s
β) = 0,

...

fβimα (r
β
j
mβ

= sj
mβ
− sj

mβ
−1, ..., s

β) = 0.

(24)

The first equation adds at least two proprioceptory sensors into the
expression for rβ at the fixed point, and each subsequent condition
adds at least one. This gives

|sβ | > 1 +mβ . (25)

Since sα ∩ sβ = ∅ and sα ∪ sβ = s, equations (23), (25) and (20)
can be combined to yield

|s| = N > mα +mβ + 1 = N + 1. (26)

Contradiction. �
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