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Abstract

An ongoing discussion in biology concerns whether intrinsic
mortality, or senescence, is programmed or not. The death
(i.e. removal) of an individual solution is an inherent feature
in evolutionary algorithms that can potentially explain how
intrinsic mortality can be beneficial in natural systems. This
paper investigates the relationship between mutation rate and
mortality rate with a steady state genetic algorithm that has a
specific intrinsic mortality rate. Experiments were performed
on a predefined deceptive fitness landscape, the hierarchical
if-and-only-if function (H-IFF). To test whether the relation-
ship between mutation and mortality rate holds for more com-
plex systems, an agent-based spatial grid model based on the
H-IFF function was also investigated. This paper shows that
there is a direct correlation between the evolvability of a pop-
ulation and an indiscriminate intrinsic mortality rate to muta-
tion rate ratio. Increased intrinsic mortality or increased mu-
tation rate can cause a random drift that can allow a popula-
tion to find a global optimum. Thus, mortality in evolutionary
algorithms does not only explain evolvability, but might also
improve existing algorithms for deceptive/rugged landscapes.
Since an intrinsic mortality rate increases the evolvability of
our spatial model, we bolster the claim that intrinsic mortality
can be beneficial for the evolvability of a population.

Introduction
Mortality is a fundamental component of natural systems
that is caused by intrinsic factors (senescence, or deterio-
ration with age) or extrinsic factors such as predation, dis-
ease and accident. However, the explanation and origins of
senescence are still debated. Despite the plurality of reasons
that cause mortality, its rate in a given population can shape
selective pressures and thereby overall evolvability. Consid-
ering recent publications by Kowald and Kirkwood (2016)
and Goldsmith (2016), which discuss whether aging is pro-
grammed or not, it is relevant to test whether mortality poses
any benefit for evolutionary algorithms (EAs) that could sup-
port any of the existing theories.

Proponents of non-programmed senescence support the-
ories such as mutation accumulation (Medawar, 1952), an-
tagonistic pleiotropy (Williams, 1957), and the disposable-
soma theory (Kirkwood, 1977). Proponents of programmed
aging largely support theories on evolvability (Weismann.,

1889; Goldsmith, 2016) and altruistic aging (Yang, 2013;
Werfel et al., 2017; Herrera et al., 2017), while not nec-
essarily excluding the aforementioned theories on non-
programmed senescence. The evolvability theory of senes-
cence states that species vary in their capacity of evolution
(Goldsmith, 2016). Since a population where individuals
don’t die would reside in a zero-evolvability state (Gold-
smith, 2008), this theory hypothesizes that programmed ag-
ing and other life span limiting features can aid the evolv-
ability of a species.

Evolvability is the population’s ability to traverse the fit-
ness landscape without passing through non-functional re-
gions (Smith, 1970; Haubold and Wiehe, 2006). This defi-
nition is different from some existing measures of evolvabil-
ity (Altenberg, 1994; Wagner, 1996; Lehman, 2012) since
it is not directly the ability of a population or individual to
produce fitter or more varied individuals when compared to
their parents. The ability of the individual or a population to
produce better adapted offspring or more diverse individuals
is less important than the ability of the population to find a
better solution across generational time. A population that
can produce better fit individuals in one generation might be
unable to cross a local valley in the fitness landscape that
needs to be crossed to find a better solution. Therefore, we
analyze the efficiency at which a population is able to tra-
verse the fitness landscape over generational time as a proxy
of evolvability.

Since senescence is prevalent in nature—salmon and oc-
topi dying after spawning of their offspring or elephants dy-
ing after running out of their last set of teeth—it is inter-
esting to investigate whether the phenomenon of senescence
can be beneficial in simulated models. Intrinsic mortality
leading to evolvability has been mostly discussed hypothet-
ically Goldsmith (2014). Notably, Herrera et al. (2017) in-
vestigated evolvability of a population of agents in a rapidly
changing environment. They show that a terminal age al-
lows the population to better continuously adapt to its en-
vironment. In addition, Lehman et al. (2015) showed that
extinction events can lead to a better evolvable EA. How-
ever, in contrast to the work presented here, extinction events
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were discriminative and kept certain elites in the population.
Although evolution is usually seen as including incremental
improvements over generational time, some solutions might
require evolutionary steps that make individuals worse than
their ancestors. This could enable progeny to find a solu-
tion in the search space that is more distant, and perhaps
ultimately more efficient, than the ancestor’s solutions. As
a testbed for this potential leap, we used a deceptive fitness
function—an adjusted version of the H-IFF function (Wat-
son et al., 1998) —and a genetic algorithm (GA) to simulate
a population of individuals.

A common issue with GAs is that optimal hyperparame-
ters highly depend on the given domain. Generational GAs
inherently implement a mortality mechanism, since the en-
tire population is replaced by a new population of offspring
every generation (when no elitism is implemented). More-
over, deletion in steady state algorithms has also been in-
vestigated for e.g. dynamic environments and shown to per-
form similar to generational EAs (Vavak and Fogarty, 1996).
The application of a mortality rate in GAs can therefore also
elucidate if such mechanisms should be implemented in an
existing GA to better traverse the fitness landscape.

Before discussing the methods illustrating the effect of
mortality, it is useful to clarify some concepts from evolu-
tionary dynamics that lead to the premise of the paper. Con-
sidering any population of individuals at carrying capacity
in an environment and stating that the mortality rate is fixed
in this population, the mutation rate greatly influences the
types of genes in the population and the resulting stable at-
tractor space in a quasispecies equilibrium. As explained
by Nowak et al. (2006), when considering a sequence space
of a specific gene, there can be several optima in this space
(Schuster and Swetina, 1988). Depicted in Figure 1, if the
average mutation rate u is below a specific critical value u1,
the stable (robust) state of the gene in the population will
end up in a narrow peak. When the mutation rate is at a
value between u1 and u2, the narrow peak becomes an un-
stable region in the sequence space for the population and
the population will in turn converge to the broader sequence
space with a lower fitness value. If the mutation rate is in
turn increased to be higher than u2, there will be no stable
state and the sequence space in which the population resides
is random. However, if genes in a population of individuals
already reside in the broader lower fit state, how can it tra-
verse the sequence space to end up in the narrow peak that
is the better fit solution? Traversing this state space would
either require an individual to drastically mutate into that
region, or a population could gradually move to the region
through genetic drift. Nowak’s mutation rate threshold val-
ues are however only valid for a population of mortals. If
immortality could occur, the immortal individual residing in
the narrow peak will always stay there (since it cannot be
outcompeted) and eventually, its offspring have a chance to
also occupy the narrow region no matter how high the mu-

Figure 1: Stable populations on a sequence landscape un-
der changing mutation rates. Blue areas represent the se-
quence space the population occupies under different mu-
tation rates u. u1 and u2 are mutation rate thresholds
which make the population stable in narrow high peak (top),
broader peak (middle) or unstable (bottom). Height of the
black bars represents the fitness value of specific sequences.
The distance between bars indicates the genetic distance
between specific sequences. Adjusted from Nowak et al.
(2006).

tation rate is. Therefore, if we consider δ to be the mortality
rate, we claim that there exists a mortality rate threshold δ1
and δ2 similar to the mutation rate thresholds.

Accepting this relationship between the mortality rate and
the mutation rate, we test whether the theory can be exper-
imentally verified. Using a difficult to solve deceptive state
space landscape (H-IFF) on both a steady state GA and a
spatial model can elucidate how this relationship influences
the evolvability of a population. The steady state GA is used
as an abstract model to see the general effects of mortal-
ity on the evolutionary progression on this deceptive fitness
landscape. Whereas, as described by Werfel et al. (2017),
spatial models can elucidate aspects of mortality that equate
to natural systems. The spatial model, which contains an
inherent extrinsic mortality rate emerging from local com-
petition, is used to isolate the influence of intrinsic mortality
to see whether the concept of mortality is relevant for evolv-
ability in natural systems.

Methodology
The experiments are divided in a benchmark optimization
implementation using a steady state GA and an agent-based
grid model 1. In both simulations, the fitness value of an
individual is calculated based on the H-IFF function. The
selection/deletion operators in the spatial model are inher-

1The source code for the steady state GA and the agent-
based grid model can be found here: https://github.com/
FrankVeenstra/ALife2018
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ent properties between the interactions of the individuals
and their environment while the steady state GA uses a ran-
dom selection operator. Including an extrinsic mortality me-
chanic in the spatial model allows us to (1) test whether
the mutation rate can alter the stable region in the sequence
space of the genomes as explained by Nowak et al. (2006)
(Figure 1), and (2) investigate if an additional intrinsic mor-
tality rate influences the evolvability. The experiments in-
vestigate if mortality alters the evolutionary progression of
a population of individuals containing binary genomes and
whether this enables the population to traverse the state
space landscape more efficiently.

H-IFF

The H-IFF function generates a deceptive fitness landscape
for binary genomes. The fitness landscape is fractal that
makes it difficult to solve with any kind of optimization
strategy (Watson et al., 1998). Considering a binary genome
composed of 64 bits, the H-IFF landscapes where the fit-
ness is given over a function of the number of ’1’ bits in
the genome is depicted in Figure 2. The gray area illus-
trates the possible fitness values an individual can achieve
with a certain number of zeros in its genome. For exam-
ple, the maximum fitness of an individual with either only
zeros or only ones is 192 and this value is the global max-
ima for this problem. However, when half of the genome
is composed of zeros and half ones, the fitness value of that
particular individual ranges somewhere between 4 and 160
depending on the specific order of bits. In between each of
the peaks lies another local peak which contributes to the
fractal nature of the H-IFF function. This implementation is
slightly different from the original implementations where
the genes may be NULL, 0 or 1 Watson et al. (1998). The
NULL possibility has been omitted in order to make the al-
gorithm simpler (e.g. less computational requirements) and
easier to visualize. Omitting the NULL possibility reduces
the self-similarity calculations by one layer. The maximum
fitness of 64-bit H-IFF is 192 instead of 448 as in the origi-
nal implementation. However, the landscape is unchanged,
with as many local optima as the original implementation.

Steady State GA

The steady state GA with a mortality rate implements a 64
bit genome composed of either ones or zeros which are ran-
domly initialized. Genes in the genome are mutated with
a probability given by the mutation rate. Note that mutat-
ing a gene will randomly assign a bit of 1 or 0, so the gene
swaps a bit with a half the contingency in mutation events.
Thus, a mutation rate of 0.1 means a gene is mutated with
10% probability but changed with only 5% probability. This
implementation ensures that a mutation rate of 1.0 does not
produce offspring with the complementary bit string of their
parent’s genome, but rather an entirely random set of bits.

Figure 2: The H-IFF fitness space landscape. Potential
fitness value (y) values and the number of ones present in
the genome(x). All possible solutions can be plotted within
the gray area.

Figure 3: Illustration of the spatial model. Green repre-
sents plant biomass, blue rabbit biomass. Snapshot taken
after the first few cycles of the spatial model

Each steady state GA iteration is as follows: (1) a ran-
dom individual is chosen, (2) the chosen genome is copied,
mutated and evaluated, (3) the new genome is compared to
a random individual in the existing population, and (4) the
new genome replaces this second individual if the fitness for
the new genome is higher. For a population size n, a gen-
eration consists of n iterations. After each generation, indi-
viduals are independently checked for deletion with a prob-
ability given by the mortality rate. Deleted individuals were
marked with a fitness value of −1 but kept in the population
and unable to reproduce. The population was logged after
each generation. No crossover was implemented to isolate
the effect of the solely the mutation rate.

We ran 20 individual simulations of 100,000 generations
and a population size of 50 individuals with different val-
ues for the mortality rate and mutation rate. A mutation rate
sweep from 0.0 to 1.0 was done changing the mutation rate
approximately exponentially. A similar sweep was done for
the mortality rate, although the 0.64 and 1.0 mortality rates
have been excluded since these values lead to early extinc-
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tion of the population.

Spatial Model
The spatial model is an agent-based grid model. Like
the steady state GA, the spatial model implements the H-
IFF fitness landscape, though only 32-bit H-IFF to re-
duce computational requirements which were considerably
higher compared to the steady state GA. In contrast to
the steady state implementation, the population was initial-
ized with genomes in the middle local optima of the H-IFF
fitness landscape (0000-0000-0000-0000-1111-1111-1111-
1111) with a corresponding fitness value of 64. From this
starting configuration it is particularly challenging to find
the global optima since no random individuals are close to
any of the global optima which is the case in random initial-
ization. Moreover, when randomizing genomes, the fitness
of random individuals can by chance be so low that the pop-
ulation is never able to survive without manually increasing
their fitness. Hence, the local optimum was chosen as the
initial genome of all individuals in the population.

The spatial model is similar to a predator prey model
and consisted of a 250 × 250 grid where cells are either
type 0 (prey) or 1 (predator). One can imagine the prey
and predators to be plants and rabbits respectively, where
predators were subject to evolution and each predator cell
contained a binary genome. The fitness value derived from
a predator’s genome translates into food consumption effi-
ciency (a metabolic efficiency). The ability to acquire food
from the environment efficiently enables predators to grow
faster, thereby producing more offspring. The parameters
used were chosen based on prior experimentation. At each
iteration, a given amount of biomass is added to plant cells,
according to a biomass production rate which was an abso-
lute value of +0.0016, with a maximum biomass value of
1.0. Type 1 cells attempt to move to a neighboring cell with
4/5 chance (moving up, down, left, right or stay put). If the
target position is occupied by another predator, or if the posi-

tion is out of the grid, the predator will not move. For com-
putational efficiency, the grid is sequentially updated from
left to right and top to bottom, ensuring that predators move
only once per iteration. Predator cells reproduce with a 1/10
chance if their biomass is above twice the reproduction cost
(reproduction cost was 0.4). Offspring start with a biomass
equal to the reproduction cost times 0.8 (0.32). The repro-
duction cost was subtracted from the biomass of the parent
predator.

When a predator cell moves on a prey cell it con-
sumes the prey’s biomass with an efficiency rate of
(fitness/maxfit). The predator will not increase its
biomass over the 1.0 limit; any unused plant biomass is
left in the cell. At every iteration, predator cells lose 0.02
biomass as a maintenance cost. Predators with biomass be-
low 0.01 are removed from the population (extrinsic mortal-
ity from starvation).

In contrast to the steady state GA, the spatial model im-
plements both intrinsic and extrinsic mortality. For intrinsic
mortality we implemented a terminal age, and the extrinsic
mortality results from local competition, which is similar to
the implementation of Werfel et al. (2017). To explore the
relationship between intrinsic mortality and mutation rate
different mutation rates and terminal ages are compared.
The main results indicate how often, and how quickly, the
global maximum was found on 32 bit H-IFF.

Results
In both the steady state approach and the spatial model, a
correlation between mutation rate and mortality with respect
to finding the global optimum can be observed (Table 1 &
Table 2). This relationship in the steady state genetic al-
gorithm is very specific for finding the global maximum on
64-bit H-IFF within the given simulation time. The mutation
rate and mortality rate explain 89 % of the variation seen in
the ability to traverse to the global optimum in H-IFF (Fig-

Table 1: Times the optimal solution is found in the steady state GA. Varying the mutation rate (u) and terminal age (δ).
Results are taken from 20 runs of each set of parameters on 64-bit H-IFF. The lower-case value represents the average number
of generations (thousands) that had to be simulated before finding the global optimum. Mutation rates above 0.32 and below
0.01 have been omitted since the global optima is never found in these scenarios

u\δ 0.0 0.005 0.01 0.02 0.03 0.04 0.06 0.08 0.12 0.16 0.24 0.32
0.01 0 0 0 0 0 0 0 0 0 0 0 2
0.02 0 0 0 0 0 0 0 0 0 0 2 2
0.03 0 0 0 0 0 0 0 0 0 0 2026 0
0.04 0 0 0 0 0 1 0 0 0 1443 3 0
0.06 0 0 0 0 0 0 0 3 2017 1150 0 0
0.08 0 0 0 0 0 1 1822 1919 3 0 0 0
0.12 0 1 0 1518 1934 7 0 0 0 0 0 0
0.16 2 1135 1735 3 0 0 0 0 0 0 0 0
0.24 4 0 0 0 0 0 0 0 0 0 0 0
0.32 4 0 0 0 0 0 0 0 0 0 0 0
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ure 4). The evolutionary progressions differ across various
mutation rates where mortality rates or mutation rates that
are too high lead to too much variation and less fit individ-
uals. If the mortality rate or mutation rate is too low, the
population quickly stagnates in a local optimum. The proper
ratio of mutation rate and mortality rate leads to a population
residing in an unstable local optimum, but still fit enough to
traverse the top of the fitness landscape and explore multi-
ple peaks. The results of 20 runs using the steady state GA
are shown in Figure 5 (top). Figure 5 (middle and bottom)
depicts the fitness and diversity on the H-IFF landscape over
generational time, which can help to determine how single
runs are able to traverse the fitness landscape. Using the op-
timal mutation rate to mortality rate ratio, the ability of a
population to produce adaptive diversity over generational
time can create diversity while still hugging the top of the
landscape. Hence, informally, we refer to this phenomenon
as hill-hugging since the GA crosses valleys but does not
move to a low region in the search space compared to higher
mutation/mortality rates.

The spatial model produces a similar effect to the steady
state GA. Additionally, the optimal mortality rate to muta-
tion rate in the spatial model is less prone to lose the global
optima once it has been found (Figure 6). This might be
because a better fit population is able to sustain more indi-
viduals than a lower fit population (Figure 7). A specific
ratio of mutation rate to terminal age that is optimal for the
population to traverse the state space landscape can also be
observed (Figure 8). The individuals of the spatial model,
in contrast to the steady state GA, were initialized with indi-
viduals residing in the middle of the state space landscape.
The results illustrate that despite being in a local optimum
furthest away from the global optima, the solution can still
be quickly found with the right parameters.

Table 2: Number of optimal solutions for 32-bit H-IFF
on a spatial model. Results are taken from 20 runs for each
combination of mutation rate (u) and terminal age (TA). ε
marks combinations where the population went extinct in
all runs. Data from terminal age 1000 and 2000 not shown.

u \TA 40 50 60 80 120 160 500 -
0.01 5 0 0 0 0 0 0 0
0.015 19 8 0 0 0 0 0 0
0.02 ε 20 15 0 0 0 0 0
0.03 ε 10 20 20 0 0 0 0
0.04 ε 1 11 20 12 0 0 0
0.06 ε ε 2 6 20 20 0 0
0.08 ε ε 1 1 20 20 0 0
0.12 ε ε 0 0 2 9 20 0
0.16 ε ε ε 0 0 1 20 17
0.24 ε ε ε 0 0 0 1 14
0.32 ε ε ε 0 0 0 1 2

Figure 4: Relationship between the mutation rate and
mortality rate. Mutation rate is shown in logarithmic scale.
Symbols represent number of optimal solutions found for
64-bit H-IFF. Darker colors represent more solutions for
those parameters (up to 100% success). Exponential fit for
the data: y = 0.1538× e−7.28x, with R2 = 0.89

Individual runs with a terminal age of 60 (Figure 7) show
a similar phenomenon as the non-spatial model; a lower
mutation rate leads to premature convergence more quickly
while a high mutation rate creates an unstable population.
Moreover, the speed of finding the global maximum in the
spatial model also differs depending on different mutation
rate and mortality rate variables (Figure 6). Here speed was
derived from the number of cycles the spatial model ran be-
fore finding the global maximum. The only difference to
Figure 6 comparing mutation rate 0.02 and terminal age 50,
with mutation rate 0.16 and terminal age 500 is that the lat-
ter needs to simulate significantly less individuals before the
maximum is found (two sided Mann Whitney-u test p value
0.008) while the difference in speed of the number of cy-
cles was not significant (two sided Mann Whitney-u test p
value 0.2). The median number of individuals simulated be-
fore finding the global maximum was 971,792 and 188,148
respectively. Thus, a higher terminal age in this compar-
ison needed to simulate less individuals. Apart from this
anomaly, the speed plot of using individuals as a measure
looks almost identical to (Figure 6) and is therefore not in-
cluded in the paper. For EAs, the number of individuals sim-
ulated should be minimized though simulation time in terms
of cycles is what matters in natural populations.

Interestingly, when using no terminal age, the average
age of the individuals in the population stays relatively the
same across different mutation rates while the maximum age
is significantly higher in high mutation rate scenarios (two
sided Mann Whitney-u p value of 7 · 10−8). These results
could suggest that the best fit individual is unable to produce
many functional offspring due to the high mutation rates,
meaning that it has in turn a higher chance to outcompete
the other individuals in the populations since the competi-
tors are less fit. The elites thus become older in scenarios
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(a) (b) (c)

Figure 5: Evolutionary Progress for different Mortality Rates. (top) The average fitness and percentiles (25-75 dark grey;
0-100 light grey) of 20 runs using a mutation rate of 0.08 and a mortality rate of 0.04 (a), 0.08 (b) and 0.16 (c). Distribution
of the population across the H-IFF landscape of a single run in comparing the distribution and fitness of individuals across the
landscape (middle) and plotting the distribution and fitness over generational time (bottom). The blue dots represent individual
genomes and the area on H-IFF they occupy at fixed intervals.

Figure 6: Speed of solving H-IFF for the spatial model.
Times the global maximum found divided by the average
number of iterations ·10, 000 the spatial model ran varying
the mutation rate (x) and the maximum age.

with a high mutation rate; with no terminal age, the max-
imum age of the population under high mutation rates can
grow as high as 20,000 cycles. As shown in Table 2, as high
mutation rates also lead to more less fit individuals in the
population, the mutation rate is necessarily low, otherwise
the population will go extinct as denoted by ε in Table 2.
This is what happens during an error catastrophe as seen in
nature.

Discussion
This paper demonstrated that evolvability is significantly in-
fluenced by the mutation and mortality rate ratio in a genetic
algorithm and a spatial model using the H-IFF fitness land-
scape. In particular, the H-IFF function, despite its decep-
tiveness, can be traversed by a steady state GA by simply
including an indiscriminate mortality rate. Since a fitness
landscape in nature is likely highly convoluted, we speculate
that programmed aging could be, as Goldsmith (2016) men-
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(a) (b) (c)

Figure 7: Individual runs showing maximum fitness values across generational time when implementing a terminal age of 60
and a mutation rate of 0.02 (a), 0.03 (b), 0.04 (c). Each cycle represents 100 iterations of the spatial model.

Figure 8: Optimal mutation rate as a function of terminal
age. Note the logarithmic scale for terminal age. The contin-
uous line shows an exponential fit: 0.1903−0.1907 ·e0.0028,
with r2 = 0.9936 (values closer to one indicate a better fit).

tions, beneficial for the evolvability of a population. The bet-
ter a species can traverse the fitness landscape without going
through low fitness regions, the more plausible it is that the
species finds more adaptive traits and the better it is able to
cope with changing environments. In our case, the short-
est path to the global maximum of H-IFF from the center of
H-IFF was to mutate individuals in the appropriate lesser fit
local maxima. Our results suggest that there is an optimal
mortality rate for a given mutation rate, which could be con-
sidered to improve EAs, especially steady state EAs. Steady
state algorithms with no chance of removing elite individu-
als may result in premature convergence. However, the ad-
dition of random mortality can enhance such algorithms and
allow them to efficiently traverse the state space landscape.
The mutation to mortality rate has an optimal ratio that de-
pends on multiple factors. The population size and size of
the functional genes are also a contributing factor though ex-
perimenting with these variables was out of the scope of this
paper.

Figure 8 shows that the optimal mutation rate saturates

as the terminal age increases. The difference between a ter-
minal age of 1000, 2000, or no terminal age, is small. As
described in the mutation accumulation theory by Medawar
(1952), this terminal age is so high that natural selection
would not be influenced by it, and this can therefore explain
why individuals do not reach an older age. Although in the
steady state GA the best solution is frequently lost, this is
not the case in the spatial model, which indicates a poten-
tial difference in robustness of a spatial model compared to
the GA but might also be attributed to the genome size used.
The spatial model has a higher probability of keeping the
best solution in the population since a fitter population can
sustain more individuals than a less fit population. This in-
creased stability ensures that the global maximum is not lost.
Interestingly, in order to get the same amount of evolvabil-
ity as before finding the global optima in spatial models, the
mutation rate, intrinsic mortality rate or extrinsic mortality
factors would need to increase again.

Species in natural environments suffer from both intrin-
sic (aging) and extrinsic death (predation, accidents). Ex-
trinsic mortality is known to fluctuate, both in predictable
ways (seasons) and depending on external factors (diseases,
variable predation pressure). We have shown a clear correla-
tion between mortality and mutation rate for optimal evolv-
ability, which means that such fluctuations in mortality rates
could have a negative impact in the evolvability of popu-
lations. Evolving an intrinsic death factor may alleviate this
problem: when external pressure is high, aging is not a dom-
inant factor. However, if external mortality is decreased,
then intrinsic death prevents the death rate to mutation rate
equilibrium to get too far off balance, preserving evolvabil-
ity. Hence the evolutionary advantage of an intrinsic mortal-
ity rate.

Undefined domains with potential deceptive landscapes,
such as robotics simulations, may also have an optimal ra-
tio. Though we think it is likely that due to the unknown
convolution of the landscape in different regions, this opti-
mal ratio changes in different locations of the landscape and
thus changes across generational time. An additional feature
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of the mortality to mutation rate ratio is that this determines
the broadness of the hills in the landscape that can be occu-
pied across generational time in a stable way. A higher mu-
tation rate or mortality rate would then determine the search
space the simulator is occupying, and a broader stable region
might result in more abstract general phenotypes that could
be better transferable to robots. Robotic simulators, a com-
mon domain for EAs, is a promising field for future applica-
tions. It would be especially interesting to see if an optimal
ratio of mortality and mutation rate can surpass existing al-
gorithms like Age Fitness Pareto Optimization (Schmidt and
Lipson, 2011), Age Layered Population Structures (Hornby,
2006) and Novelty Search (Lehman, 2012).

Conclusion
This paper demonstrated an explicit relationship between
mutation rate and mortality rate for optimal evolvability on
a deceptive fitness landscape in both spatial and non-spatial
evolutionary models. As an alternative to proposed theories
showing how intrinsic mortality is advantageous for altru-
istic aging, we claim that intrinsic mortality governs evolv-
ability and that it is thereby a potentially evolvable trait, sup-
porting theories of programmed death. Moreover, in scenar-
ios of fluctuating extrinsic mortality rates, an intrinsic mor-
tality rate would keep the evolvability the same which might
further support why intrinsic mortality has an evolutionary
benefit. The results not only increase our understanding of
senescence but hold potential benefit for deceptive/rugged
landscapes in evolutionary algorithms.
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