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Figure 1: A single robot grows calluses as it walks, in response to pressure on its feet (youtu.be/0cmwpcxSUWI).

ABSTRACT
Typically, AI researchers and roboticists try to realize intelligent be-
havior in machines by tuning parameters of a predefined structure
(body plan and/or neural network architecture) using evolutionary
or learning algorithms. Another but not unrelated longstanding
property of these systems is their brittleness to slight aberrations, as
highlighted by the growing deep learning literature on adversarial
examples. Here we show robustness can be achieved by evolving
the geometry of soft robots, their control systems, and how their
material properties develop in response to one particular interocep-
tive stimulus (engineering stress) during their lifetimes. By doing
so we realized robots that were equally fit but more robust to ex-
treme material defects (such as might occur during fabrication or
by damage thereafter) than robots that did not develop during their
lifetimes, or developed in response to a different interoceptive stim-
ulus (pressure). This suggests that the interplay between changes in
the containing systems of agents (body plan and/or neural architec-
ture) at different temporal scales (evolutionary and developmental)
along different modalities (geometry, material properties, synaptic
weights) and in response to different signals (interoceptive and
external perception) all dictate those agents’ abilities to evolve or
learn capable and robust strategies.
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1 INTRODUCTION
A major characteristic of life is that three broad time scales are rel-
evant to it: evolution, development and physiological functioning.
Engineered systems, in marked contrast, often employ an evolu-
tionary or learning algorithm to improve their behavior over time,
but rarely employ morphological development; any changes to the
physical layout are made in between evaluations [9, 26, 34], if they
are made at all.

Two notable exceptions are modular robots [42], which may re-
configure their bodies by adding and removing discrete structures,
and soft robots [33], which may continuously alter the local vol-
umes of different parts of their bodies while behaving. Others [4]
have approximated topological change in rigid bodies by extending
outward and angling downward appendages using a combination
of linear and rotary actuators, thus simulating limb growth.

Several computational but embodied models of prenatal devel-
opment have been reported in the literature [5, 12, 14, 15, 28]. As
implied, cellular growth therein occurred prior to any physiological
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functioning. Thus, these studies included change during only two
of the three time scales relevant to life: evolutionary and behavioral
change, but not postnatal developmental change.

The most common argument in favor of development is that
some aspects of the environment are unpredictable, so it is advan-
tageous to leave some decisions up to development rather than
specifying them genetically. Although self evident, it remains to de-
termine which mechanisms of development should be instantiated
in robots to realize plastic, adaptive, and useful machines.

Naturally, the performance of an evolved system depends on its
capacity for evolutionary improvement: its evolvability. Develop-
ment can, under certain conditions, smooth the search space evo-
lution that operates in, thus increasing evolvability. This process,
known as the Baldwin effect [2, 13], starts with an advantageous
characteristic acquired during the development of individuals, such
as the callouses in Fig. 1. This can create a new gradient in the evo-
lutionary search space, rewarding descendants that more rapidly
manifest the trait during their lifetimes [20, 24] and retain it through
the remainder of their lifetime [25]. Assuming such mutations exist
and can be naturally selected [24], following the gradient requires
incrementally reducing development in the manifold of the search
space that can express variations on the trait [40].

However, fitness landscapes that evolution climbs, and devel-
opment sometimes smooths, tend not to remain static in realistic
settings. On this vacillating landscape, when the best thing to do
does not remain the same, a highly evolvable but non-robust sys-
tem will need to keep starting over from scratch every time the
conditions change. Computational and engineered systems provide
countless examples of systems with nearly perfect performance
in a controlled environment, such as a factory, but who turn out
to be (often comically) brittle to slight changes in their internal
structure, such as damage, or their external environment such as
moving on to new terrain or transferal from simulation to reality
[1, 7, 17, 23, 29, 37].

Although generally absent from engineered systems (but see
[3, 11]), the canonical form of robustness is seen to some extent
in all organisms, and it comes from the act of development itself.
For example, a plant that grows according to a fixed program will
capture less light than a plant that grows toward sunlight. But there
is another, more subtle form of robustness that we will refer to as
‘intrinsic robustness’ because it is a property of a system’s structure
rather than of the process by which it may change.

Developmental change produces intrinsically robust systems be-
cause they evolved from designs that had to maintain adequate per-
formance along additional dimensions of change [4, 24]. Through
morphological development specifically, evolution is compelled to
maintain designs that are capable across a series of body plans, with
different sensor-motor contingencies; and the ability to tolerate
such perturbations can become inherited to some extent in descen-
dants’ behaviors [4] and morphologies [24], even when their devel-
opmental flexibility is reduced or completely removed by canaliza-
tion or fabrication.

And yet, despite the ubiquity of morphological development in
nature, and the adaptive advantages it seemingly confers, there
are only a handful of cases reported in the literature in which
a simulated robot’s mechanical structure was allowed to change
while it was behaving (e.g. [4, 22, 24, 25, 39]), all of which modeled

morphological development as a genetically predetermined process:
the environment could not influence the way in which development
unfolded.

Assuming that an engineered system is capable of local morpho-
logical change in response to environmental signals, it is unclear
how it should do so, beyond the examples of morphological plas-
ticity observed in nature. Examples include Wolff’s law [30]—bone
grows in response to particular mechanical loading profiles—and
Davis’ law—soft tissue increases in strength in response to inter-
mittent mechanical demands. One can envisage other such laws
that are not known to occur in biology but could be helpful in a
specific artificial system, such as end effectors softening in response
to pressure, which might enhance their ability to safely manipulate
irregular or delicate objects [6]. Indeed, the genesis of the work
presented here is one such anecdotal example given in [10], where
a single robot, subjected to an abrupt doubling in gravity, stiffened
its body in reaction to the increased pressure. However, whether or
how it could provide a behavioral advantage, nor whether pressure
is the best interoceptive signal to developmentally respond to, was
not investigated.

As a step towards a more adequate picture, we introduce here
a simple form of a developmental feedback mechanism: Genetic
systems dictate how organisms develop in response to interoceptive
stimuli, and development alters the kinds of interoceptive condi-
tions the organism experiences. More specifically, at every time
step, the proposed model of closed-loop development:

(1) ‘listens to’ load signatures generated from movement; and,
in response,

(2) modifies the robot’s rigidity,

which will change the way it distributes load and generates move-
ment at the next time step.

Optimizing a system that may form a continuum of rigid and
soft components—and in which this admixture may change over
time—is extremely nonintuitive and underexplored. Thus, a study
of the adaptive properties of such systems—and how they can best
be optimized to render useful work—is initiated here.

2 METHODS
We evolved locomotive machines constructed from voxels with
heterogeneous stiffness. Like many organisms [30], the robot’s
material stiffness progressively changes in response to mechanical
loading incurred as the robot behaves. This ontogenetic change
occurs independently at each voxel according to an evolved local
rule.

Physical simulation.
The soft-matter physics engine Voxelyze [19] is used to calculate the
movement of robots resulting from their interaction with a virtual
3D terrestrial environment. Each robot is simulated for 25 times the
length of an expansion/contraction cycle (a total of five seconds).
The displacement between the starting coordinates and the agent’s
final center of mass (in the xy plane) is recorded.1

1github.com/skriegman/2018-gecco contains the source code necessary for repro-
ducing the results reported in this paper.
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Heavy materials.
Materials are simulated to have increased mass relative to those
used by [8, 9, 18]. Constructed from heavier materials, many pre-
viously mobile robots become crushed under their own weight
and require stiffer material to support locomotion with the same
geometry. However, we also restricted actuation amplitude as ma-
terials grow stiffer to better approximate the properties of real
materials with different stiffnesses. This creates an interesting and
realistic trade-off: the stiffest material can easily support any body
plan but cannot move on its own (like a skeleton without muscle),
whereas the softest material can readily elicit forward movement
in smaller bodies but cannot support many larger and potentially
faster-moving body plans, such as those with narrow supporting
limbs. Thus, a robot must carefully balance support with actuation.

Quad-CPPN encoding: C1,C2,C3,C4
Following [9], robot physiology is genetically encoded by a Com-
positional Pattern Producing Network (CPPN) [35], a scale-free
mapping that biases search toward symmetrical and regular pat-
terns which are known to facilitate locomotion.

Each point on a 10×10×10 lattice is queried by its cartesian
coordinates in 3D space and its radial distance from the lattice center.
An evolved CPPN takes these coordinates as input and returns a
single value which is used to set some property of that point in the
workspace. We used four independent CPPNs to separately encode:
Geometry, Stiffness, Development, and Actuation.

C1 Geometry.
The geometry of a robot is specified by a bitstring that indicates
whether material is present (1) or absent (0) at each lattice point in
the workspace, as dictated by C1. The robot’s geometric shape is
taken to be the largest contiguous collection of present voxels.

C2 Stiffness.
Young’s modulus is often used as an approximate measure of mate-
rial stiffness. Robots are typically constructed of materials such as
metals and hard plastics that have moduli in the order of 109 − 1012
pascals (Pa), whereas soft robots (and natural organisms) are often
composed of materials with moduli in the order of 104 − 109 Pa
[31].

Here, voxels may have moduli in the range 104 − 1010 Pa. The
robot’s congenital stiffness is set at each voxel by C2, but may be
changed by development.

C3 Development.
The robot’s stiffness distribution k can change progressively during
its lifetime t in response to localized engineering stressσ or pressure
p. The rate of change αi is specified at the ith voxel by C3, with
possible values in 0± 10. We compare three developmental variants.

None:
dki
dt
= 0 (1)

Stress:
dki
dt
= αi ·

dσi
dt

(2)

Pressure:
dki
dt
= αi ·

dpi
dt

(3)

C4 Actuation.
Robots are ‘controlled by’ volumetric actuation: a sinusoidal expan-
sion/contraction of each voxel with a maximum amplitude of 50%
volumetric change.2 However, linear damping ξ is implemented
into the system such that the stiffest material does not actuate (Eq.
5). The phase difference ϕi of each voxel is determined byC4, which
offsets its oscillation relative to a central pattern generator.

Prior to actuation, each voxel has a resting length of one centime-
ter. This length is periodically varying (f = 5 Hz) by approximately
14.5% (A ≈ 0.145 cm), but damped by ξ . The instantaneous length
of the ith voxel is thus:

ψi (t) = 1 +A · sin(2π f t + ϕi ) · ξ (ki ) , (4)

where:
ξ (ki ) =

kmax − ki
kmax − kmin

. (5)

Evolution.
Weemployed a standard evolutionary algorithm, Age-Fitness-Pareto
Optimization [32], which uses the concept of Pareto dominance
and an objective of age (in addition to fitness) intended to promote
diversity among candidate designs.

We performed twenty independent evolutionary trials with dif-
ferent random seeds (1-20); in each trial, a population of 24 robots
was evolved for five thousand generations. Every generation, the
population is first doubled by creating modified copies of each
individual in the population. The age of each individual is then
incremented by one. Next, an additional random individual (with
age zero) is injected into the population (which now consists of
49 robots). Finally, selection reduces the population down to its
original size (24 robots) according to the two objectives of fitness
(maximized) and age (minimized).

Mutations add/remove/alter a particular node/link of a CPPN.
They are applied by first selecting which networks to mutate, with
the possibility to select all four, and then choosing which operations
to apply to each.

Hypothesis testing.
We use bootstrapping to construct hypothesis tests. All P-values
are reported with Bonferroni correction for multiple (typically
three) comparisons. We adopt the following convention: ‘∗∗∗’ for
P < 0.001; ‘∗∗’ for P < 0.01; and ‘∗’ for P < 0.05.

3 RESULTS
Videos of all sixty run champions (pictured in Figs. 2, 3, 4) can be
seen at goo.gl/T5wZNQ.

Evolvability.
We first investigated whether environment-mediated morphologi-
cal development affected evolvability (Fig. 5A). At the termination
of an evolutionary trial, we only consider the most fit individ-
ual—the run champion—from each of the twenty independent trials
(Figs. 2, 3, 4). After correcting for three comparisons, there was
not enough evidence to reject the null hypothesis—that there is no

2The scare quotes are intended to highlight the fact that actuation policies no more
dictate the movement of a robot than its geometry.
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difference between adaptive and nonadaptive robots, in terms of
mean displacement—at the 0.05 level.

These results could be taken to suggest one of the following.
Either the search space is sufficiently smooth prior to development
(actuation and support are not as antagonistic as envisaged), or the
proposed developmental mechanism is an insufficient smoothing
mechanism (successful ways to change stiffness as a linear function
of stimuli are sparse in the search space).

Geometric diversity.
We investigatemorphological diversity next by employing theHaus-
dorff distance dH as a metric to compare the similarity of two robot
geometries, A and B. For each voxel in A, the closest voxel in B
is identified, according to euclidean distance d . Similarly, for each
voxel in B, the closest voxel in A is identified. The Hausdorff metric
is the larger of these two distances. Formally,

dH (A,B) = max{ sup
a∈A

inf
b ∈B

d(a,b), sup
b ∈B

inf
a∈A

d(a,b) } . (6)

Informally, two robots are close in the Hausdorff distance if every
voxel of either robot is close to some voxel of the other robot.

We calculated the Hausdorff distance between each of the
(20
2
)
=

190 possible pairings of the 20 run champions (Fig. 5B). Because
dH (A,B) depends on the orientations ofA and B, we rotate B in the
xy plane (0, 90, 180, and 270 degrees) and the yz plane (0 and 90
degrees), and select the rotation that creates the smallest dH (A,B).

We found the evolved body shapes of pressure-adaptive robots
to be more diverse than those of stress-adaptive robots (P < 0.001).
We did not find a significant difference, at the 0.05 level, between
adaptive and nonadaptive treatments using this particular measure
of morphological diversity.

Across all three treatments, there appear on visual inspection to
be three types of geometries (Figs. 2-4): a Π robot with wide poste-
rior and anterior legs; a Γ robot whose legs meet perpendicularly;
and a ϒ robot that connects a (mainly cylindrical) leg perpendicu-
larly to the center of a 10 × 10 vertical plane. Depending on how
one counts, the ϒ species can be seen in at most one nonadaptive
robot (Fig. 2, run 19), two stress-adaptive robots (Fig. 3, runs 7 and
16), and six pressure-adaptive robots (Fig. 4, runs 2, 6, 7, 9, 12, and
16). Pressure-adaptive robots have more diversity by virtue of more
ϒ robots.

Interoceptive robustness.
To investigate the relative robustness (if any) across the three treat-
ments, in the following experiment, development was manually
removed from the stress- and pressure-adaptive run champions.
We then tested the sensitivity of the resulting reduced robots to
their evolved congenital stiffness distribution (Fig. 5C). To do so,
we replaced the evolved network dictating material stiffness, C2,
with a random number generator that draws from the same range
of possible stiffness (104 − 1010 Pa). That is to say, we ‘built’ the
evolved run champions without any errors in the specifications
of geometry and actuation, but completely ignored the evolved
specifications of their material stiffness, replacing them instead
with random noise. We then calculated the relative fitness

R = Ftest / Ftrain , (7)

Non-developmental champions (Eq. 1)

Figure 2: Run champions colored by congenital stiffness,
which ranges from 104 to 1010 Pa. After settling under grav-
ity, robots move toward the right-hand side of the page.
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Stress-adaptive champions (Eq. 2)

Figure 3: Run champions colored by congenital stiffness
which can change during operation (ontogeny) in response
to engineering stress.

Pressure-adaptive champions (Eq. 3)

Figure 4: Run champions are colored by congenital stiffness
which can change during operation (ontogeny) in response
to pressure.
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Figure 5: Means (with 95% C.I.) for various statistics of the run champions, at generation 5000: (A) Fitness as the final displace-
ment of a robot, measured by voxel-length units; (B) Diversity as the pairwise Hausdorff distances of robot geometries; (C)
Robustness as the relative fitness (testing fitness divided by training fitness) after development is removed and a random stiff-
ness distribution is introduced into the champion’s body (Eq. 7); (D) Mean, taken across the body, of relative lifetime change
in stiffness, as a measure of the lack of canalization (Eq. 8; lower bars indicate more canalization); (E) Variance, taken across
the body, of relative lifetime change in stiffness, as a measure of heterogeneity/nonuniformity in developmental reactions
(Eq. 9); (F) Variance, taken across the body, of the coefficients/gain of developmental reactivity (Eq. 10).

where Ftrain is the fitness achieved using the evolved stiffness and
Ftest is the fitness when tested with a random stiffness distribution.
We repeated this process ten times for each run champion, each
time drawing a new random stiffness distribution.

We found that, compared to nonadaptive robots, reduced stress-
adaptive robots were more robust to this (extreme) discrepancy
between training and testing stiffness distributions (P < 0.01).
These results are consistent with the found correlation between
development and robustness [4, 24, 28]. However, the results here
indicate that this correlation is contingent on the kind of envi-
ronmental signal the developing agent responds to: there was no
difference between pressure-adaptive and nonadaptive robots in
this regard, at the 0.05 level.

This implies that by behaving interoceptively with respect to
engineering stress, robots evolved the ability to ameliorate large
deviations from their expected material properties, but by behaving
interoceptively with respect to pressure, robots did not evolve this

character. Because development was manually removed beforehand,
robustness in our case was not amatter of changing one’s body, as in
the example of plant growth [36]; rather, it is an intrinsic property of
structure (geometries and actuation patterns) educed from ancestors
who changed in response to one particular internal state (stress),
but not from those who responded to another (pressure).

The difference in robustness between nonadaptive robots and
stress-adaptive, but not pressure-adaptive robots, could be due in
part to the fact that there are simply more pressure-adaptive ϒ
robots than stress-adaptive ϒ robots. While ϒ robots tend to be
more fit than Π and Γ robots (PΠ < 0.05; PΓ < 0.05), they also
appear to exploit their material properties to a greater degree, and
are thus more sensitive to changes in its constitution, compared to
Π and Γ robots (PΠ < 0.05; PΓ < 0.01).

The ϒ robot generates movement by pushing off its posterior
leg, which must be rigid enough to support itself as well as propel
forward the center portion of its anterior wall (e.g. run 12 in Fig. 4).
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The robot loses kinetic energy, which is stored as elastic strain
energy in the spring-like voxels between the wall’s center and edge.
The most strain is present in the dorsal portion of the anterior wall.
The springs recoil, restoring kinetic energy and generating forward
motion. If the posterior leg is too soft, or the dorsal anterior wall
too rigid, the ϒ robot can suffer a large drop in performance.

Differences in geometry, however, shed no light on why (the
reduced) stress-adaptive robots are more robust than nonadaptive
robots: the level of significance (P < 0.01) does not change after
removing the only nonadaptive robot that could possibly be clas-
sified as ϒ (Fig. 2, run 19). Thus we continue our investigation by
analyzing how stress and pressure might differentially affect the
rate of developmental reactions.

Canalization.
One indication of canalization [24, 40] in our system is given by the
magnitude of αi in each voxel, as defined by Eqs. 2 and 3. However,
this is but one of two necessary ingredients for a developmental
reaction: it indicates bodywide responsiveness to potential stimuli,
but ignores the actual stimulus.

Thus, as proxy for canalization, we measured the amount of mor-
phological change in reaction to local stimulus, during evaluation.
More precisely, we recorded the mean, across the body, of relative
lifetime change in stiffness

Mbody =
1
#γ

∑
i ∈γ

��k+i /k◦i − 1
�� , (8)

where k◦i is the congenital stiffness, k+i is the final stiffness, and
γ = {i : дi = 1} contains the coordinates i of each voxel дi present
in the (bit array) geometry which has cardinality #γ (total voxels).
Less change—lowerMbody—indicates more canalization.

On average, voxels in stress-adaptive robots change their relative
stiffness less than voxels in pressure-adaptive robots (P < 0.001)
(Fig. 5D). In other words, developmental reactions are canalized to
a greater extent in stress-adaptive robots. It follows, then, that the
treatment with increased robustness was also the treatment with
increased canalization.

To get a sense of the consistency of developmental reactions, as
they occur across the body of evolved robots, we also recorded the
spatial variance of this relative lifetime change

Vbody = Vari ∈γ
( ��k+i /k◦i − 1

�� ) . (9)

By this measure, stress-adaptive robots exhibit more uniform reac-
tions than pressure-adaptive robots (P < 0.05) (Fig. 5E).

Taken together, then, we may say that the developmental reac-
tions of stress-adaptive robots are more uniform in space (lower
Vbody; Fig. 5E), and more canalized in magnitude (lower Mbody;
Fig. 5D) than those of pressure-adaptive robots. Pressure-adaptive
robots therefore experience larger and more localized changes in
stiffness during their lifetime.

There are two possibilities that could explain this more localized
change in stiffness in the pressure-adaptive robots. One possibility is
that there is greater variance among the αi in the pressure-adaptive
robots. The alternative is that there is greater variance in the appli-
cation of pressure throughout the body. To test the first possibility,
we first normalized αi in pressure- and stress-adaptive robots by
the differing ranges of α that evolved in the pressure-adaptive (-5.36

to 5.63) and stress-adaptive (-10.00 to 6.42) robots. Then we took the
variance of αi across the body of each run champion, individually:

Vgain = Vari ∈γ α̃i , where α̃i =
αi − αmin
αmax − αmin

. (10)

We found no evidence to support the hypothesis that αi in pressure-
adaptive robots vary more (or less) in space than those in stress-
adaptive robots (Fig. 5F).

Therefore, because there is no difference in the variation of αi
(Fig. 5F), and because αi cannot change during operation (Eqs. 2
and 3), it follows that pressure was generally much more localized
within the bodies of the pressure-adaptive robots than stress within
the bodies of the stress-adaptive robots. In other words, the entire
body plan encountered stress, but only a small portion of the body
encountered appreciable pressure. (An example of this localized
response to localized pressure can be seen in Fig. 1.) We hypothesize
that this global spread of stress is the likely cause of increased
robustness in the stress-adaptive robots (Fig. 5C).

4 DISCUSSION
Building systems that are robust in the face of changing environ-
mental conditions is a grand challenge in robotics and AI. The
brittleness of current systems is exemplified by the growing litera-
ture on adversarial examples [1, 29, 37], and the fact that almost all
practical robots are confined to the perfectly flat floors they clean,
or the hermetic factories built around their work. Robustness is not
unknown in human-engineered systems, but it is relatively rare;
in nature it is everywhere, and one of the reasons is that in nature
organisms develop: They constantly change not just their cognitive
architectures but the morphologies that contain them and mediate
with the external world.

It has been shown for rigid robots [4] that morphological de-
velopment can in some cases increase robustness since it exposes
evolution to richer sensory information: the robot must maintain
locomotion while changing its body. Soft robots have much greater
potential in this domain: If soft, there are more ways that mor-
phology can change, so by definition the increase in breadth in
sensorimotor experiment induced by development will be even
greater than that for developing yet rigid machines. Toward this
goal, by allowing material stiffness to be plastic, we have here in-
vestigated a heretofore unexplored dimension of morphological
change (stiffness) not available to rigid robots.

Advances in materials science and 3D printing promise new
engineered systems—protean machines—that may continuously
morph in response to changing environmental signals. Simply put, if
a robot always changes its strategy along many morphological and
neural modalities, it is more difficult to fool with a static adversarial
example or a new task environment. Little to no analysis has been
conducted, however, into how such systems should respond to
environmental stimuli in order to adapt their functions in the face
of changing environmental conditions.

In initiating such a study here, we have shown that it is not just a
matter of reacting to any stimulus: different types of developmental
feedback loops elicit different evolved properties. We observed that
if one modality (stiffness) responds to one particular internal signal
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(engineering stress) but not another (pressure), robots evolved struc-
ture that intrinsically buffered large deviations from their expected
material properties.

Pressure and stress bear distinct mechanical load signatures
which in turn stimulated very different developmental reactions.
Intriguingly, increased robustness was correlated with increased
canalization: developmental reactions with stress were canalized
to a greater degree than those with pressure. Although develop-
mental reactions with pressure did not afford the evolution of ro-
bustness here, it did increase evolutionary divergence: pressure-
adaptive robots evolved more diverse (congenital) shapes than
stress-adaptive robots. Our work here suggests there may be other
developmental feedback loops that could be made available to evo-
lution that would lead to more diverse and robust robots.

For our purposes, ‘morphology’ is a robot body, but the concepts
here could equally be applied to non-embodied systems, such as the
architectures of deep neural networks [27, 41]. One could define
internal neural processes such as node sharpening [16], Hebbian
learning, or neurotransmitter diffusion [21, 38] as interoceptive
signals to which the neural network developmentally responds in
a structural manner, such as adding or removing neurons. Mean-
while, at a faster time scale, synaptic weights might be tuned in
response to exteroceptive signals such as gradients of a loss func-
tion. Finally, such a network could be placed inside a robot which
itself is experiencing morphological change.
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