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Abstract

Word embeddings have triggered great advances in natural
language processing for non-embodied systems such as scene
describers. Embeddings may similarly advance natural lan-
guage understanding in robots, as long as those robots pre-
serve the semantic structure of an embedding corpus in their
actions. That is, a robot must act similarly when it hears
‘jump’ or ‘hop’ and differently when it hears ‘crouch’ or
‘launch’. This could help a robot learn language because it
would immediately obey an unknown word such as ‘hop’ if
it had been trained to obey ‘jump’. However, ensuring such
alignment between semantic and behavioral structure is cur-
rently an open problem. In previous work we showed that
the choice of a robot’s mechanical structure can facilitate
or obstruct a machine learning algorithm’s ability to induce
semantic and behavioral alignment. That work however re-
quired the investigator to create a loss function for each nat-
ural language command, including those for which formal
definitions are elusive, such as ‘be interesting’. A more scal-
able approach is to bypass loss functions altogether by invit-
ing non-experts to supply their own commands and reward
robots that obey them. Here we found that more semantic
and behavioral alignment existed among robots reinforced
under popular commands than among robots reinforced un-
der less popular commands. This suggests the crowd either
chose alignment-inducing commands and/or preferred robots
that acted similarly under similar commands. This may pave
the way to scalable human-robot interaction by avoiding loss
function construction and increasing the probability of zero-
shot obedience to previously unheard commands.

Introduction
Directing robots using natural language commands could
greatly scale robotics by enabling large numbers of non-
experts to safely teach and guide them.

However, how best to enable embodied machines to un-
derstand natural language remains an open problem. Re-
cently, automated methods for embedding semantic relation-
ships across natural language into a vector space (Mikolov
et al., 2013) have led to great advances in non-embodied
natural language processing such as translation (Zou et al.,
2013) and image description (Karpathy and Fei-Fei, 2015).
This suggests that similar advances may be achieved in
robotics. But, despite acknowledgements that embodiment

is an important aspect of natural language processing (Bisk
et al., 2020) and, before word embeddings were invented,
it was shown how language symbols could be grounded in
robots’ sensorimotor experiences (e.g. Steels (2008)), little
effort has yet been exerted to connect word embeddings and
robots.

Attempting such a connection raises several challenges.
For example, if word embeddings are supplied to a robot,
it is not clear that a robot will be able to preserve the se-
mantic structure latent in an embedding space in its be-
havioral space. That is, there is no guarantee that a robot
trained to obey one command will act similarly—and thus
likely obey—a semantically-similar command. Here we
show that if a crowd of non experts are recruited to collec-
tively train robots, they tend to favor commands that lead to
such ‘aligned’ robots.

Action grounding. The simplest approach for training
robots to obey natural language is to ground that language
in action (Selfridge and Vannoy, 1986; Matuszek et al.,
2013), commonly referred to as action grounding. First, a
set of command / obedient action pairs is used to train a
model that, if supplied with one of the commands, outputs
as closely as possible the corresponding obedient action se-
quence. A trained model is then deployed such that, if sup-
plied with a novel command, it generates a novel action se-
quence obedient to that command. This simple method re-
quires the investigator, or an objective function, to generate
obedient actions.

Reward grounding. More recently, an alternative method
has been proposed which overcomes many of the limita-
tions of action grounding. In reward grounding (Arumugam
et al., 2018), a model is trained on command / reward func-
tion pairs such that, if a trained model is supplied with a
novel natural language command, it generates a novel re-
ward function. If a robot’s control policy is trained against
this predicted reward function, it is likely to generate actions
that obey that command. Although this approach requires
a reward function for each training command, inverse re-
inforcement learning (Hadfield-Menell et al., 2016) can be

148

D
ow

nloaded from
 http://direct.m

it.edu/isal/proceedings-pdf/isal2020/32/148/1908604/isal_a_00317.pdf by guest on 06 Septem
ber 2021



employed to learn reward functions from human demonstra-
tions for commands that lack investigator-supplied reward
functions.

Crowd grounding. However, there are many potential
commands that may elude formal encapsulation in an ob-
jective function, such as ‘be interesting’. Also, some com-
mands may be difficult for humans to demonstrate. Walking
may be demonstrable to a humanoid robot, but demonstrat-
ing rolling to a round robot may be difficult, as may ‘grasp-
ing’ to a robot with an electromagnetic manipulator.

Thus, in previous work (Anetsberger and Bongard, 2016)
we demonstrated a method we refer to as ‘crowd ground-
ing’. Through a website, casual human participants pro-
posed natural language commands for the robots to obey,
and they provided positive reinforcement to those robots
that exhibit increasing obedience to those commands. We
showed that, even in the absence of direct reward, casual
human participants provide reinforcement sufficiently accu-
rate to enable simple robots to successfully ground simple
natural language commands.

In a related study we (Matthews et al., 2019) found, as did
Thomason et al. (2019), that robots can immediately obey
embeddings of commands they have never heard before (e.g.
‘halt’), if they were previously trained on embeddings of
their synonyms (e.g. ‘stop’). However, unlike Thomason
et al. (2019), in our work we also showed that this ability
could be frustrated or enhanced, depending on the choice of
the robot’s embodiment.

This suggests the following hypothesis: can participants
indirectly find robots with body plans that best align seman-
tic and behavioral similarity? We tested this by exposing
participants to large numbers of robots whose neural control
policies and body plans were altered over time by an inter-
active evolutionary algorithm. We found that robots rein-
forced under popular commands tended to have more align-
ment than those reinforced under less popular commands,
providing preliminary evidence supporting this hypothesis.

Methods
An evolutionary algorithm was constructed and run on a lo-
cal server such that it continuously evaluated virtual robots
in a physical simulator. The resulting video was streamed
continuously to a channel on Twitch.tv, a streaming and chat
service. Participants arriving at the channel could influence
the evolution of the robots by typing in chat messages, which
were processed by a chatbot (Fig. 1)1.

Website. From 3:46pm ET on May 29th, 2019 until 12:50
am ET on March 13th, 2020, members of the Twitch.tv com-
munity could visit twitch.tv/twitchplaysrobotics and there

1All code available at: https://github.com/
davidmatthews1uvm/2020-ALIFE

observe pairs of virtual robots behaving in various simu-
lated environments. Twitch Plays Robotics recruited partic-
ipants through the Twitch Plays group which is a collection
of Twitch streams that consist of crowd sourced game-play.
Twitch Plays Robotics also recruited participants through
reddit.com/r/artificial. Since Twitch streams are public, it
is likely that some participants discovered our experiment
through other means.

Participants were shown what command the two robots
just ‘heard’. They were asked to indicate, in chat, which
of the two robots was more obedient to that command by
typing in the first letter of the more obedient robot’s color.

Commands. At the outset of the experiment, the set of
commands C was seeded with two investigator-formulated
commands, c0 =‘moving’ and c1 =‘being interesting’. The
infinitive was employed because commands were inserted
into the participant-facing query
‘‘Which is better at *[ci]?’’.
These two commands were chosen because the first is

short and motoric and, from previous work Bongard and
Anetsberger (2016); Mahoor et al. (2017), was predicted to
be groundable in action by the robots. The second subjective
command was chosen because it is unclear how to formally
specify it in a fitness function.

As the experiment ran, participants could add their own
commands to C by typing one or more words preceded by
an asterisk. As explained below, robots are supplied with
word2vec embeddings of commands. So, if any of the words
in a candidate command ci were not recognized by Google’s
word2vec pre-trained network, the command was rejected
and the proposing participant was informed. Otherwise, ci
was added to C.

For each pair of robots selected for presentation to and
evaluation by the participants, a command was chosen ran-
domly from Ct, the set of all unique commands proposed
by the crowd since experiment start to the time t of the
current evaluation. Selection was biased to favor selection
of commands that the crowd preferred. This was accom-
plished by selecting commands using the probability dis-
tribution {c1t/cNt, c2t/cNt, . . . , c|Ct|t/cNt}, where cit de-
notes the number of times that command ci was proposed
in chat from experiment start to time t and cNt =

∑Ct

i cit
denotes the number of command proposals in chat before t.

Reinforcement. At any time, the evolutionary algorithm
hosts 10 robots. Each robot is assigned a unique color to
ease identification and recognition of particular robots by
participants. If any single-character chat response belonged
to the set {[r]ed, [g]reen, [b]lue, [y]ellow, [o]range, [p]urple,
[w]hite , [j]ade , [c]yan , [s]ilver’} the most recent evaluation
in which that robot was retrieved. This method for assigning
reinforcement to a robot ensures that, despite differing lag
times between when the evaluation was conducted on the
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Figure 1: The participants’ view. Participants were shown pairs of robots (a) in different simulated environments (b) and
asked to type the color of the more obedient robot (c) into chat (d), given the current command (e). Participants could also
propose new commands in chat (f) and talk to each other (g). Participants could ‘unlock’ new functions (h) with earned points
(i) and see their score relative to others (j). Information about one of the two robots is also displayed (k), along with two
different views of the evolving robot population (l,m). Video from the first hour of deployment: youtu.be/0tHmdHbUbZY.

local server (t0) and when participant i observed the evalua-
tion on their device (ti), the reinforcement signal is assigned
to the correct robot. To further minimize the probability of
incorrect assignment, three evaluations had to elapse before
a robot was eligible for presentation again.

Evaluations always contain two robots: the robot with that
color is assumed to have been positively reinforced by the
participant, and the other robot is assumed to have been neg-
atively reinforced. Each such chat response is thus processed
by incrementing yi by 1 (the total positive reinforcements of
robot i under all commands and all participants) and incre-
menting nj by 1 (the total negative reinforcements of robot
j). Whenever a robot i is created by the evolutionary algo-
rithm, yi = 0 and ni = 0.

Robot morphology. Each robot is defined as an n-ary
tree: each tree segment points to information describing one
cylindrical body part and each tree node points to informa-
tion about c, one degree-of-freedom rotational hinge joints,
each of which connects one of the c child segments to its
parent segment. Parent/child and sibling cylinder pairs are
allowed to interpenetrate, but collisions between other cylin-
der pairs are detected and resolved.

When a robot is to be evaluated, its tree is duplicated, and
all of the x-components describing the positions of the body
parts and joints are negated. This creates robots bilaterally
symmetric about the x axis (Fig. 1a). Two eyes are placed at
the location of the root tree node to help the participant infer
that the robot can ‘see’ (the rays emanating from the eyes)

and to establish a local, robot-centric coordinate frame with
which to anchor deictic commands such as ‘move forward’
or ‘turn to your left’.

A binary touch sensor is placed in each of a robot’s n
cylinders, and a proprioceptive sensor is placed on each of
the n − 1 hinge joints. Two, four-component ray sensors
emanate from the robot’s eyes, each of which returns a max-
imum distance if the ray does not collide with any objects
or the ground plane, and the length of the beam to the near-
est object it collides with otherwise. The second, third and
fourth components report the red, green, and blue compo-
nent’s of the color of the hit object, and return all zeros if no
objects are hit by the ray. Finally, a single auditory sensor
neuron is added to each robot. Its function is described be-
low. This yields a total of n+ (n− 1) + 9 = 2n+ 8 sensor
values that are fed into the neural network controller.

Robot control. The neural controller contains n − 1 mo-
tor neurons which provide desired torques to the n−1 hinge
joints. Each sensor neuron is connected to each of five hid-
den neurons, each hidden neuron is recurrently connected to
every other hidden neuron as well as itself, and each hidden
neuron is connected to each of n − 1 motor neurons. This
yields 5(2n + 8) + 5 × 5 + 5(n − 1) synapses per robot,
whose weights are evolved as described below.

Word embeddings. Just prior to evaluation, the neural
networks for each of the two robots about to be simulated
are created. The natural language command associated with
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that evaluation is translated into its word embedding vec-
tor, the first element in the vector is supplied to each of the
two networks’ auditory neurons, and the hidden neurons in
both networks are updated according to that robot’s synap-
tic weights. The second element in the embedding is fed
in next, and the hidden neurons in both networks are again
updated. This process continues until the entire embedding
vector has been digested by both networks. If the command
contains additional words, those are also translated into em-
bedding vectors and passed through the two auditory neu-
rons as well. Each of the two robots’ body plans are then
constructed and deployed to the simulator, along with the
control policy and its primed hidden layer. Each robot’s re-
sulting behavior is thus a function of the embedding vector
it just ‘heard’ before deployment and the sensor values it
experiences during deployment.

The robot controllers used in this paper are only able to
retain a small subset of the information contained in the 300
element embeddings. Different weight sets dictate which
parts are retained; evolutionary search may, in theory, select
for robots that retain the subset of the embeddings that best
enable them to elicit positive crowd reinforcement. Without
knowing a priori what can safely be compressed out, ap-
plying traditional dimensional compression algorithms will
likely result in loss of useful information and the preserva-
tion of unneeded information. For example, city-capital re-
lationships may be preserved even if they are not needed.

Evolutionary algorithm. Following (Sims, 1994; Cheney
et al., 2018) (among many others), we constructed an evo-
lutionary algorithm that simultaneously evolves simulated
robot body plans along with neural control policies. How-
ever, no fitness function was employed: the participants ex-
ert selection pressure on the population.

At the outset of the experiment 10 virtual robots with
randomly-generated body plans and neural control policies
were created, as described above. Every 30 seconds of wall
clock time, two of the 10 robots were randomly chosen and
shown simultaneously with a randomly-chosen command as
explained above. A bi-objective optimization method was
employed such that robots were evolved to maximize obedi-
ence (yi, the first objective) and minimize disobedience (ni,
the second objective). Although more sophisticated algo-
rithms exist, a bi-objective algorithm was chosen as a simple
method to maintain diversity within the population.

Immediately after an evaluation, any robot j that became
dominated by robot i (yj > yi and nj < ni) was deleted.
Note that given the asynchronous nature of reinforcement,
the most recent evaluation may not have involved robots i
or j. If deletion did occur, with 0.5 probability, a new robot
with a randomly-generated body plan and neural control pol-
icy was created. Otherwise, a randomly-modified copy of
robot i was created. In both cases the new robot was as-
signed the deleted robot’s color.

If ri is the mutated copy of robot rj , with 0.5 probabil-
ity ri’s body plan was mutated; otherwise, its control policy
was. Morphological mutation was effected by mutating each
node in the right subtree of the tree describing the robot’s
body plan with 1/n probability, where n denotes the num-
ber of nodes in the right subtree. If node i was mutated, the
orientation of its encoded cylinder was altered by re-drawing
θi and φi from [−π, π] using a uniform random distribution.

Control mutation was effected by mutating neurons with
probability 0.5, and mutating synapses otherwise. If neurons
were targeted for mutation, sensor- (probability 1

3 ), hidden-
(probability 1

3 ) or motor neurons (probability 1
3 ) were mu-

tated. For each neuron class, a single neuron in that class
was chosen using a uniform distribution. The decay rate for
the selected neuron iwas randomly changed by re-drawing a
random value for τi from [0.1, 0.5] using a uniform distribu-
tion. Synaptic mutation involved resetting a random synapse
to a random value drawn uniformly from [−1, 1].

The environments. When a pair of robots was chosen for
evaluation, they were simulated at very different positions in
the virtual environment to ensure that they neither collided
with one another or ‘saw’ each other with their ray sensors.
However, they were drawn next to one another to aid par-
ticipant comparison. In addition, each robot could be ex-
posed to immobile or moving objects. At the outset of each
simulation, one of the active environments was chosen at
random. Initially there were two environments — one con-
taining a stationary cube and the other containing a sphere
rolling towards the robots. To incentivize participation, par-
ticipants could gain points through reinforcing robots and
could ‘buy’ additional environments if they so choose. If an
environment was unlocked, it was temporarily added to the
list of active environments. A total of 10 environments could
be unlocked. Such unlocking occurred very infrequently, so
it was unlikely to have had an impact on the results. The role
of the environment in the ability of a robot to align semantic
and behavioral structure will be investigated in future work.

Results
Deployment. The deployment lasted over 9 months start-
ing on May 29, 2019 and ending on the March 13, 2020.
During this time 1,058 different anonymous users visited
the Twitch.tv stream and entered something into chat; 827
of them reinforced at least one robot. Over two mil-
lion robot evaluations were shown of which about 1.2%
(28,409) received at least one crowd reinforcement. Col-
lectively the users proposed 641 commands, of which 400
were single word commands. The commands varied widely
from motoric commands like ‘walk’ to abstract commands
like ‘math’, however the most popular commands were
all motoric (‘walking’, ‘jumping’, ‘running’, ‘clapping’,
and ‘rolling’). Most participants only supplied one rein-
forcement, while one participant supplied 3963 of them

151

D
ow

nloaded from
 http://direct.m

it.edu/isal/proceedings-pdf/isal2020/32/148/1908604/isal_a_00317.pdf by guest on 06 Septem
ber 2021



0 5 10 15 20
Generation

−1.0

−0.5

0.0

0.5

1.0

Av
er

ag
e 

Re
in

. rs = 0.126
p ≪ 0.001

Figure 2: Evidence of Evolution. Each point corresponds
to a robot. On the Y axis is the average reinforcement that it
has received across all of its evaluations. On the X axis is the
age of the robot. The Spearman rank correlation coefficient
is reported as rs. There is a very weak positive correlation
between the age of a robot and its average reinforcement.

(mean/median reinforcements per user = 38/6). A total of
8345 robots received at least one reinforcement signal.

Evolution. To determine if evolution is occurring and thus
better than random search, we ask whether robots with
older genotypes attract more positive reinforcement than
new robots with random genotypes. Since we employ a
steady state evolutionary algorithm here, the age of a robot
is measured as the number of generations that its lineage has
survived in the population since its founding random mem-
ber was injected into the population. A newly-injected ran-
dom robot has age one and children are assigned the age of
their parent plus one. We found that there is a slight positive
relationship between the age of a robot and the reinforce-
ments that it receives. We can rule out this occurring due to
survivorship bias because there is no guarantee that a robot
of generation 5, for instance, will attract more positive re-
inforcements than a robot of generation 1. Average or nor-
malized reinforcement is calculated as: yi−ni

yi+ni
, where yi and

ni are the total number of positive and negative reinforce-
ments that robot i received respectively. Figure 2 displays a
scatter plot of the age of robots and their average reinforce-
ments. There is a very weak positive correlation as measured
by Spearman’s rank correlation coefficient. This weak fit is
highly influenced by the fact that many new robots — both
random and children — first receive negative reinforcements
and quickly die. About half of the data in this scatter plot lie
at y = −1 and y = 0 (receiving only 1 or 2 reinforcements
prior to replacement).

To counter the problems caused by unbalanced data,
we compare the distribution of reinforcements for old and
young robots in Figure 3 through the use of inverse em-
pirical cumulative distribution functions (ECDF). Robots
are grouped based on age and an inverse ECDF of each
age group is plotted. Almost 60% of robots aged 1 die

Figure 3: Evidence of Evolution. Each line charts the
fraction of robots that have an average reinforcement sig-
nal greater than x. The robots which first receive negative
feedback quickly die. This is why there are steep vertical
lines at x = −1 and x = 0. In A and B, the population of
robots is divided into 3, and 5 groups respectively based on
their age (bin edges shown in legend). In both A and B the
older robots (e.g. purple, red, green) are above the younger
robots (e.g. blue, orange). This means that the older robots
are achieving higher reinforcements than the younger ones.

with unanimous negative reinforcements, however for robots
aged 3 to 23, only 40% of the robots die with this reinforce-
ment. Here, the older age groups are above the younger age
groups (e.g. purple, red, green above orange, blue). This
means that older robots are achieving higher average rein-
forcements overall.

This provides some evidence that the evolutionary algo-
rithm performed better than random search. The lack of
clear evolution may be due to the problem of catastrophic in-
terference whereby the robots are being trained on too many
different tasks for them to learn them all. If this were oc-
curring, we might expect the robots to specialize and only
perform a few tasks well. Figure 4 shows that this is oc-
curring. Each column represents the performance of a given
robot at various commands. Most columns only have a small
amount of dark green and thus most robots are only good at
a few commands. This suggests that they are specializing to
a few commands and performing the remaining commands
mediocre or poorly.

Semantic and Behavioral Alignment. A robot which
successfully aligns semantics with action should behave
similarly and differently when issued semantically simi-
lar and semantic different commands, respectively. Video
youtu.be/rYEbRBzEtBI illustrates, anecdotally, a robot with
such an alignment: it exhibits similar movement when is-
sued ‘walking’ and ‘moving’, and less movement when is-
sued ‘stretching’ or ‘standing’.

In order to quantify how well a robot aligns semantic
meaning with behavior, we need to measure how similar
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Figure 4: Robot Specialization. Each column represents re-
inforcements that a robotRi received under qualifying com-
mandsCa, Cb, ..., Ca+n, sorted fromRi’s worst command
at the top to its best command at the bottom. Robots are
sorted from left to right by the number of qualifying com-
mands that they have. A qualifying command is any com-
mand where the number of reinforcements ni,j Ri received
under command Cj is at least 3. Robots are excluded if they
have less than 10 qualifying commands.

two commands are semantically and how similar the result-
ing behaviors are. To measure the semantic distance be-
tween two commands we employ cosine similarity. Since
commands are vectors from a Word2Vec vector space, we
can measure the distance between two commands simply by
measuring the distance between them. Although we allow
users to propose multi word commands, we exclude them
from this analysis since it is not clear how to measure the se-
mantic distance between two commands of different length.

∣∣∣ A·B
||A||||B||

∣∣∣ cmd A rank cmd B rank

0.13 swim 43 swimming 84
0.16 dancing 5 dance 51
0.23 play 21 playing 77
0.25 dodge 132 dodging 169
0.26 tearing 401 ripping 438
1.11 speak 286 snagging 371
1.12 crouching 54 launch 411
1.13 handling 120 promenading 467
1.15 sawing 107 launch 411
1.17 disagreeing 191 launch 411

Table 1: The five most and least semantically similar com-
mands (according to word2vec absolute cosine similarity)
out of the top 300 most reinforced single-word commands.

Table 1 reports the top 5 most and least similar commands
out of the 300 most popular single-word commands. As we
would expect, commands with similar meaning have low
semantic distance and commands with different meanings
have higher semantic distance.

Although measuring semantic distance is fairly simple,
behavioral distance is much more difficult to quantify. One
way to compute behavioral distance would be to compare
sensor time series data generated by a robot when issued two
different commands. This data requires subjective choices
however, such as which sensors to employ. To avoid this
introduction of bias, we instead employ the crowd.

We have shown in previous work that a robot trained on a
command will tend to behave correctly when issued a previ-
ously unheard synonym of that command (Matthews et al.,
2019). This suggests that robots trained on embeddings
spontaneously obey behaviorally similar commands. It also
suggests a method for using crowd reinforcement to stand
in as a proxy for behavioral distance, thus avoiding biased,
investigator-defined behavioral distance metrics.

Consider two robots a1 and b1 where the crowd indi-
cates that a1 is better than b1 at command ‘dance’. If for
many other robot pairings (a2, b2), (a3, b3), (. . .), whenever
ai beats bi at ‘dance’, ai also beats bi at ‘dancing’, then one
could argue that ‘dance’ and ‘dancing’ are behaviorally sim-
ilar. This rests on the observation that robots are unlikely
to be good at many different commands, as reported in Fig.
4. Conversely, if knowing that a beats b at ‘crouching’ does
not predict that a beats b at ‘launch’, then ‘crouching’ and
‘launch’ could be said to be behaviorally distant.

Using this intuition, we formally define estimated behav-
ioral distance as follows: We filter the data set by

bij = 1−



∑

i∈C

∑

j∈C

∑

p
(i)
k ,p

(j)
k ∈Sij

δ
p
(i)
k ,p

(j)
k


 /‖Pij‖

where bij denotes the estimated behavioral distance be-
tween robots reinforced under commands i and j; C de-
notes the set of all commands issued to the robots; Sij =
{(sim1,n1

, sjm1,n1
), . . . , (simx,nx

, sjmx,nx
)} is the set of sim-

ulation pairs in which command i was sent to robots my

and ny in the first simulation (simy,ny
), and command j

was sent to the same two robots in the second simulation
(sjmy,ny

); p(i)k and p(j)k denote the preferences drawn from
the first and second simulation in the kth pair drawn from
Sij respectively; p(i)k , p

(j)
k ∈ Sij denote all unique prefer-

ence pairs drawn from Sij ; ‖Pij‖ denotes the number of all
such unique preference pairs; p(i)k is set to one (or minus
one) if the user who indicated this preference indicated they
thought robot m obeyed command i better (or worse) than
robot n, respectively; and δ

p
(i)
k ,p

(j)
k

= 1 if the same partici-
pant (or two different participants) thought robot m obeyed
commands i and j better than robot n in the both simula-
tions, or robot m obeyed both commands worse than robot
n, and δ

p
(i)
k ,p

(j)
k

= 0 otherwise. Taken together, bij = 1 if
whenever the same two robots were reinforced under com-
mands i and j, there was disagreement as to their relative
obedience, and bij = 0 when everyone agreed, for all robot
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Figure 5: Evidence of alignment between semantic and behavioral distance in crowd-trained robots. A: Each point corresponds
to a pair of natural language commands provided by the crowd. The semantic distance of a command pair is computed as the
cosine distance between their two word embeddings. The behavioral distance (bij) is estimated as how often users indicated
the same two robots acted differently when exposed to a command pair. B: The same comparison, but command pairs were
restricted to only those that received sufficient data to estimate their behavioral similarities (using θ) C: In black from left to
right, the Spearman rank correlation coefficient rs for increasing values of θ. In red, the Bonferroni corrected p values are
reported. In blue, the number of command pairs passing the threshold are reported.

pairs exposed to the same two commands, that one obeyed
both commands better than the other.

Over all command pairs i and j in C, we found no cor-
relation between semantic distance and behavioral distance
(Fig. 5A). This is likely due to the fact that for most com-
mand pairs, there is just one p(i)k and one p(j)k collected. This
likely introduces much noise into the calculation of bij . To
clean the signal, we filtered the data set several more times,
each time using a unique value of a threshold parameter θ,
where θ dictates that we only consider simulations in which
each simulation in Sij received at least θ reinforcements. As
we incrementally increased θ from 1 to 40, we found sig-
nificant positive correlations appeared for a wide range of θ
values above 12 (Fig. 5C). The strongest positive correlation
appeared at θ = 34 (Fig. 5B).

Because we found in previous work that the physical
structure of a robot may help or hinder the ability of a
search method to ground natural language in a robot’s be-
havior (Matthews et al., 2019), we investigated here whether
semantic and behavioral alignment was uniform across all
the robots generated, or whether alignment was more pro-
nounced for some body plans than others. To do so, we
calculated alignment separately for the six largest, genet-
ically distinct lineages, where the root of a lineage was a
randomly-generated robot (Fig. 6). To do so, we restricted
Sij to include only those simulations that simulated pairs
of robots from the same lineage being considered. We also
used θ = 1. As can be seen, due to how new robots were ran-
domly generated and how morphological mutations within a
lineage were applied, robots within a lineage tend to have
similar body plans, but body plans tend to differ widely
across lineages. We found that only one of the six lineages
(clade 5) had significant semantic and behavioral alignment.

Discussion
Taken together, these results suggest that a crowd of non-
experts can not only discover robots obedient to natural lan-
guage commands, but also robots that obey similar com-
mands in similar ways. Further, Fig. 5C suggests that
robots are more aligned under more popular commands
(those commands issued enough to collect more than θ rein-
forcement pairs) than they are to the less popular commands.
There are several explanations for this apparent relationship
between command popularity and alignment, none of which
have been confirmed yet. First, it may simply be due to ex-
perimental artefacts, such as the fact that there is a lot of
noise in the alignment calculation for rarely-reinforced com-
mands. Second, it may be that the participants notice, or
unconsciously favor, robots that act similarly when issued
certain sets of similar commands, ensuring those commands
become popular. Or, participants may instinctually formu-
late and supply alignment-induced commands: if the same
command is typed in more often (perhaps by many different
participants), it is send to robot pairs more often, leading to
those commands becoming more popular.

Additionally, Fig. 6 suggests that robot alignment is influ-
enced by morphology, since body plans are similar within
a clade (robots within insets) and different across clades
(robots across insets), and one clade exhibited alignment
while five others did not. Intuitively, the link between mor-
phology and alignment could be explained by physical com-
plexity: a simple robot may not be able to exhibit enough
diverse behaviors to form a meaningful alignment; con-
versely, a complex morphology with nonlinearities may ex-
hibit rapid behavioral divergence when issued semantically
similar commands, also frustrating alignment.

The apparent relation between morphology and alignment
could also be an artifact of experimental design: large clades
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Figure 6: The six most abundant clades and their semantic/behavioral alignments. (d-f,j-l): The complete lineages of
all six clades organized in order of decreasing abundance from (d) to (l), with a few robots drawn from each. Green nodes
correspond to robots that collected more positive than negative reinforcements; grey nodes denote those that received more
negative than positive reinforcement, or no reinforcement at all. (a-c,g-i): The potential semantic / behavioral alignment within
each clade. Each point represents the semantic and behavioral distances for a pair of commands issued to robots in that clade.
The Spearman rank correlation coefficient was calculated for each clade, and reported as rs. The Bonferroni-corrected p values
for each coefficient are also reported.

tended not to form in the population at the same time. This
temporal separation means that different clades get rein-
forced by different users, and a clade early on in the exper-
iment may be exposed to a different set of commands than
one later on in the experiment. Further, different users may
be more or less honest, causing other confounding effects.

In future work we will seek such explanations, as well as
reduce the breadth of commands sent to the robots to min-
imize catastrophic forgetting. This, and other algorithmic
changes, are expected to increase the likelihood of enabling

the crowd to evolve more generally obedient robots. In the
long term, we believe such democratization of robotics may
yield autonomous machines that resist catastrophic forget-
ting through semantic and behavioral alignment, resist per-
verse instantiation by forgoing objective functions, and re-
sist bias by having been evolved by diverse human trainers.
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