Embodied Embeddings for Hyperneat

Collin Cappelle!, Josh Bongard®

! The University of Vermont, Burlington, VT 05405
collin.cappelle@uvm.edu

Abstract

A long time goal of evolutionary roboticists is to create ever-
increasing lifelike robots which reflect the important aspects
of biology in their behavior and form. One way to create
such creatures is to use evolutionary algorithms and genotype
to phenotype maps which act as proxies for biological devel-
opment. One such algorithm is HyperNEAT whose use of
a substrate which can be viewed as an abstraction of spatial
development used by Hox genes. Previous work has looked
into answering what effect changing the embedding has on
HyperNEAT’s efficiency, however no work has been done on
the effect of representing different aspects of the agents mor-
phology within the embeddings. We introduce the term em-
bodied embeddings to capture the idea of using information
from the morphology to dictate the locations of neurons in the
substrate. We further compare three embodied embeddings,
one which uses the physical structure of the robot and two
which use abstract information about the robot’s morphology,
on an embodied version of the retina task which can be made
modular, hierarchical, or a combination of both.

Introduction

The ultimate goal of evolutionary artificial intelligence and
automated machine research is to have the complex forms
and behaviors of animals reflected in the agents created by
algorithms. Modularity, hierarchy, and regularity are impor-
tant factors to consider when creating agents which reflect
the complexities seen in biology (Carroll, 2001; Schlosser
and Wagner, 2004; Hartwell et al., 1999; Bongard and
Pfeifer, 2001).

In mammalian fetal development, HOX genes are acti-
vated at different times in development based on the strength
of chemical gradients physically present in the morphology
of the organism (Duboule, 1998; Krumlauf, 1994). In one
example, Hox genes at the beginning of the genome are ac-
tivated first near the anterior end of the organism while Hox
genes at the end of the genome are activated later in devel-
opment along the posterior of the organism. This allows de-
velopment to easily generate symmetry and structure based
on a local interaction of chemicals. This type of develop-
ment helps generate the repeated, hierarchical, and modular
structures present in a biological agents body.

Indirect encodings which incorporate development in
some manner can help artificially act as development sim-
ilar to how Hox genes behave during mammalian develop-
ment(Stanley et al., 2009; Bongard, 2002). Indirect encod-
ings also have the benefit of only needing to optimize a set
of parameters existing in a smaller dimension than a coun-
terpart direct encoding. Instead of choosing the weight of
each synapse, an indirect encoding instead provides rules
or functions for how the weights should be set (Gauci and
Stanley, 2010). Evolution then only has to optimize the
rules for determining the weights and not the weights them-
selves meaning indirect encodings can be applied to arbitrar-
ily tasks with arbitrarily large networks without increasing
the search space evolution actually exists in. Indirect en-
codings can also introduce regularity into the phenotype of
the agent, similar to what is found in natural agents (Clune
et al., 2011). If the rules used by the indirect encoding con-
tain symmetry, it is likely symmetry will be reflected in the
final individual. In the effort to create more natural evolved
robots being able to codify natural development processes in
the generation of said robots is an important step.

HyperNEAT, explained in more detail in the next section,
is a direct encoding which acts as a proxy for development
for artificial agents. Similar to Hox genes, HyperNEAT
takes locality into account in its genotype to phenotype map.
We call an embodied embedding when the locality present
in the substrate is based on some aspect of the morphology
of the agent. We provide evidence that different embodied
embeddings provide differences based on the objective the
robot is tasked to perform.

HyperNEAT

HyperNEAT is a genetic algorithm specialized in creating
gradients and patterns along substrates (Stanley et al., 2009).
When used on neural networks, Hyperneat uses Composi-
tional Pattern Producing Networks (CPPNs) to determine
the synaptic weight between two neurons by taking in the
embedded locations of the source and target neuron as input.
The output of the CPPN is then used to determine the weight
of the synapse. HyperNEAT uses the NEAT algorithm to de-

120z 4equiidag 90 uo 1senb Aq Jpd 98000 & [eS/Z.87061/L91/0€/810Za4e/spd-sBuipasooid)jes)/npa jiwioailp//:dpy woly pspeojumoq

Figure 1: A depth 2 robot in an environment consisting of two Far cylinders on the left and two Near cylinders on the right.
The robot is tasked with a local and a global objective. The local objective consists of pointing at the white portions of the
cylinders while the global objective consists of moving its root node upwards because there are an even number of each type
of cylinder. The initial position of the robot is shown on the left. At the midpoint of evaluation (middle image) the robot is
correctly pointing at the correct portions of the cylinders. Rays coming out of the robots leaves are purely graphical to help
indicate where the robot is pointing. Towards the end of simulation (right) the robot has completed the global task at the cost

of half of the local task.

termine the structure and topology of the CPPN. The initial
population for NEAT is a simplistic network directly con-
necting inputs to outputs with randomly determined weights.
Over evolutionary time the network is made more complex
by adding nodes and edges to the network, as well as chang-
ing the weights of the edges. The activation functions of
the nodes are chosen from a predetermined list of functions
which can be chosen to reflect the relevant regularity needed
in the specific task at hand. NEAT further uses diversity
preservation techniques which give new genotypes a chance
to optimize to the task before removing them from the pop-
ulation due to fitness.

HyperNEAT has been shown to be effective in a wide
range of domains which require regularity from determining
weights in neural networks, to painting images, and deter-
mining an agent’s morphology (DAmbrosio et al., 2014).

There are many variants and modifications one can make
to HyperNEAT. The one we use throughout the experiments
in this paper is HyperNEAT with Link Expression Output
(HyperNEAT-LEO). HyperNEAT-LEO uses two outputs to
the CPPN, one to determine the weight of the synapse in
question and one to determine whether the synapse is ex-
pressed or not in the final neural network (Verbancsics and
Stanley, 2011). By allowing evolution to control whether the
synapse is expressed, HyperNEAT-LEO can control the final
topology of the produced neural network and explicitly dic-
tate the presence of modules. To further imbue the concept
of modularity and locality for HyperNEAT-LEO, the initial
population of CPPNs can be seeded with Gaussian nodes
which are activated only when input neurons are close to
eachother in their embedded substrate. Thus synapses are
initially much more likely to be expressed if the neurons are
close in embedded space.

This type of control over synaptic expression can be use-
ful in tasks in which modularity is necessary (Verbancsics
and Stanley, 2011). One such task is the Retina Task de-

tailed later in the paper. So far the majority of tasks which
use HyperNEAT-LEO have been disembodied networks in
which modularity is critical or necessary to correct comple-
tion of the task (Verbancsics and Stanley, 2011; Huizinga
et al., 2014). In this work we apply HyperNEAT-LEO to an
embodied agent evolved in task environments that are mod-
ular and hierarchical.

Substrate Analysis

Clune et al. (2009) showed that the configuration of the sub-
strate can impact fitness and efficiency when using Hyper-
NEAT. The authors applied different embodied embeddings
for a quadruped. In one experiment, the embeddings dif-
fered by the dimension of the geometric representation. The
authors tested 1,2, and 3-d representations for the neural net-
work controlling the quadruped, the idea being that the 3-d
representation more encompasses the actual symmetries and
structure present in the physical robot. They showed that
the 2 and 3-d representations resulted in similar performance
meaning that this increase in dimensionality did not help or
hinder HyperNEAT’s ability to evolve a walking gait in the
quadruped. Their work did not use information about the
abstract structure and relationships between components in
the morphology in determining the embedding.

Further work in the impact on of embedding locations
has been focused on evolvable-substrate HyperNEAT (ES-
HyperNEAT) which evolves the location of neurons in the
substrate as well as the CPPN (Risi et al., 2010; Risi and
Stanley, 2011). While these methods have shown to have
been effective on benchmark problems, when the designer
of the substrate is given a body in which to physically place
neurons, it allows the morphology to dictate the structure of
the controller.

d-sBuipaaooid/esy/npajw-joalip//:dyy woly papeojumoq

e |esl/2/8¥061/191/0€/810Z3)IE/AP

1202 Jequisydag 90 uo 3senb Aq 4pd'98000

Retina Task

The retina task is an inherently hierarchical and modular
task. Two retinas, on the left and right, are fed into a neu-
ral network. The modular aspect of the retina task is to
distinguish whether each retina contains a target pattern or
not. The hierarchical aspect of the retina task is to then take
whether each retina is a target pattern or not as a logical in-
put and compute a function on that input, like NAND.

The original goal of the retina task was to show that mod-
ularly varying goals causes evolution to generate modular
networks whereas fixed goals tend to generate nonmodular
networks (Kashtan and Alon, 2005). In their initial paper
Kashtan and Alon (2005) used direct encodings to construct
the neural networks topology and synaptic weights. By
changing the logical function the network needed to com-
pute periodically, they were able to generate networks which
exhibited left-right modularity.

Clune et al. (2010) then used the same retina task using
HyperNEAT to specify the neural network. They found that
HyperNEAT performed much more poorly than the direct
encodings used previously as well as finding that the solu-
tions produced by HyperNEAT were not modular.

In response, Verbancsics and Stanley (2011) showed that
by using Hyperneat-LEO modular solutions were found to
the retina task when the initial population of Central Pat-
tern Producing Networks (CPPNs) used by HyperNEAT-
LEO were seeded with an explicit concept of locality. This
work further showed that other versions of HyperNEAT in-
cluding dynamic threshold and LEO without seeding were
less effective in generating modular networks which were fit
to the required task.

Further modularity has been shown to be evolved by us-
ing connection cost along with HyperNEAT-LEO (Huizinga
et al., 2014). The authors evolved networks on a variety of
variants of the disembodied retina task.

Every work using the retina task has done so in a disem-
bodied way. We present an embodied version of the retina
task in which the robot must physically move in order to re-
spond correctly to what it senses in the environment. This
movement then changes how the robot perceives its envi-
ronment causing its sensation of the environment to change.
In this manner seemingly modular tasks can have extremely
effective non-modular solutions. In future work we plan to
examine how adding connection cost can aid modularity in
the embodied retina task presented later in the paper.

Methods
Robot Construction

The robot was a planar tree structure consisting of an actu-
ated root and 2¢ actuated leaves where d is the depth of the
tree. Hence, at d = 2 there are two actuated leaves (Fig.
2). Each leaf consisted of a distance sensor pointing out
from the tree into the environment and a motor which ac-
tuates a hinge joint connecting the leaf to its parent branch.

The hinge joint allowed the leaf to rotate up and down with
respect to its parent branch. The root consisted of a motor
which actuated a linear joint moving the entire tree along
the z-axis (up and down). Joint ranges in the leaves were
limited to 47 from their starting position and the root node
could move +1 units from its starting position. Each branch
was 1/2 unit long with the root base starting at the point
(0,0,1.5)

ngt) =0 nz(t_l) + ijm;t_l) (1
JjeJ

Neuron activation in the robot was controlled using Equation
1. The value of the i™ neuron, n;, at time step t was equal to
the value of n; in the previous time step plus the sum of the
incoming synaptic weights multiplied by the corresponding
neuron’s value. The o in the Eq. (1) is the hyperbolic tangent
function.

Embodied Retina Task

The goal of the embodied retina task is to perceive objects
in the environment and react accordingly. Similar to the its
disembodied counterpart the embodied retina task requires
aspects of modularity and hierarchy in the controller of the
agent.

The task environment consisted of cylinders placed along
a semi circle four units (Near) and six units (Far) away
from the origin. Near cylinders were white on top, black
on the bottom and far cylinders were colored black on top
and white on bottom. The cylinders were placed such that
each leaf of the robot was pointing at the middle of its cor-
responding cylinder (Fig. 1).

There were two objectives for each robot: local and
global. The local objective was to have leaves point at the
white region of their corresponding cylinders. The global
objective was to determine if there was an even or odd num-
ber of Near cylinders. The robot had to respond by moving
the root, and thus the whole tree, up if there was an even
number and down if there was an odd number of Near cylin-
ders.

For example, given a depth d = 1 robot and the the en-
vironment {Near, Near}, the robot should move its root up
while the leaves of the robot point up towards the tops of
the cylinders. Further, given the environment {Near, Far},
the global solution will be to move the root down, while the
local solutions will be to point to the top of the left (Near)
cylinder and the bottom of the right (Far) cylinder.

The number of cylinders in the environment is dependent
on the number of leaves in the tree which is further depen-
dent on the depth of the tree. Specifically, the number of
cylinders, n, is n = 2¢. Each cylinder had two variants.
Thus, at depth d = 1 there are two cylinders meaning there
are 22 = 4 total environments for the robot to be evaluated

120z 4equiidag 90 uo 1senb Aq Jpd 98000 & [eS/Z.87061/L91/0€/810Za4e/spd-sBuipasooid)jes)/npa jiwioailp//:dpy woly pspeojumoq

Embeddings for Different Tree Depths

binary

hierarchical

-1.0 0.0 1.0

° 104 o o

o 054 © ° o

o o ° o

0.0

o o ° o

) 051 o ° o

° -1.01 ® . .
o o
o o o
o o o
o o o
o o o
. .

physical
1.0
1.25 A
1.00 4 05
o
Il 0.75 0.0
©
0.50 1 —051
0.25 1
-1.0 1
1.0 o
1.25 A o
1.00 4 051
- o
Il 0.75 0.0 1
° o
0.50 4
-0.5 A °
0.251
-1.01 °
1040
1.25 A o o
1.004 0.5
o~ o o
Il 0.75 0.0 1
© °o o
0.50 1
0516 o
0.251
-1.04e
-1.0 -05 0.0 0.5 1.0 -1

(a)

Figure 2: The embeddings shown at three different depths of the tree. White neurons indicate the distance sensor neurons.
Sensor neurons are placed in the leaves of the tree and point outward in the direction of the leaf they are contained in. Black
neurons indicate motor neurons and are placed in the leaves and the root of the tree. The remaining neurons are hidden neurons
colored according to their depth for ease of comparison across embeddings. Each branch consisted of four hidden neurons. Both
the physical (a) and binary (b) embeddings exist in 2D-space regardless of the depth of the tree and produce valid embeddings
(i.e. no overlapping neurons) for arbitrary depths of the tree. The dimension of the hierarchical embedding (c) grows as the size
of the tree grows. Note at d = 1 the hierarchical and binary embedding are exactly the same.

in. For depth d = 2 there are four cylinders giving 4% = 16
total environments for the robot to be evaluated in.

1 if pointing at white region of

eval(ce,t) = c. at time ¢
0 otherwise
ge = |ztarget - Zroot|)
T
_ eval(ce,t
Ee —1_ thT/Q ZceECe () (3)
ge,max
Err(o, E) = Z (age + (1 — a)L,)? 4)

ecE

The global objective, calculated in Eq. (2) as g, is pri-
marily hierarchical. g, is the absolute difference between
the target z-location (1.5 if there is an even number of each
cylinder, 0.5 otherwise) and the ending z-location of the root
at the final time step. A human designer would possibly cre-
ate a network where information would flow from the leaves
to the root where the robot would then aggregate the infor-
mation to create the correct response.

The local objective, calculated in Eq. (3) is primarily
modular. /. is found by assessing whether the robot is look-

ing at the white portion of the cylinders in the last half of the
evaluation. By expanding out evaluation to the final half of
simulation we allow evolution to create a more steady gradi-
ent to the optimal solution. At each time step during evalua-
tion, the robot is given a point if it is correctly looking at the
white portion of the cylinder and a 0O if it is not. These points
are then summed for each cylinder and normalized between
[0,1] and subtracted from 1 to give the error. In correctly
assessing a cylinder, each leaf would benefit from having an
isolated module which determines whether to move the leaf
branch up or down as appropriate.

The overall objective function is a mean squared error
consisting of a weighted sum of the error from the two tasks.
From these two objectives we explored three tasks deter-
mined by Eq. (4) using « = {0.0,0.5,1.0}. These val-
ues correspond to focusing on only the local objective, both
objectives combined, and only the global objective, respec-
tively.

Embodied Network Embeddings

Each embedding consisted of four hidden neurons per physi-
cal tree branch. The embeddings are embodied because each
neuron is placed using information from the morphology of

120z 4equiidag 90 uo 1senb Aq Jpd 98000 & [eS/Z.87061/L91/0€/810Za4e/spd-sBuipasooid)jes)/npa jiwioailp//:dpy woly pspeojumoq

the robot. The physical embedding uses the actual (z,y)
positioning of the robot in its initial state whereas both the
binary and hierarchical embeddings use information about
the branches location in the abstract tree structure. Each em-
bedding consisted of a number of motor and sensor neurons
dependent on the depth of the tree considered. Each leaf
branch contained one sensor neuron and one motor neuron.
The root contained a single motor neuron. Thus for d = 1
there where 3 x4 = 12 hidden neurons 2 sensor neurons and
3 motor neurons giving 17 total neurons. For d = 2 there
where 7 * 4 = 28 hidden neurons 4 sensor neurons and 5
motor neurons giving 37 total neurons.

The path of a branch is determined by whether the branch
is a left or right child or an ancestor. Thus, the path of each
branch is a list with length d, the depth of the tree. The
elements of this list are chosen from {—1,0,1}. A —1 in-
dicates the branch is a left child, +1 indicates a right child,
and 0 indicates the branch is an ancestor to branches in that
depth. For example, given a d = 2 tree, the leftmost leaf is
[—1, —1] because it is left child of the left child of the root.
In contrast root’s path is [0, 0] because it is the ancestor of
both depth one and two branches.

In the physical embedding, neurons were placed along
the branches of the physical robot. Thus each neuron had
a physical location which corresponded to the robots initial
starting position in physical (z,y) space. The physical em-
bedding is in two-dimensional space, regardless of the the
depth of the robot.

In the binary embedding, the neurons were placed accord-
ing to the location of its corresponding branch in the overall
tree structure. The x position of the neurons are placed using
information about the path and depth of the current branch.
Neurons = >, ;4 p; * + where p; is the i index of the
path p. This results in neurons in branches of left children
being placed to the left of neurons in the parent branches
and, conversely, neurons in right child branches are to the
right of their parents. The neurons in the root branch are lo-
cated at z = 0. The y coordinate of the binary embedding
was chosen to be linear spacing between [—1, +1]. Motors
were placed at y = —1, sensors at y = +1 and hidden
neurons were linearly spaced in between. In branches with-
out sensors or motors, hidden neurons were still placed as
if they existed, meaning hidden neurons from each branch
shared y coordinates. This embedding was chosen because it
encompasses information about the morphology of the tree,
specifically left-right symmetry, while also being extensible
to different depths of tree morphologies and remaining in a
2-d embedding. The embedding is shown in more detail in
Figure 2b.

The hierarchical embedding (Fig. 2c) is similar to the
binary embedding in that it uses information about the
branches location to determine the position of the embedded
neurons. However, instead of placing neurons in a 2-d em-
bedding, the dimension hierarchical embedding grows with

bin/hier physical
a=0.0 (| 0.0152%***% 0.0185
a=0.5 0.0208 0.0245
a=1.0 0.125 0.140

Table 1: Depth 1 average minimum fitness at generation
1000. Bolded values indicates minimum across row. *%##
indicates p < 0.0001 according to Mann-Whitney U test.

binary physical hierarchical
a=0.0 || 0.0600 0.0675 0.0548
a=0.5] 0.0699 0.0632 0.0588 *
a=1.01 0227 0.239 0.222

Table 2: Depth 2 average minimum fitness at generation
1000. Bold values indicate minimum across row. x indi-
cates significance at p < 0.05 according to Kruskall-Wallis
H-Test.

the depth of the tree, specifically dim = d 4+ 1. Each new
depth of the tree is a new dimension for the embedding with
variations in the positioning at that depth, according to the
path of the branch, corresponding to location in that dimen-
sion in the embedding. For example, if a branches path in
a depth 2 tree is [-1, 1], the corresponding (z,y) embed-
ding for neurons in that branch are (—1,1) with the z co-
ordinate being determined by the same linear interpolation
between [—1,+1] as seen previously. In general, the first
d coordinates of the hierarchical embedding are determined
by the path with the final coordinate being determined by
the linear interpolation. This means at d = 1 the binary and
hierarchical embeddings are exactly the same. Further, the
distance between in neurons in the hierarchical embedding
is reflective of the path distance of the branches within the
tree. This means a child is closer to its parent than its sibling
and branches with the same parent are closer than branches
with different parents.

Experimental Parameters

Robots were simulated using Pyrosim, a python interface for
Open Dynamics Engine !. We used the same parameters for
HyperNEAT as in Verbancsics and Stanley (2011) with the
exception of changing the population size to 100 due to the
computational cost of simulation. Robots were evaluated for
100 time steps in each environment.

The initial population of CPPNs were seeded as in Ver-
bancsics and Stanley (2011). Because we considered two
dimensional substrates, two Gaussian nodes were used and
the bias was connected to the LEO output of the CPPN with
a -2. This seed means that two neurons which are close to-
gether in the embedded zy-plane are much more likely to be
connected by HyperNEAT.

"https://ccappelle.github.io/pyrosim/

120z 4equiidag 90 uo 1senb Aq Jpd 98000 & [eS/Z.87061/L91/0€/810Za4e/spd-sBuipasooid)jes)/npa jiwioailp//:dpy woly pspeojumoq

a=0.0

Fitness

a=0.5

a=1.0

—— physical
0164 | e bin/hier

0.12 4

0.08

0044

0.02 4

—— physical
----- bin/hier

0.40 1

—— physical
----- bin/hier

—— physical
—-= binary
—=- hierarchical

0.225 |

0.200 q

0.114

0.10 4

—— physical
—-= binary
—=- hierarchical

0.400 q

0.375 4

—— physical
—-= binary
=== hierarchical

0.1751
0.09

‘ﬁ' 0.150 q

0.125 4 0.08 4

0.100 0.071

0.075 A

0.06

0.050 A

0.350
0.325
0.3001 |
02759 |

0.250 A

0.225 4

T T T T T T T T
0 200 400 600 800 1000 0 200
generation

generation

T T T T T T T T T
600 800 1000 0 200 400 600 800 1000
generation

Figure 3: The average minimum error for the three embeddings in the six experiments performed over generational time. The
top row contains the average minimum error for depth 1 trees with four total test environments. The bottom row contains the
average minimum error for depth 2 trees with 16 total test environments. Each column indicates a different o parameter. « is
used to tune the error from the local objective, o = 0.0, to the global objective ,ac = 1.0, as dictated by Equation 4. Shaded
regions indicate &= SEM. Only the d = 1, = 0.0 and d = 2, o = 0.5 results are significant with p < 0.05 according to the

Kuskal-Wallis H-test.

Results

We ran 30 trials of HyperNEAT-LEO for both the phys-
ical and binary embedding for & € {0.0,0.5,1.0} with
d € {1,2} for 1000 generations each. The results are pre-
sented in Figure 3. Amongst the six experiments, two re-
sulted in population in a significant difference in ending
average error. In the d = 2, = 0.5 experiment, the
physical embedding proved to have significantly better fit-
ness after 1000 generations (p < 0.05). Conversely, in the
d = 2,a = 1.0 experiment, the binary embedding proved
to be significantly better error than the physical embedding
(p < 0.05). All other experiments provided statistically
similar ending fitness values for both embeddings.

For every value of « in the Depth 1 experiments, the
binary/hierarchical embedding performed better than the
physical embedding over 1000 generations however only the
a = 0.0 results are significant. Complete reporting on end-
ing error of Depth 1 experiments is located in Table 1.

For every value of « in the Depth 2 experiments, the hier-
archical embedding performed better than both the physical

and binary embeddings over 1000 generations however only
the a = 0.5 results are significant.

Modularity in the form of network modularity was not
present in any of the ending champion networks, every net-
work was completely connected. Regularity was found to be
present and varied between the different encodings as seen
in Figure 4.

Discussion

The location of neurons embedded in the substrate used by
HyperNEAT is known to have a difference in the efficiency
of evolution to optimize to both embodied and disembodied
tasks (Clune et al., 2009). By using different embodied em-
beddings, HyperNEAT is able to set connection weights us-
ing locality and gradients, present in the morphology, which
may stress the importance of certain desirable traits in robot
controllers such as hierarchy and modularity. Figure 4 shows
a clear difference in the types of patterns that are more com-
mon given a physical embedding, one where the robots mor-
phology is directly reflected in the location of the neurons,

120z 4equiidag 90 uo 1senb Aq Jpd 98000 & [eS/Z.87061/L91/0€/810Za4e/spd-sBuipasooid)jes)/npa jiwioailp//:dpy woly pspeojumoq

Sample networks and Connection Matrix

Figure 4: The best run champions from the a = 0.5,d = 1 experiment. The physical embedding is shown on the top row
and the binary/hierarchical embedding is shown on the bottom row. The left column shows how the network is placed on the
embedding and the right column is the same network in adjacency matrix form. Red connections indicate negative synaptic
weights while blue indicates positive weights and the alpha of the connection indicates the magnitude of the weight. The
adjacency matrix (right) helps show how the positioning of nodes in the embedding impacts the type of connection structure
which occurs. The white separations are sensors which cannot be connected to by synapses. The separations help further
distinguish the neurons within each branch and how they connect to the neurons in other branches

compared to a different type of embodied embedding which
uses information about the abstract concept of the structure
of the morphology.

Figure 3 shows the hierarchical embedding was able to
perform better than other embeddingns on a complex task
which had both global and local objectives. The increases
in dimensionality of the hierarchical embedding helped it
compared to the similar binary embedding which uses the
same concept of a branches path to determine neuron loca-
tion but restricts the embedding to two dimensions. These
differences are important because it gives an indication as to
the nature of the relationship between the morphology of the
robot, the structure of the task at hand, and the embedding
used.

One important aspect of HyperNEAT is that it is resolu-
tion independent meaning it is likely that solutions found
are able to scale in a predictable manner (Gauci and Stan-
ley, 2010). Here we give some insight into how embodied
embeddings may be able to be scaled effectively. In either
embedding presented in this work, more hidden neurons can
easily be placed by using linear spacing between the end
points set by the sensor and motor neurons. In the physical
embedding this takes place near the physical (z,y) position
of the tips of each branch while in the binary embedding this
occurs at # € {—1,+41}. Further resolution increases can
occur for this robot by increasing the depth of the tree. In

other robots this can be thought of as adding different com-
ponents or sensors and incorporating them into the substrate
as prescribed by the emobodied embedding plan. Figure 3
shows that while increasing the depth had a impact on the
overall error achieved it is important to note that the number
of environments between d = 1 and d = 2 was squared.
The increase in depth helped elucidate potential problems
with each embedding at these higher depth dimensions.

The disembodied retina task is known to be a benchmark
in order to create modularity in evolved neural networks
(Kashtan and Alon, 2005; Clune et al., 2010). There are
many potential reasons as to why modularity did not form
in the experiments performed. One could be that there are
plenty of perfectly acceptable non-modular controllers in
this task even though, to a human designer, the task seems
separable and modular. Another reason could be that there
was not enough pressure for modularity to form. Kashtan
and Alon (2005) only consistently found modularity when
the global task the network needed to compute was changed
over the course of evolution. This changing every few gen-
erations pressured evolution to separate the network into left
and right halves. It is possible that for this task, in order
for modularity to be present, one would need to change the
global objective periodically.

Another way to further constrain connectivity is to ex-
plicitly choose for solutions which have less connections

120z 4equiidag 90 uo 1senb Aq Jpd 98000 & [eS/Z.87061/L91/0€/810Za4e/spd-sBuipasooid)jes)/npa jiwioailp//:dpy woly pspeojumoq

through applying a connection cost function. The simplest
function to represent cost simply counts the total number
of connections present in the network, however, given the
tree structure of the robot, we can direct evolution towards
hierarchical solutions by assigning each neuron a physical
corresponding branch and computing the path length from
the branch of one neuron to the branch of the other. In this
manner we could select for controllers which explicitly use
a hierarchical structure.

Lastly, it is possible modularity did not occur because this
is an embodied task in which speed of movement may play
a factor. The more heavily connected a motor neuron is the
more likely it is that it will actuate with a higher magnitude
velocity. This higher velocity can help the robot achieve its
target position more quickly resulting in higher fitness.

Conclusion

In this work we presented the term embodied embedding and
presented two ways in which it could be performed. One
simply took the physical morphology of the robot in space to
inform the construction of the substrate. The other used the
abstract notion of the robot’s structure to create the embed-
ding. Both were able to perform in tasks, that to a human,
seem modular and hierarchical. We showed that differences
in these embeddings can cause differences in the evolvabil-
ity of the robots. We further gave insight into the patterns
of connections created by certain embeddings and how they
can create different networks to complete the same task.

In the future we would also like to investigate if ES-
Hyperneat chooses hierarchical embeddings for hierarchical
tasks and whether connection cost could help produce mod-
ularity in the embodied retina task.

Acknowledgements

This work was supported by National Science Foundation
award INSPIRE-1344227. The computational resources
provided by the UVMs Vermont Advanced Computing Core
(VACC) are gratefully acknowledged.

References

Bongard, J. (2002). Evolving modular genetic regulatory networks.
In Evolutionary Computation, 2002. CEC’02. Proceedings of
the 2002 Congress on, volume 2, pages 1872—-1877. IEEE.

Bongard, J. C. and Pfeifer, R. (2001). Repeated structure and dis-
sociation of genotypic and phenotypic complexity in artifi-
cial ontogeny. In Proceedings of the 3rd Annual Conference
on Genetic and Evolutionary Computation, pages 829-836.
Morgan Kaufmann Publishers Inc.

Carroll, S. B. (2001). Chance and necessity: the evolu-
tion of morphological complexity and diversity. Nature,
409(6823):1102.

Clune, J., Beckmann, B. E., McKinley, P. K., and Ofria, C.
(2010). Investigating whether hyperneat produces modular
neural networks. In Proceedings of the 12th annual confer-
ence on Genetic and evolutionary computation, pages 635—
642. ACM.

Clune, J., Ofria, C., and Pennock, R. T. (2009). The sensitivity of
hyperneat to different geometric representations of a problem.
In Proceedings of the 11th Annual conference on Genetic and
evolutionary computation, pages 675-682. ACM.

Clune, J., Stanley, K. O., Pennock, R. T., and Ofria, C. (2011). On
the performance of indirect encoding across the continuum of
regularity. IEEE Transactions on Evolutionary Computation,
15(3):346-367.

Duboule, D. (1998). Vertebrate hox gene regulation: clustering
and/or colinearity? Current opinion in genetics & develop-
ment, 8(5):514-518.

DAmbrosio, D. B., Gauci, J., and Stanley, K. O. (2014). Hyperneat:
The first five years. In Growing adaptive machines, pages
159-185. Springer.

Gauci, J. and Stanley, K. O. (2010). Indirect encoding of neural
networks for scalable go. In International Conference on Par-
allel Problem Solving from Nature, pages 354—363. Springer.

Hartwell, L. H., Hopfield, J. J., Leibler, S., and Murray, A. W.
(1999). From molecular to modular cell biology. Nature,
402(6761supp):C47.

Huizinga, J., Clune, J., and Mouret, J.-B. (2014). Evolving neural
networks that are both modular and regular: Hyperneat plus
the connection cost technique. In Proceedings of the 2014 An-
nual Conference on Genetic and Evolutionary Computation,
pages 697-704. ACM.

Kashtan, N. and Alon, U. (2005). Spontaneous evolution of
modularity and network motifs. Proceedings of the Na-
tional Academy of Sciences of the United States of America,
102(39):13773-13778.

Krumlauf, R. (1994). Hox genes in vertebrate development. Cell,
78(2):191-201.

Risi, S., Lehman, J., and Stanley, K. O. (2010). Evolving the place-
ment and density of neurons in the hyperneat substrate. In
Proceedings of the 12th annual conference on Genetic and
evolutionary computation, pages 563-570. ACM.

Risi, S. and Stanley, K. O. (2011). Enhancing es-hyperneat to
evolve more complex regular neural networks. In Proceed-
ings of the 13th annual conference on Genetic and evolution-
ary computation, pages 1539-1546. ACM.

Schlosser, G. and Wagner, G. P. (2004). Modularity in development
and evolution. University of Chicago Press.

Stanley, K. O., D’Ambrosio, D. B., and Gauci, J. (2009). A
hypercube-based encoding for evolving large-scale neural
networks. Artificial life, 15(2):185-212.

Verbancsics, P. and Stanley, K. O. (2011). Constraining connec-
tivity to encourage modularity in hyperneat. In Proceedings
of the 13th annual conference on Genetic and evolutionary
computation, pages 1483-1490. ACM.

120z 4equiidag 90 uo 1senb Aq Jpd 98000 & [eS/Z.87061/L91/0€/810Za4e/spd-sBuipasooid)jes)/npa jiwioailp//:dpy woly pspeojumoq

