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Evolving morphology automatically
reformulates the problem of designing
modular control

Anton Bernatskiy and Josh Bongard

Abstract
Modularity is a system property of many natural and artificial adaptive systems. Evolutionary algorithms designed to pro-
duce modular solutions have increased convergence rates and improved generalization ability; however, their perfor-
mance can be impacted if the task is inherently nonmodular. Previously, we have shown that some design variables can
influence whether the task on the remaining variables is inherently modular. We investigate the possibility of exploiting
that dependence to simplify optimization and arrive at a general design pattern that we use to show that evolutionary
search can seek such modularity-inducing design variable values, thus easing subsequent search for highly fit, modular
organization within the remaining design variables. We investigate this approach with embodied agents in which evolu-
tionary discovery of morphology enables subsequent discovery of highly fit, modular controllers and show that it bene-
fits from biasing search toward modular controllers and setting the mutation rate for control policies higher than that
for morphology. This work also reinforces our previous finding that the relationship between modularity and evolvability
that is well-studied in nonembodied systems can, under certain conditions, be generalized to include embodied systems
as well and provides a practical approach to satisfying the conditions in question.
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1. Introduction

To behave adaptively is to respond to changes in the
environment in such a way as to achieve a certain goal.
A system capable of such a behavior can be seen as an
automatic problem solver for a certain range of tasks.
A consequence of that is the possibility for natural
adaptation mechanisms such as evolution and learning
be modeled with problem solvers such as evolutionary
or machine learning algorithms (Matarić, 1998; Orzack,
Orzack, & Sober, 2001). The opposite is also true:
When designing systems capable of adaptive behavior,
general approaches to problem-solving are valuable
tools that can be used either directly as a component of
the solution (Bongard, Zykov, & Lipson, 2006) or to
design a solution for a particular environment automat-
ically (Floreano &Mondada, 1994).

One idea often instantiated in such approaches is to
divide the whole problem into subproblems and solve
each one of these with some degree of independence

from others. This idea, which we will call the division
approach

1

has proven to be effective for a wide variety
of tasks. In politics and warfare, the principle divide et
impera is used at least since antiquity (Strabo, AD23).
The approach plays a fundamental role in engineering
(Baldwin & Clark, 2006; Suh, 1990), including algorith-
mic design (Kleinberg & Tardos, 2005) and artificial
adaptive systems (Ashby, 1960). Whenever the division
approach is used, the resulting solution possesses a sys-
tem property called modularity. It is broadly defined as
a capacity of a system consisting of many components
to be decomposed into groups of components (mod-
ules) such that within each group the dependencies
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between the components are strong, while the depen-
dencies between the components that are in different
groups are comparatively weak. Although the defini-
tions of ‘‘components’’ and ‘‘dependencies’’ vary
depending on the nature of the system, all systems that
are produced with the division approach are modular at
least in one way. In particular, components of the
resulting system that are produced by solving a single
subproblem all arise from the same solution process
and in this sense are more dependent on each other than
the components pertaining to different subproblems.

A peculiar property of modularity is that if the pro-
cess of solving the task is incremental and the modular-
ity is present in a partial solution, then even the
simplest search methods can provide the same benefits
as the division approach. Consider the problem of
designing an internal combustion engine with a maxi-
mum total energy output. If the optimization process
begins with an engine in which all subsystems (cooling,
lubrication, etc.) are tightly coupled, then any chance
improvement of one subsystem will likely cause many
other subsystems to change their behavior, increasing
the probability that the overall change will be detrimen-
tal to the performance. On the other hand, if the sub-
systems are functioning with relative independence
from each other, then a possible improvement within
one subsystem will not affect other subsystems much,
resulting in an overall increase in performance (Suh,
1990). In incremental setting, this is how the division
approach operates: After dividing the problem into
subproblems, each of these is solved, to some extent,
independently. This pattern can be enforced by the
modular structure of the partial solution, or it can be
built into the solution process by the designer, resulting
in modular partial solutions. Thus, in engineering,
whenever the incremental algorithms are used, the cau-
sal relationship between the solution modularity and
the division approach is bidirectional.

In nature, modularity is observed in all biological
systems from the molecular to the ecosystem level
(Carroll, 2001; Girvan & Newman, 2002; Wagner,
Pavlicev, & Cheverud, 2007). Its emergence in biologi-
cal systems is hypothesized to be related to the reduc-
tion in cost of complexity that is associated with it
(Welch & Waxman, 2003). Several mechanisms by
which such emergence may occur have been proposed
(Clune, Mouret, & Lipson, 2013; Draghi & Wagner,
2008; Espinosa-Soto & Wagner, 2010; Kashtan &
Alon, 2005; Lipson, Pollack, Suh, & Wainwright, 2002;
Solé & Fernández, 2003; Wagner et al., 2007). Many of
these were investigated by evolving model problem sol-
vers, such as genetic regulatory networks or neural net-
works, with genetic algorithms, and in almost all these
experiments an increased rate of adaptation (i.e. rate of
error reduction or fitness increase) was reported to
coincide with the emergence of modular solution candi-
dates (Clune et al., 2013; Espinosa-Soto & Wagner,

2010; Kashtan & Alon, 2005; Lipson et al., 2002).
Similar improvement was observed even when modu-
larity was introduced into the systems artificially by
biasing search toward more modular solutions
(Bernatskiy & Bongard, 2015; Durr, Floreano, &
Mattiussi, 2010).

This coincidence appears analogous to the relation-
ship between modularity and the division approach in
engineered systems. In many models, it was indeed
observed that evolution produced modular solutions
consisting of quasi-independent modules solving sub-
tasks and/or capable of evolving separately (Cappelle,
Bernatskiy, Livingston, Livingston, & Bongard, 2016;
Clune et al., 2013; Ellefsen, Mouret, & Clune, 2015;
Espinosa-Soto & Wagner, 2010; Kashtan & Alon, 2005).
This is a non-trivial observation because it has also been
discovered that more modular networks, on average,
tend to have smaller number of connections than their
less modular counterparts (Bernatskiy & Bongard, 2015;
Clune et al., 2013; Lipson et al., 2002). Thus, the increase
in rate of adaptation could be attributed to the decrease
in the effective size of the search space, as opposed to the
independent optimization of modules.

There is evidence, however, that the viability of
modular solutions, together with the benefits they
bring, is heavily dependent on the task. In our previous
work, we provide an example of a task and a robot
morphology for which any controller that solves the
task must be nonmodular, and we show that the rate of
evolutionary adaptation for this task–morphology pair
is much slower than the rate of evolutionary adaptation
for the same task, but with a morphology that enables
modular control (Bernatskiy & Bongard, 2017).
Indirectly, the dependence of the feasibility of modular
control on the morphology (and therefore on the struc-
ture of the control task) is hinted on by the results
showing that modular controllers are more likely to
evolve if the morphology evolves alongside the control,
with the additional objective of behavioral conserva-
tism (Bongard et al., 2015).

2. Reformulation

In most of the work cited above, the task itself is con-
sidered to be fixed. In engineering, however, this is
rarely the case. For almost every real-world task, there
is a space of possible ways to approach and formalize
it. Changing the approach can trivialize tasks that ini-
tially appear intractable. Human problem solvers are
well-known to be able to exploit that dependence. We
will call the corresponding cognitive technique—
reformulating the problem to make it easier to solve,
instead of attacking it directly—reformulation (e.g.
Choueiry, Iwasaki, & McIlraith, 2005). In human cog-
nition, reformulation is arguably the instrument of
choice when dealing with the hardest tasks. It is widely
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hypothesized that it underlies many aspects of cognitive
insight (Duncker & Lees, 1945; Sternberg & Davidson,
1995; Wicker, Weinstein, Yelich, & Brooks, 1978),
including the so-called Eureka effect (Knoblich,
Ohlsson, & Raney, 2001; Sternberg & Davidson, 1995).

We formally define reformulation as follows (Figure
1(a)). Consider a finite-dimensional optimization prob-
lem, for which solutions are encoded as vectors of N

values that minimize some real-valued function.
Suppose there is some measure of difficulty for finding
such a solution. Examples of such measures include a
binary value that indicates whether a certain solution
technique worked, or the number of operations
required to achieve an acceptable result. Suppose fur-
ther that changing some subset of M (M\N ) variables
(which we will hereafter call driving variables) can sig-
nificantly change the difficulty of optimizing the
N �M remaining non-driving variables. The approach
is then to isolate the driving variables and optimize
their values (i.e. the formulation of the problem of opti-
mizing the non-driving variables) to ease optimization
of the non-driving variables.

To instantiate the reformulation approach, a
designer must isolate the driving variables, select the
two optimizers—for driving and non-driving
variables—and provide an appropriate quantitative
definition of ‘‘optimization difficulty’’ of the non-
driving variables’ optimization given some values of
driving variables. The driving variables must influence
the difficulty of optimization of the non-driving vari-
ables with the optimizer that has been selected for these.
Selecting such driving variables is generally a matter of
domain knowledge, but some guidelines can be pro-
vided (see section 2.2). The definition of difficulty must
be correct in a sense that it must not assign low diffi-
culty to the driving variables’ values that prohibit the
discovery of good-enough solutions in optimization of
non-driving variables. If this condition is not satisfied,
a possibility of premature convergence arises. In addi-
tion, the definition must be significantly less computa-
tionally expensive than finding a good-enough solution
for most values of driving variables, because otherwise
it is less computationally expensive to solve the optimi-
zation problem without reformulating it.

If both driving and non-driving variables are opti-
mized with incremental algorithms, one natural way of
estimating the difficulty is to set values of the driving
variables, run the algorithm for the non-driving vari-
ables for some number of iterations, and estimate the
difficulty based on how much did the fitness improve.
We will refer to this difficulty definition as improve-
ment-based. The downside of this approach is that its
correctness depends on the properties of the fitness
landscape: If for some values of driving variables the
fitness improves rapidly, yet its ultimate value is not
good enough, then premature convergence is possible.

The number of iterations that are used to estimate
the optimization difficulty for every value of the driving
variables governs the reliability of this difficulty defini-
tion: If this number is unlimited, the definition is cor-
rect; if it is small, it is not correct on many fitness
landscapes. We will refer to such definitions of diffi-
culty as approximately correct. The conflict between the

Figure 1. Graphical representations of the core approaches of
the article. (a) Reformulation: Shape of the goal function
landscape depends on some variables (exemplified by d). If for
some values of these variables optimization on the landscape
can be done more easily, we call them driving variables. To
reformulate the optimization task is to optimize those variables
to find the values that simplify the underlying optimization
process. In our example, such a value is d= 1, corresponding to
convex optimization. (b) Bias: The search is biased (as indicated
by the green gradient) toward a subset of search space
(indicated by the blue stripe in the bottom of the square). The
technique introduces some assumptions about the fitness, in our
example that the fitness landscape is more convex and contains
good-enough solutions near the blue stripe. If these assumptions
are not satisfied, the bias may be detrimental. (c) Guided
reformulation: Shape of the goal function landscape depends on
some variables (again exemplified by d). However, the difficulty
of optimization does not depend on those variables unless the
bias is applied, in which case the variable affects whether the
assumptions of the bias are satisfied and thus the optimization
difficulty. If the bias is applied, these variables become driving
and can be optimized to reformulate the original optimization
problem while using the bias. In our example, the optimal value
is again d= 1: for that value, the fitness landscape is convex and
has good-enough solutions around the area toward which the
search is biased.
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need to spend the iterations on refining the estimates
made with this definition and on optimizing the driving
variables results in two timescales: a slow one for the
driving variables and a fast timescale for the non-
driving variables. This is an instance of separation of
timescales of adaptation (Pfeifer & Bongard, 2006): a
widespread property of natural and artificial systems
originally discovered in evolutionary biology (Huxley,
1942; Martin, Bateson, & Bateson, 1993; Tinbergen,
1963) and later in neuroscience (Fairhall, Lewen,
Bialek, & Van Steveninck, 2001; Ulanovsky, Las,
Farkas, & Nelken, 2004; Wark, Fairhall, & Rieke,
2009) and machine learning (Hawkins & Blakeslee,
2007; Kiebel, Von Kriegstein, Daunizeau, & Friston,
2009; Yamashita & Tani, 2008).

2.1. Evolution and reformulation

Evolutionary computation is an incremental optimiza-
tion technique that relies on trial and error. It is possi-
ble to use evolution to optimize both driving and non-
driving variables (e.g. Cheney, Bongard, SunSpiral, &
Lipson, 2017), or to only evolve the driving variables,
while the non-driving ones are obtained via other tech-
niques such as gradient descent (e.g. Hinton & Nowlan,
1987; Miikkulainen et al., 2017). Evolutionary optimi-
zation can be improved with reformulation and related
ideas in many ways, and several major ideas of the field
are, in the opinion of authors, related to the reformula-
tion approach.

Canalization (Hinton & Nowlan, 1987; Waddington,
1942) can be described as a phenomenon of discovering a
set of values of driving variables that contain much of the
information about optimal non-driving variable values
discovered with the corresponding optimizer. It occurs
when the design variables are divided into two subsets,
one in which the variable values are learned during the
lifetime and the other in which they are learned by evolu-
tion. The variables under the evolutionary control affect
the difficulty of lifetime learning and thus can be thought
of as driving variables, with each set of values being a
‘‘learner.’’ Learner’s fitness is defined as a nondecreasing
function of the proportion of the learner’s lifetime that it
spends with all the variables having exactly the right val-
ues; such fitness is a correctly defined difficulty of opti-
mizing the non-driving variables. Lifetime learning of the
non-driving variables enables the evolution to evaluate a
mutation-continuous subset of the variable values rather
than a single point, effectively smoothing the fitness land-
scape. As long as the values are correct, the more the
information on the non-driving variable values is con-
tained within the driving variable values, the easier the
lifetime learning is; hence, there is an evolutionary pres-
sure to store all the information on the non-driving vari-
able values within the driving variables. Thus, the
characteristics learned over lifetime (non-driving variable
values) are assimilated into the genome (driving variable

values) over the evolutionary time, ultimately producing
a formulation that contains all the information on the
solution.

A development of the idea of canalization is evolu-
tion for evolvability (Kounios et al., 2016; Watson &
Szathmáry, 2016), where variables describing genotype-
to-phenotype map can bias the evolution of underlying
variables toward local optima and improve the rate of
convergence when the population is near them. Such
genotype-to-phenotype map can be thought of as a vec-
tor of driving variables. Evolving it in a slower time-
scale compared to the rest of variables and interleaving
the periods of neutral and adaptive evolution forces the
evolution to generalize over multiple ways of reformu-
lating the underlying problem.

Morphological protection (Cheney et al., 2017) can
be seen as a method for circumventing the incorrectness
of the improvement-based difficulty definition. It inves-
tigates the evolution of morphology alongside the con-
troller in robotics control tasks. Morphology governs
the complexity of control and thus is a driving variable.
Protecting values of this variable (i.e. formulations of
the control problem) from modification for the period
while the control is optimized enables these values to
compete based on the final fitness of controllers that
can be evolved for them and not the fitness improve-
ment over any fixed number of generations.

In co-evolution (Axelrod, 1987; Nolfi & Floreano,
1998; Rosin & Belew, 1997), two groups of variables
are optimized to make each other’s optimization more
difficult. Thus, co-evolution can be thought of as an
approach similar to reformulation, but with positive
influence of one optimization process on another’s rate
of convergence replaced with a negative feedback.
While evolutionary reformulation is good at producing
simple solutions, co-evolution tends to produce the
solutions that complexify over evolutionary time, which
can be valuable in many applications.

Aside from fairly general approaches, some evolu-
tionary algorithms for more narrow classes of tasks can
also be seen as instances of the reformulation approach.
One example is Genetic Programming with Embedded
Spatial Aggregation (GPESA), a method that evolves a
pattern of aggregation of geospatial variables alongside
a genetic programming model for value prediction
(Kriegman, Szubert, Bongard, & Skalka, 2016).
Another is the evolution of deep learning networks
(Miikkulainen et al., 2017), in which the topology of
the network is evolved to maximize its learning rate.

A similar but different procedure of reformulation is
optimization of hyperparameters in machine learning
(e.g. Bishop, 2006). The difference is in the designer’s
intention: In machine learning hyperparameter tuning,
optimization is typically done to improve the final
model, while reformulation aims at simplifying the pro-
cess of constructing the model, to find good-enough
solutions to the toughest tasks.
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2.2. Guided reformulation and its application to
evolutionary robotics

One difficulty in using the reformulation approach is
the need to select the driving variables. In human cog-
nition, the method is typically ‘‘thinking outside the
box’’: finding some controllable variables that influence
the difficulty of the task, but of which the designer is
initially unaware. However, whether a given variable
does or does not influence the difficulty of the task
depends on the method that is used to optimize the
non-driving variables. This opens up a possibility for
either making certain variables into driving ones or
increasing the influence that some known driving vari-
ables exert on the solution difficulty. Here we will
explore an approach that uses that possibility.

One powerful approach to improving the performance
of the optimization is to bias the search (Figure 1(b)).
The bias prioritizes the solution candidates from a subset
of the search space in which, based on the domain knowl-
edge, some reasonably good solutions can be expected, or
which has a reasonably good probability of intersecting a
hill climbing path toward such solutions. For example, if
an embodied agent such as human or animal searches the
area for an object that can only be spotted from a short
distance, a common procedure is to follow a linear trajec-
tory that covers the area in such a way that the distance
from every point of the area to the trajectory is reason-
ably small. The trajectory is also typically organized in
such a way that the areas where, according to prior
knowledge, the object can be found with higher probabil-
ity are searched earlier. In machine learning, the same
idea can be implemented with indirect encodings (Stanley
& Miikkulainen, 2003) or by co-optimizing some heuris-
tic parameter together with goal function. Some examples
of such parameters relevant to neural network optimiza-
tion are connection cost (Clune et al., 2013) and L2 norm
of the weights (Bishop, 2006; both these should be mini-
mized for a useful bias).

This approach effectively reduces the size of the
search space and minimizes, based on the prior knowl-
edge, the average time to arrive to the solution. It can
also be used to select a solution with useful properties
if multiple good-enough solutions exist. However, it
does so at the cost of introducing some assumptions
about the solution and the search space. If the assump-
tions do not hold, the bias can be detrimental. For
example, in our previous work (Bernatskiy & Bongard,
2017), we have shown that for certain control tasks
strengthening the bias toward sparsity can make the
evolutionary optimization much more difficult.

Suppose that for some bias, some subset A of design
variables can influence whether the assumptions intro-
duced by the bias hold or not, with respect to the opti-
mization of the remaining variables. If the assumptions
introduced by the bias hold, the usage of the bias is
likely to have a drastic impact on the difficulty of the

problem of optimizing the variables not in A. Thus, as
long as the bias is used in optimization of the variables
not in A, the variables in A are driving variables. They
then can be used to reformulate the problem in such a
way that the assumptions introduced by the bias do
hold and the usage of the bias improves the perfor-
mance of optimization.

We will call the resulting approach guided reformula-
tion (Figure 1(c)). It can be summarized as follows:

To reformulate an optimization problem, find a pair
of an optimization bias and a set of variables such that
the assumptions introduced into optimization by the
bias are dependent on the variables in the set. The refor-
mulation procedure that uses the variables in the set as
driving and uses the bias in optimization of the non-
driving variables is then likely to benefit from the bias
(typically by producing good-enough solutions selected
for additional properties by the bias more rapidly than
in the absence of bias or reformulation procedure).

Note that this approach does not aim to eliminate
the need for domain knowledge, but to provide some
guidance on how to use it instead. Fully automatic
instantiation of the reformulation approach is outside
the scope of this article.

One particularly powerful type of bias that can be
used in guided reformulation is the bias toward modu-
larity (see section 1). Resistance to catastrophic forget-
ting and (in network optimization) correlation with
sparsity can make evolutionary algorithms biased
toward modularity converge much more rapidly than
their counterparts with no such bias (Bernatskiy &
Bongard, 2015; Clune et al., 2013). Here we describe a
way to use guided reformulation to get the benefits of
the bias toward modularity in a robotic control task,
building on the body of research outlined in section 1.

We consider a task of controlling a robotic agent
embedded in physical space. From our previous work
(Bernatskiy & Bongard, 2017), we know that the capac-
ity to admit modular control can depend on an agent’s
morphology. The results from Bernatskiy and Bongard
(2017) also suggest that such capacity is sufficient for the
bias toward modularity to make the convergence much
more rapid than in the absence of the bias. We will refer
to this statement as Hypothesis 0. If this hypothesis is
correct, then whenever the morphological variables influ-
ence the capacity of the agent to admit modular control,
they also qualify as driving variables under the bias of
control optimization toward modularity.

Due to the generality of Hypothesis 0, it is impossi-
ble to confirm experimentally. Instead of attempting to
do that, we adopt falsificationist attitude toward it. To
this end, we formulate some of its consequences and
attempt to show that they are false.

We instantiate guided reformulation by optimizing
morphology alongside the controller, the parameters of
which are the non-driving variables in this case. We
adopt a genetic algorithm as the optimization technique
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for both sets of variables and separate the optimization
of driving and non-driving variables using different
mutation rates for morphology and control. If the muta-
tion rate for control is greater than for morphology,
many controllers are considered for every morphology,
ensuring that the current values of error of evolutionary
individuals (composed of a morphology and a control-
ler) provide approximate definitions of difficulty of opti-
mization of control. The bias toward modularity in
control optimization is implemented in two ways: using
the connection cost technique (Clune et al., 2013) and
with initial populations of sparse networks (Bernatskiy
& Bongard, 2015). It can also be switched off.

The approach is applied to the ‘‘Arrowbot’’ task and
the environment from Bernatskiy and Bongard (2017).

In this setup, two premises additional to Hypothesis
0 are important:

Premise 1: It is known that for the ‘‘Arrowbot’’ task
and environment, the capacity of modular control
depends on certain morphological variables. This is
established in Bernatskiy and Bongard (2017).
Premise 2: Evolutionary algorithm that we use is capable
of following error gradients and converge on error
minima (i.e. it is a functioning search algorithm). This is
ensured by elitism of the algorithm: At every change in
generation, the best performing individual is preserved.

We predict the following:

Hypothesis 1: Within each run, rapid convergence of
the control evolution will follow the discovery of a
morphology that admits modular control. It follows
from Hypothesis 0 and Premise 1.
Hypothesis 2: Evolution of morphology will converge
on body plans that admit modular control. Premises
ensure that there is a gradient of control optimization
difficulty for the morphological evolution to follow
and that the minima of such difficulty will coincide
with body plans that admit modular control. It follows
from Hypothesis 0, Premise 1, and Premise 2.
Hypothesis 3: Evolving the control with a randomly
selected fixed morphology will result in a less rapid con-
vergence than evolving the morphology alongside the
control. Equivalently, the convergence rate will be lower
if the morphological evolution cannot follow its gradient.
It follows from Hypothesis 0, Premise 1, and Premise 2.
Hypothesis 4: Without the bias toward modularity, con-
vergence to body plans that admit modular control will
likely not happen or will happen in a larger number of
generations than in the case when the bias is enabled.
From Hypothesis 0 and Premise 1, we conclude that
the impact of morphology on the rate of convergence
of control evolution is dependent on the presence of the
bias. With the bias switched off, morphology’s impact
on the rate of convergence of control evolution will be

decreased, causing the gradient guiding the morphologi-
cal evolution to disappear or weaken.
Hypothesis 5: By the same reasoning, reducing or dis-
abling the bias toward modularity will cause a decrease
in the adaptation rate.
Hypothesis 6: As long as the bias toward modularity is
switched on, the qualitative behavior of the system
should not depend on the details of implementation of
the bias. Equivalently, the status of morphology as a
vector driving variable should depend on the presence
of the modularity bias, but not on how it is achieved.
This follows from Hypothesis 0 and Premise 1.
Hypothesis 7: There should be a ratio between the
mutation rates of morphology and control that maxi-
mizes the convergence rate and is not 0 or 1, but is
biased such that more control mutations than morpho-
logical mutations occur. This follows from the tension
between the need for the difficulty definition to be as
correct as possible and the need to advance the optimi-
zation of morphology, all within the same iterated opti-
mization process.

The expected behavior of the system integrated from
all the hypotheses above is shown in Figure 2.

We show Hypotheses 1–5 and 7 to be correct as long
as Hypothesis 0 is clarified as follows: Discovery of a
morphology that admits modular control is a necessary
but not sufficient condition for subsequent rapid

Figure 2. Expected behavior of evolutionary guided
reformulation approach that uses morphology as vector driving
variable and modularity as optimization bias for control (the non-
driving variables). To exploit the speedup of the evolution that we
hypothesize to arise for morphologies that make modular control
feasible, we evolve the morphology alongside the control, but at a
slower timescale; in addition, we bias the evolution of control
toward modularity. Morphologies that admit modular control
enable more rapid reduction in error and thus get an
evolutionary advantage. The fast optimization timescale is shown
with circular arrows at the top of the graph, with color intensity
of the arrow signifying the difficulty of control optimization at that
point of evolutionary history. If the task permits controllers
consisting of a multitude of modules for some morphology, the
error reduction rate will radically increase as this morphology is
approached. Note that what the morphology influences is the
rate of convergence, not the error itself.
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convergence of controller evolution. We fail to obtain
any results that contradict Hypothesis 0 clarified in that
way and Hypothesis 6. We investigate how the results
behave as the task is scaled up.

3. Methods

In this section, we describe in detail the task, environ-
ment, and the family of robotic morphologies that we
used to test our hypotheses and also the genetic algo-
rithm we used.

3.1. Robot and Task

We here study the interaction between morphological
evolution and modularity-biased controller evolution
using Arrowbots, a robotic substrate we previously
used to demonstrate the influence of morphology on
the feasibility of modular control and its evolution
(Bernatskiy & Bongard, 2017).

An Arrowbot is a robot which consists of N segments
with pointers stacked to form a column (Figure 3). The
adjacent segments are connected with motors that share
a common geometric axis of rotation, that is, the verti-
cal axis; the bottommost segment is connected to a fixed
base. Any motor input controls the angular velocity of
the segment that it connects to, relative to the segment
below it, or, in the case of the motor connected to the
first segment, the fixed base. We will denote those rela-
tive orientations as ri,

2

the angular velocities as _ri, and
the corresponding motor inputs as mi.

Absolute orientations of the segments will be mea-
sured with respect to the fixed base and denoted as Ai.
The relationship between the two is as follows

Ai =
Xi

k = 1

rk

ri =
A1 for i= 1

Ai � Ai�1 for i= 2, . . . ,N

� ð1Þ

For convenience, later we will also use the vector
notation

A=Kr

r=K�1A

K[

1 0 . . . 0

1 1 . . . 0

: :

1 1 . . . 1

2
6664

3
7775

K�1 =

1 0 0 . . . 0 0

�1 1 0 . . . 0 0

0 �1 1 . . . 0 0

: : : :

0 0 0 . . . �1 1

2
666664

3
777775

ð2Þ
Arrowbots are equipped with sensors of two kinds:

N proprioceptive sensors that directly measure the
orientations of the segments they are attached to r and
N target orientation sensors s. Any target orientation
sensor si outputs the difference between the orientation
of the object it is attached to and the target orientation

Figure 3. Multi-directional road sign (top), its dynamic version,
the Arrowbot (middle), and the associated kinematic notation
(bottom).
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Ti. Possible attachment points for any sensor include
any segment and the fixed base. For example, sensor s3

always measures the difference between the target direc-
tion of the third segment T3 and whatever it is attached
to. If it is attached to the second segment, it will output
T3 � A2; if it is attached to the fixed base, it will output
just T3.

More generally

s[T� JA ð3Þ

where J is an N 3 N matrix such that Jij = 1 if the jth
target orientation sensor sj is attached to the ith seg-
ment and 0 otherwise. Within a fixed environment,
matrix J fully determines the effect that any motor
action of an Arrowbot has on its sensors; therefore, it
determines its morphology. Hereafter, we will use the
terms ‘‘morphology’’, ‘‘target orientation sensor attach-
ment pattern,’’ and ‘‘matrix J ’’ interchangeably.

A controller of an Arrowbot is the part that takes
the sensor readings as inputs and feeds its outputs to
the motors. It can be abstracted as a mapping
m=m(s, r). Throughout this article, we will discuss the
general case of nonlinear control and its properties; for
the experimental part of the article, however, we will
use linear control

m(s, r)=Ws+ Y r ð4Þ

Furthermore, we limit the elements of matrices W

and Y to be in the set f�1, 0, 1g to reduce the size of
the search space.

To define the connectivity of such controllers, we
represent them as graphs. Each sensor or motor is rep-
resented as a node, and each nonzero coefficient in
matrices W and Y is represented as a bidirectional con-
nection between a sensor node and a motor node. With
this definition, the analysis of the dependence (defined
as in Bernatskiy & Bongard, 2017) is reduced to the
analysis of connectivity of the graph it is represented
with: Whenever there is a connected path between any
two nodes, they are dependent. Thus, the connected
components of the controller graph represent groups of
variables in which every variable is dependent on every
other one.

We will consider a controller to be modular if its
graph has more than one connected component. This
definition will be used for consistency with Bernatskiy
and Bongard (2017), which is required for using some
analytical results from that work. Compared to the
more traditional Q metric (Newman, 2006), this defini-
tion provides a more coarse grained picture in which
modular networks are guaranteed to have at least two
groups of completely independent variables (see Figure
4). This, in turn, guarantees that the connections within
each group can be changed without influencing any

other group through the controller, ensuring that the
pattern of adaptation characteristic of the division
approach (see section 1) is induced within any trial-
and-error optimization method with localized changes
in connections.

Knowing the morphology and the controller, it is
possible to determine the dynamics of an Arrowbot

_r=m r, s(r,T)ð Þ ð5Þ

where s(r,T) is given by equation (3).
The task of the robot is to orient its pointers in arbi-

trary target orientations T starting the movement at
arbitrary initial conditions r0. Ideally, the performance
of the robot should be measured with all possible set-
tings of initial conditions and target orientations; in
addition, since we are only interested in the final point-
ing error and not the transient time, the evaluation
times should be infinite. The performance in this case
can be quantified as

Eideal = sup
fTg, fr0g

lim
t!‘

(T� A(t)jr0,T
)2 ð6Þ

where x2 is a scalar product, x2 [
P

i x2
i , and fTg and

fr0g are sets of all possible target orientation vectors
and initial conditions’ vectors, correspondingly.

In practice, we evaluated the performance of the
robot by averaging its pointing error after a finite simu-
lation time t over a finite set of initial conditions and
target orientations

E=
1

nICnTO

XnIC

a= 1

XnTO

b= 1

(Tb � A(t)
��
ra

0
,Tb )

2 ð7Þ

where nIC and nTO are the numbers of variants of initial
conditions ra

0 and target orientations Tb that the robot

Figure 4. Types of network modularity in linear controllers. (a)
Fully connected controller is nonmodular. (b) A controller with
high Q, but with a single connected component. (c) A controller
with two connected components. To use analytical results from
Bernatskiy and Bongard (2017), we must require complete
independence between modules within the controller for the
controller to be called modular. Hence, only the networks of
type (C) are considered modular within this article.

54 Adaptive Behavior 26(2)



is being tested at. In particular, throughout this article
we used the following set of N target orientation vectors

T1 = ½1, 0, . . . , 0�,T2 = ½0, 1, . . . , 0�, . . . ,

TN = ½0, 0, . . . , 1�
ð8Þ

Each of these target orientation vectors was tested
with just one set of initial conditions r0 = ½0, 0, . . . , 0�.
Thus, nIC = nTO =N . A(t) is obtained by integrating
equation (5) forward in time over the span of t with the
fourth-order Runge–Kutta method. Fitness is com-
puted using equation (7) using the final state of the
system.

System (5) exhibits linear dynamics, resulting in a
tendency for an exponential growth or decay of r over
time. This results in heavy tailed distributions of the
derived variables such as the approximate error E for
Arrowbots with randomly generated morphologies
and/or controllers. To simplify the statistical analysis
of our data, we account for this tendency by running
all statistical tests on the decimal logarithm of error,
log10 E.

3.2. Genetic encoding and mutation

In this article, we encoded each Arrowbot as a concate-
nation of two vectors of integers.

The first vector encodes the morphology of the
Arrowbot in N integers from f0, 1, . . . ,Ng. An integer
at the ith position is the number of the segment to
which the ith target orientation sensor si is attached,
with the value of 0 representing attachment to the fixed
base. It is thus a compressed encoding of sparse matrix
J (equation (3)).

The second part encodes the linear controller (equa-
tion (4)) as 2N 2 integers drawn from f�1, 0, 1g. The
first N 2 elements of the genome are the elements of
matrix W and the second half are the elements of Y ,
reshaped to form a linear array.

Random genomes for initial populations were gener-
ated by concatenating a vector of N integers randomly
selected from f0, 1, . . . ,Ng (the morphology) with an
encoding of a randomly generated controller. We com-
pare two methods of generating the controllers ran-
domly in this article. The default method for producing
the controller is to generate a vector of 2N2 integers
randomly selected from f�1, 0, 1g. This produces a lin-
ear controller in which about two-thirds of the coeffi-
cients are nonzero; we will refer to such controllers and
to initial populations composed of them as dense. The
alternative is to use the method introduced in
Bernatskiy and Bongard (2015): Take a vector of 2N2

zeros and mutate it once using the control mutation
operator described below. Due to the structure of the
operator, such controllers will have exactly one non-
zero coefficient drawn from f�1, 1g and placed

randomly. We will call such controllers and initial
populations composed of them sparse.

We use a mutation operator that always changes the
genome upon application. With a fixed probability
Pmm, it changes the morphology; failing that, the con-
troller is changed.

We considered two ways of performing a morpholo-
gical mutation. By default, a randomly selected sensor
was moved by one segment up or down, unless the sen-
sor ended up below the fixed base or above the Nth
segment as a result; in these cases, the operation was
repeated starting with selecting the sensor randomly.
The alternative was to discard the morphology alto-
gether and replace it with a newly generated one. We
will refer to this latter method as a random jump in the
morphological space.

For control mutations, we used the same operator as
in our previous work (Bernatskiy & Bongard, 2015,
2017). It treats the controller as a graph as described in
sections 3.1. Each field of the weight vector represents a
possible connection. Mutation can result in one of three
outcomes: addition of a connection (probability 0.1),
deletion (probability 0.1), and a density-preserving
change in the network (probability 0.8). If a connection
is to be added, a field with the value of 0 is found, a
value from f�1, 1g is randomly selected, and the field is
set to the value. Deletion randomly selects a field with
nonzero value and sets it to 0. Density-preserving muta-
tion flips the sign of the value at a randomly selected
nonzero field. If the operation is impossible (e.g. dele-
tion is attempted on a network with no connections),
the outcome selection is repeated until a feasible opera-
tion is selected.

3.3. Evolutionary algorithm

Our evolutionary algorithm is based on the simplified
version (Bernatskiy & Bongard, 2015, 2017) of the bi-
objective performance and connection cost Pareto opti-
mization technique introduced by Clune et al. (2013).

Here, the two objectives of the algorithm are mini-
mization of the pointing error (equation (7)) and mini-
mization of the number of nonzero-weight connections
in the controller. The algorithm starts by generating an
initial population consisting of a fixed number of gen-
omes as described in the previous section. At each gen-
eration, a stochastic Pareto front is constructed as
follows. Each genome is compared with every other
genome in the population. Within each comparison,
with probability PCC the first genome is marked as
dominated if the second genome has both lower error
and less connections or, if genomes are equivalent with
respect to these objectives, if the first genome was gen-
erated or mutated earlier than the second. With prob-
ability 1� PCC, the first genome is marked as
dominated if just its error is greater than the second
genome’s error. Genomes that are not marked as
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dominated at the end of the procedure constitute the
stochastic Pareto front.

For the values of constant PCC not in f0, 1g, there is
a non-negligible probability that every genome in the
population will be marked as dominated, resulting in
an empty stochastic Pareto front. Whenever that hap-
pens, a genome with the smallest error is added to the
Pareto front.

All the genomes that are not on the stochastic Pareto
front are removed from the population and replaced by
offspring of genomes from the stochastic Pareto front.
The population size is thus kept constant.

The parameter PCC is added to control the relative
emphasis evolution places on the two objectives (Clune
et al., 2013). Here, we use it to investigate the role of
connection cost in search for morphologies admitting
modular control.

3.4. Prior knowledge of the morphospace

It has been shown (Bernatskiy & Bongard, 2017) that
for the Arrowbots, there are two morphologies with
radically different properties with respect to the fesibil-
ity of modular control (Figure 5).

If every target orientation sensor is placed on the
segment for which it tracks the target, sensor placement
matrix J is equal to N 3 N identity matrix I . In this
case, every target orientation sensor measures the con-
tribution of the segment it is attached to the total point-
ing error, ri +Ai. We will refer to this morphology as
J = I (Figure 5(a)). Previously, we have shown that for
this morphology there is a family of linear controllers
with N disconnected modules with one connection
(from si to mi) each that reduces the ideal error (equa-
tion (6)) to 0.

It is also easy to see that this morphology admits
controllers that have the maximum number of discon-
nected modules. Any graph in which the connections
are only possible between the N motor nodes and sen-
sor nodes with N � 1 or less connections will necessa-
rily have a disconnected motor node, preventing the
pointing error from converging to 0 unless the initial
orientation of the corresponding segment is aligned
with the target orientation. Thus, the task cannot be
solved without at least N connections that can form up
to N disconnected modules.

Another morphology corresponds to the case when
all the target orientation sensors are attached to the
fixed base. In this case, all elements of matrix J are
zeros, J = 0, and the target orientation sensor measures
the absolute angular positions of the targets (Figure
5(b)). For this morphology, any controller that reduces
the ideal error to 0 must be fully connected, as shown
in Bernatskiy and Bongard (2017).

In Bernatskiy and Bongard (2017), we found that
evolution decreases the final pointing error much more
rapidly for the J = I morphology, compared to the

morphology J = 0, and that the difference becomes
more pronounced as the task is scaled up to more
segments.

Here, we additionally provide a way to design a con-
troller for any morphology that reduces the ideal point-
ing error (equation (6)) to 0 and provides a constant
baseline performance that does not depend on the mor-
phology for the practical error (equation (7)). See
Appendix 2 for details.

4. Results

We began by comparing the performance of the evolu-
tion for Arrowbots comprising three segments with
morphological mutation enabled (Pmm = 0:2) and with-
out morphological mutations (Pmm = 0) with initial
populations of dense controllers. For each of these set-
tings, we performed 100 evolutionary runs and com-
puted statistics on the decimal logarithm of final
pointing error (Figure 6, left panel). We have found
that for the case when morphological mutations were
possible, evolution converged more rapidly and after
600 generations achieved a lower final error, consistent
with Hypothesis 3.

Next, we analyzed morphologies that were evolved.
We have found that in all the runs with morphological
mutation, the J = I morphology was discovered. We
verified this using the new parameter m—the minimal
Hamming distance of the morphologies of the genomes
on the Pareto front to the J = I morphology (Figure 6,
middle panel). As expected, in the absence of morpho-
logical mutation, the parameter did not change much
throughout the run and stayed around a value of 3
which is typical for initial populations of randomly

Figure 5. Some Arrowbot morphologies with certain known
properties for N= 2. Blue circles with dotted lines represent
target orientation sensors; blue rectangles represent motors
with proprioceptive sensors within. The red and green lines
show an example of an optimal (with respect to ideal error (6))
controller for each morphology: red for negative and green for
positive feedback. (a) The J= I morphology that can be
controlled by a controller made of N disconnected modules. (b)
For the J= 0 morphology, provably no controller that is optimal
can have more than one connected component.
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generated genomes. However, with morphological
mutation, the parameter m reached 0 in every run, con-
sistent with Hypothesis 2.

We have also investigated the causal relationship
between convergence and the discovery of J = I mor-
phology. We arbitrarily defined the moment of conver-
gence as generation tb when the error goes below the
baseline performance of a hand-designed controller (see
Appendix 2). We define tconv as the difference between
the current evolutionary time and this moment

tconv = tb � t ð9Þ

Note that if evolution has reached the baseline per-
formance in the past, tconv is negative. For every gener-
ation of every run in Pmm group, we considered the
position of the population on m� tconv plane. The den-
sity of the points is shown in Figure 6 (right panel). It
can be seen that convergence (tconv < 0) in the majority
of cases occurred after discovering the J = I morphol-
ogy, and in almost all cases after coming within a
Hamming distance of 1 from it. It can also be seen that
even after the J = I morphology is found, it took more
than 50 generations for some runs to converge (com-
pared with the maximum convergence time of about
200 (data not shown)). These results are consistent with
Hypothesis 1, but suggest the following clarification of
Hypothesis 0: Approaching a morphology that admits
modular control is usually a necessary but not suffi-
cient condition for rapid convergence of modularity-
biased control evolution.

Next, we investigated whether the outcome of evolu-
tion depends on whether the connection cost objective
is used. To do that, we investigated the dependence of
the behavior of the system on the probability of con-
nection cost to be taken into account when deciding on
dominance, PCC (Figure 7(a)). Dependence was investi-
gated for three values of robot size (N = 3, 5, 10) with
the population size and maximum number of genera-
tions selected separately for each value to account for
the disparity in task difficulty (Table 1). The popula-
tions were initialized with dense networks as described
in section 3. For each value of N , we selected five equi-
distant temporal slices at which we measured two prop-
erties of the population—smallest achieved error E and
parameter m. We varied PCC across f0, 0:05, 0:1, . . . , 1g
and observed that for all values of N there is a sharp
decrease in both error and m as PCC approaches 1. This
suggests that the presence of bias toward modularity is
crucial for evolving the morphologies that admit modu-
lar control and for achieving rapid convergence of con-
trol evolution, consistent with Hypotheses 4 and 5.

Figure 6. Evolving morphology alongside control facilitates the convergence of evolution of the latter and leads to a morphology
admitting modular control. (Left) Error time series for evolution without morphological mutations (Pmm = 0, blue line and error
strip) and with morphological mutations that move a randomly selected sensor by one segment in random direction (Pmm = 0:2, red
line). The time series were obtained by evolving three-segment Arrowbots with a population size of 50. Solid lines represent
averages and 95% confidence intervals of the decimal logarithm of error based on a sample of 100 evolutionary runs. Dashed line
represents the baseline level of performance for N= 3 that is achievable for any morphology (see Appendix 2). (Middle) Time series
of the minimal Hamming distance m to the morphology J= I across the Pareto front for the same setups. The initial change is due to
the evolution using the diversity of the morphologies present within the initial population. (Right) Defining the moment of
convergence as the generation when the error goes below the baseline performance level and the time to convergence tconv as the
difference between the current time and this moment, we consider the state of the population at each generation as a point on the
m� tconv plane. The figure is the density plot for such points. It can be observed that in the majority of runs, convergence occurs
after the morphology J= I is found (m= 0).

Table 1. Parameters of evolutionary runs for experiments
involving Arrowbots of different sizes.

Number of
segments N

Population
size

Total evolutionary
time

3 50 600
5 100 1600
10 200 4000
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In addition, we have found that the decrease in the
error and m becomes more pronounced as the task is
scaled up. This suggests that for more complex tasks,
bias toward modularity is more crucial than for the sim-
pler ones.

We also investigated whether the approach relies on
the particular bi-objective performance and connection

cost technique, or if it is agnostic with respect to the
particular biasing technique. Previously, we demon-
strated that initializing the population with sparse net-
works can cause modularity to evolve even in the
absence of the connection cost objective, albeit modu-
larity tends to decrease at the later stages of evolution
under such conditions (Bernatskiy & Bongard, 2015).

Figure 7. (a) Parameters of populations as a function of probability of connection cost to be taken into account when comparing
individuals, PCC , with initial populations of dense networks. Columns correspond to numbers of segments in Arrowbots N (see Table
1 for details about evolutionary algorithm’s parameters). Top (I) rows shows the average decimal logarithm of error log10 E and its
95% confidence interval computed using data from 100 evolutionary runs; bottom (II) rows shows the average minimal distance m to
the morphology J= I across the stochastic Pareto front and its 95% confidence interval. Different lines represent values measured at
different points of evolutionary time (see legend). It can be seen that the convergence to the morphology J= I (corresponding to
m= 0) coincides with the lowest observed errors and is reached reliably only for PCC = 1. (b) Same, but with an initial population of
sparse networks. This modification decreases the error more rapidly and approaches the J= I morphology for all values of PCC , not
just PCC’1. However, the impact of initial population decreases as the task is scaled up.
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This suggests that initializing the population with
sparse networks can be an efficient way to bias evolu-
tion toward modular networks, although the efficiency
of the approach may decrease as the number of genera-
tions required to reach an optimal solution increases
(e.g. for more complex tasks).

We repeated the experiments detailing the depen-
dence of evolutionary dynamic on PCC with initial
populations of sparse networks and found that evolu-
tion exhibits smaller final errors and more rapid con-
vergence for all values of PCC, although the effect
decreased as the task was scaled up (Figure 7(b)). In
particular, for N = 3, the final error for PCC = 0 (con-
nection cost not used) was comparable to the final
error of the runs initialized with dense networks with
PCC = 1 (fully bi-objective approach). The runs with
sparse populations also exhibited on average smaller
minimal distance from the J = I morphology to the
Pareto front, m. For greater values of N , the differences
were qualitatively the same, but of magnitude that
decreased with N . This is consistent with Hypothesis 6.

Finally, we investigated the relationship between the
probability of mutation to be morphological, Pmm, and
the evolutionary behavior of the system (Figure 8(a)).
We found that convergence of the morphology to J = I

occurs for most values of Pmm within (0, 1), except for
values that are very close to 0 or 1. However, lower val-
ues of Pmm lead to a more rapid error reduction and
make the discovery of J = I occur more rapidly than for
higher values of Pmm. This is consistent with Hypothesis
7. The data we currently have do not allow to reliably
measure the optimal value of Pmm, but the value appears
to not depend strongly on the number of segments N .

We also checked how the adaptation rate depends on
the morphological mutation operator. To that end, we
repeated the Pmm investigation with the mutation opera-
tor replaced by a random jump in the morphological
space (Figure 8(b)). It can be seen that the J = I mor-
phology is still found and that evolution still reaches the
baseline level, although it takes longer, especially as the
task is scaled up. This suggests that the complexity of
the control optimization task is sufficient to justify ran-
dom search of morphology, especially for lower values
of N . As the task is scaled up, however, the design of
the morphological mutation operator starts to play a
more significant role. Another observation is that if the
morphological mutation is a random jump, then the
number of generations required to perform the search in
the morphological space increases and so does the opti-
mal value of probability Pmm.

5. Discussion

We have shown that at least for one task and family of
robot morphologies, it is possible to discover, via evo-
lutionary search, a morphology admitting highly

modularized and successful control by evolving the
morphology alongside the control in a particular man-
ner (Hypothesis 2). We found that biasing evolution
toward modular controllers is crucial for finding such a
morphology (Hypotheses 4 and 5), that the change in
implementation of the bias does not prevent the mor-
phology from being found (Hypothesis 6), and that
under such bias and once such a morphology is found,
rapid convergence of control toward a modular solu-
tion is likely to occur (Hypotheses 1 and 3). In addi-
tion, we have found that slowing the morphological
change relative to change in control is beneficial for the
occurrence of the phenomenon (Hypothesis 7), unless
the morphological mutation operator is very inefficient
(random jump).

Those results are consistent with our previous find-
ings that morphology can profoundly influence the dif-
ficulty of evolving modular control and describe
conditions that make modular control more likely to
evolve. By supporting these findings, our results also
indirectly support the idea of morphological computa-
tion (Pfeifer, Iida, & Gómez, 2006), as they represent a
case of radical simplification of control due to the
choice of morphology.

These results can be used in engineering, in particu-
lar, in evolutionary robotics, where they may allow the
designers to place a greater number of heterogeneous
design variables under the control of evolution, while
avoiding, through modularity, the requirement for a
combinatorially large number of evaluation environ-
ments (Cappelle et al., 2016) and the problem of cata-
strophic forgetting (Ellefsen et al., 2015) and thus
retaining the capacity of evolution to find good-enough
solutions in reasonable time. For example, these results
may be of interest to engineers and researchers who
wish to evolve whole physical agents, complete with
morphology, circuitry, and actuator design.

The results also have implications for biology, as liv-
ing systems satisfy the basic requirements of our
approach to the evolution of modular control: The bias
toward modular nervous systems is present in living
systems in the form of metabolic connection cost
(Clune et al., 2013), and morphology is evolved along-
side the control. Based on that, we speculate that mor-
phological evolution might be a factor in evolution of
modularity of nervous systems.

To formulate our approach to evolving modular
control, we formalized the reformulation approach to
problem-solving (Choueiry et al., 2005; Sternberg &
Davidson, 1995; see section 2). Within the reformula-
tion framework, morphology is one example of a more
general entity which we term driving variables, defined
as design parameters that influence the search difficulty
of finding the best overall values of the remaining
(non-driving) variables. Finding such variables requires
domain knowledge, but once they are found, they can
be optimized to reduce the search difficulty of
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optimizing the remaining variables and thus ‘‘reformu-
late’’ the corresponding optimization problem. We
extend the reformulation approach with a qualitative
rule of thumb that suggests that the driving variables
can be found by examining the influence of the design
variables on the behavior of optimization of

non-driving variables under biases. We call the result-
ing approach guided reformulation. The method for
evolving modular control then follows from the
hypothesis that morphology influences the effectiveness
of evolution if a bias toward modularity is present. We
speculate that the guided reformulation approach can

Figure 8. (a) Parameters of populations as a function of probability of mutation to be morphological Pmm. Columns correspond to
numbers of segments in Arrowbots N (see Table 1 for details about evolutionary algorithm’s parameters). Top (I) row shows the
decimal logarithm of error log10 E and its 95% confidence interval computed using data from 100 evolutionary runs; bottom (II) row
shows the minimal distance m to the morphology J= I across the Pareto front and its 95% confidence interval. Different lines
represent values measured at different points of evolutionary time (see legend). It can be seen that the convergence to J= I is
reached for a wide range of Pmm values; however, this process occurs most rapidly for lower values of Pmm, resulting in lower errors
being achieved earlier on. The effect gets more pronounced as the task is scaled up. (b) Same, but with the morphological mutation
replaced by a random jump in the morphospace. It can be seen that convergence does occur even if the space of morphologies is
searched randomly, although the performance of this approach suffers more as the task is scaled up, compared to the mutation
operator that moves a sensor by one segment.
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be applied to reformulating a wider range of optimiza-
tion problems than the problem of controlling embo-
died agents, possibly using optimization biases other
than the bias toward modularity.

We briefly review one mechanism of optimization
difficulty reduction, the division approach, in section 1.
We link it with solution modularity and explain why
morphology can influence this mechanism, thus estab-
lishing morphology as a candidate for a vector driving
variable. Our set of testable hypotheses about the prop-
erties of the resulting optimization approach is based
on this analysis.

We see three challenges for applying the reformula-
tion approach and guided reformulation to a wider
range of tasks. First, a possibility of premature conver-
gence arises if the method is used with a definition of
optimization difficulty that can mistakenly assign low
difficulty to driving variable values that prohibit con-
vergence of optimization of non-driving variables to
good-enough solutions. Our instantiation of reformula-
tion based on morphology and modularity-biased con-
trol optimization uses such a definition, and we plan to
correct that in our future work using methods similar
to morphological protection (Cheney et al., 2017).
Second, despite the guidance provided by the guided
reformulation rule-of-thumb, the identification of driv-
ing variables currently must be performed in an ad hoc
manner by a human designer. Systematizing and/or
automating the identification of driving variables will
be the focus of our future studies. Third, for more com-
plex tasks, a good mutation operator for driving vari-
ables is required. At present, there is no systematic way
to assess or design such operators.
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Notes

1. The term was chosen to distinguish from divide-and-
conquer methodology in algorithmic design. Division
approach is a broader term that encompasses all useful
ways to split the problem into subproblems, while divide-
and-conquer is its instance that focuses on non-
overlapping subproblems. Approaches that involve over-
lapping subproblems, such as dynamic programming, are
also instances of the division approach.

2. Note that in our treatment, all orientations do not wrap
around, that is, angles f radians and f+ 2kp radians,
k 2 Z are treated as different. In this treatment, there are
no special angle values and the need to keep track of angle
units is eliminated.
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Appendix 1

Notation

Ai absolute orientation of ith segment
E(t) practical pointing error (see equation (7))

minimized across the population at
generation t

J N 3 N target orientation sensor
attachment matrix (see equation (3))

K constant N 3 N matrix filled with ones on
and below the main diagonal and zeros
everywhere else (see equation (2))

mi motor output for ith segment (see
equation (5))

N number of segments
ri relative orientation of ith segment (see

equation (1))
si reading of the target orientation sensor

measuring the orientation of the ith
segment relative to the body the sensor is
attached to (see equation (3))

T,A, r, s,m corresponding N-dimensional vectors
Ti target orientation of ith segment
W , Y matrices of coefficients of a linear

controller (see equation (4))

m(t) Hamming distance to the morphology
J = I minimized across the Pareto front
observed at generation t of the evolution

Appendix 2

Baseline performance for an arbitrary morphology

Theorem. It is possible to construct a linear controller
satisfying equation (4) that reduces the ideal error
(equation (6)) to 0 for every valid sensor attachment
matrix J .

Proof. Substituting equations (3) and (2) into equation
(4), we get

_r =Ws+ Yr=WT �WJKr+ Yr

=WT +(Y �WJK)r
ð10Þ

At equilibrium, r =K�1T and

WT +(Y �WJK)K�1T = 0

Y =W (J � I)K
ð11Þ

Assuming this condition holds, equation (10) simpli-
fies to

_r =WT + W (J � I)K �WJKð Þr
=WT �WKr

ð12Þ

Consider a controller with W = I : a matrix with no
values outside of f�1, 0, 1g. The Jacobian of the system
then becomes �K, making the system stable.

Next, we verify that for each such controller, a
matrix Y exists such that all its elements are in
f�1, 0, 1g. From equation (11)

Y =(J � I)K ð13Þ

Each row of matrix J � I contains at most one entry
equal to 21 and one equal to 1, with the rest of entries
being zeros. Multiplying that by the ith column of K

will produce a sum of all entries to the right of the ith
field, including the ith field itself. There will be at most
two nonzero components in this sum, one equal to 21
and one equal to 1. Such a sum necessarily lies in
f�1, 0, 1g. �

The Jacobian for all controllers constructed in this
way is the same, thus the temporal trajectories of the
systems are the same. We verified that this is true by
evaluating the controllers constructed as described
above for 100,000 randomly picked morphologies
for the three values of N = 3, 5, 10. Within each group,
all logarithms of the pointing error equation (7) coin-
cided up to 10th decimal point: log10 E(N = 3)=
�6:9408767850, log10 E(N = 5)= � 6:0563588899,
and log10 E(N = 10)= � 5:3115293183.

We will use these values to define a baseline for con-
troller performance. Such definition has the following
property: given N , we can guarantee that for any mor-
phology there exists a controller that achieves the point-
ing error no greater than the baseline.
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