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Abstract

In domains where measures of utility for automatically-
designed artefacts (or agents performing subjective tasks)
are difficult or impossible to mathematically describe (such
as ‘be interesting’), human interactive search algorithms are
an attractive alternative. However, despite notable achieve-
ments, they are still designed around a specific search
method, resulting in a lack of problem generality: apply-
ing a new search algorithm requires an excessive amount of
redesign such that an altogether new interactive method is
formed in the process. This leads to missed opportunities
for human interactive methods to utilize the power of state
of the art optimization algorithms. Here, we introduce for
the first time a framework for human interactive optimization
that is agnostic to both the search method and the application
problem. Using 13 different search methods on 24 fitness
functions commonly found in evolutionary algorithm bench-
marks, we show that our approach works on the majority of
tested applications: many of the search methods, provided
with access to the fitness functions, performed no better than
our framework, which employs surrogate human participants
who act as less informed and erroneous representations of the
fitness function. In this way, our framework for interactive
optimization provides a scalable solution by facilitating the
integration of numerous types of current state of the art or fu-
ture search algorithms. Future work will involve generalizing
this method to admit multi-objective optimization methods
and validation with human participants.

Introduction
Some of the most crucial challenges facing machine learn-
ing and robotics are generality, computational cost, perverse
instantiation [12], and value alignment [22, 18, 4, 10, 30].
In particular, as machine learning and robotics move be-
yond toy problems to real-world applications, it becomes
increasingly difficult to formally define a perverse instan-
tiation resistant objective function. For example, consider
virtual agents trained to jump using an objective function
that maximizes the height of the robot. Search methods
may discover control policies that exploit inaccuracies in the
physics engine employed, causing the simulation to become
unstable and jettison robot body parts to great heights, sat-
isfying the objective function. In such a toy problem, it is

straightforward to alter the objective function to resist such
forms of perverse instantiation. However, if the same objec-
tive function were employed by physical robots operating in
complex, real-world environments, there are a near infini-
tude of ways to perversely instantiate height maximization:
the robot could move such as to be hit by a moving vehicle
or climb the side of a building, neither of which would be
considered valid instances of jumping.

Hardening objective functions against perverse instantia-
tion is even more challenging when there is a need to bal-
ance many antagonistic objective behavioral features, such
as speed, accuracy, and efficiency against subjective ones,
such as safety [10, 30] and lack of bias [27]).

Historically, the solution to many of the issues facing
the optimization of subjective tasks, or tasks that are par-
ticularly susceptible to perverse instantiation, has been in-
teractive evolutionary algorithms [14, 16, 19, 20, 21, 33].
Other non-evolutionary approaches for tasks that lack objec-
tive functions include inverse reinforcement learning via hu-
man demonstration. However, such approaches assume that
demonstration is possible, which is not always true. Body-
centric demonstration [36, 25] only works if the robot is suf-
ficiently anthropomorphic. And, demonstration by remote
control, such as apprenticeship learning [1], only works if,
for example, the robot is mechanically simple with few me-
chanical degrees of freedom and if fast-moving machines
provide sufficiently rapid feedback to the human operator.

Despite the feats state of the art interactive evolutionary
algorithms have accomplished, many are designed for —
and, therefore, only applicable to — the specific artefact of
optimization [15, 8, 11, 29, 13]. In a similar vein, these solu-
tions are also still limited by the considerable time required
for the process of development, whether that be time spent
adapting a standard search method to work in an interac-
tive manner or deriving completely novel implementations
inspired by standard search methods [35]. These methods
have also demonstrated that human error and user fatigue
[28] are a common problem that prevents them from being
used at a scale beyond the scope of the that research.

Here we introduce for the first time a framework that is
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agnostic to both the search method used and the function to
be optimized. In this sense, the framework is modular, as
it allows a search method to be easily incorporated by con-
verting human responses into fitness values (without access
to the fitness function) using a transformation that requires
a minimal number of human responses to optimize the fit-
ness function (in cases where the fitness function is known
but hidden from the human participants.) Thus, our frame-
work addresses many of the aforementioned issues with in-
teractive optimization and provides an advantage over other
approaches by allowing one to easily utilize state of the art
search methods in an interactive manner without any change
to the expected performance.

Methods
This section details both the implementation of the frame-
work by which search agnostic optimization is achieved as
well as the details relating to how the effectiveness of this
implementation was measured.

Algorithmic Implementation
As described in Fig. 1, our interactive framework relies on a
surrogate evaluator that mediates the presentation of candi-
date solutions from the search method to the human evalu-
ators and determines a suitable value to return to the search
method based on human responses. To test our method,
we expose it to known fitness functions and determine how
close the method can come to optimizing that function with a
limited computational budget and human evaluators. More-
over, it is assumed that the surrogate evaluator does not have
access to this function and the human evaluators return less
informed or erroneous fitness values, as explained below.

This method proceeds as such: first a search method
Mi ∈ M sends a candidate solution s0 to the surrogate
evaluator. The surrogate stores this solution at the head
of a binary tree with value 0 and returns that value to the
search method. The second solution, s1, is sent from the
search method to the surrogate and the surrogate presents
the human evaluator with a two-alternative forced choice
task: it queries an available human with the question, “is
fj(s1) > fj(s0)?” where fj ∈ F is the function to be op-
timized. If the human replies “yes,” the surrogate places s1
to the right of the head node with the value 1, if “no,” then
to the left with value -1; the surrogate then returns the de-
cided value to the search method. This process continues
for subsequent candidates sent from the surrogate evaluator.

In this process, if a node is already occupied, the follow-
up two-alternative forced choice task, “is fj(sn+1) >
fj(scurrent),” is sent to a human evaluator by the surrogate
until the solution can be placed in an empty node location.
The general method for computing the value of a solution is
as follows: if a solution is placed to the right of a leaf node
that is also the right most node, its value is one plus the value
of its current parent node. Similarly, if a solution is placed to

the left of a leaf node that is also the left most node, its value
is the value of its current parent node minus one. In all other
cases, the value of a new node is the average of its parent
and grandparent nodes. When this process concludes, the
best candidate solution, sbest, will be at the right most node
in the tree.

The tree built by the surrogate evaluator can be thought of
as a binary tree with a structure described by relative value
of presented solutions to each other. With each new solution
sent to the surrogate, at most log(n) comparisons will be
presented to human evaluators, where n is the depth of the
tree. This is the minimum amount of presentations necessary
to determine the accurate relative value, thus minimizing hu-
man involvement and fatigue as much as possible. To obtain
good performance, this tree should be balanced, for which
there are many known strategies [2, 6, 7, 26, 32, 3, 23]. We
also note that the question presented to the human evaluators
via the > symbol is equivalent to asking if a solution, s, is
better than another solution at f ∈ F , where F is consid-
ered to be a set of functions that contain subjective elements
or characteristics that are difficult to compute or measure.

As is illustrated in Fig. 1, this creates a framework that is
agnostic to both the search method M ∈ M and the func-
tion to be optimized f ∈ F , thus, these components can
be changed without any negative affect on the underlying
framework.

Measuring Performance
To validate whether the method produces “good” solutions
under our framework, we compare its performance to that
of the same method when optimized in a non-interactive
manner. To do this, we use non-subjective, standard fit-
ness functions that do not require an interactive component
nor need to simulate human responses. We use the 24 stan-
dard functions from the Comparing Continuous Optimisers
Benchmark (COCO) [17] and we use 13 different black box
optimizations methods 1. See the appendix for a complete
methods and functions list.

We run each search method on every function 120 times
each with a different random seed to get baseline perfor-
mance for each method on every function. The methods
all run until they have proposed 5000 solutions (sn=5000).
The performance is then calculated as the average value of
the best solution found (f(sbest) over the 120 runs. The var-
ious hyperparameters of each method, such as population
sizes, selection criteria, and reproduction operators are not
reported here for brevity. Their details can be found in the
repository mentioned in the appendix.

We then perform another 120 evolutionary trials for each
search method and fitness function pair, allowing each
5000 solution evaluations, but insert our surrogate evalua-
tor. Since the fitness of each solution is an easily computed

1github.com/robertfeldt/BlackBoxOptim.jl
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Figure 1: Overview of search agnostic interactive evolution. (A) A search method, M , sends an initial solution, s0, to the
surrogate evaluator and becomes the head of a binary tree with value 0, which is returned to the search method. (B) The second
solution, s1, is sent to the surrogate with the query, ”is s1 better than s0 at f¿‘ The human replies ”yes,“ which results in the
surrogate placing s1 to the right of the head node with the value 1 and returns it. (C) We perform this sequence of operations
again with s2, which is eventually added to the left of the head node with value −1. (D) We repeat the process for s3, but now
make two queries to the human evaluators. The first query would place s2 to the right of the head node where it encounters the
s1 node, triggering the second query which places it to the left; the value assigned is the average of the parent and grandparent
nodes (0.5) which is returned. (E) This process continues such that at each step, the surrogate makes a max number of log(n)
queries to available humans to determine the value of a solution s. At the end, the best solution, sbest, will be stored in the
rightmost node of the binary tree.

and non-subjective function, we simulate human responses
to the two-alternative forced choice comparisons mathemat-
ically. When a query is sent to a simulated human, it com-
putes the boolean value f(scurrent) > f(sn+1). If true, a
“yes” is returned, otherwise, “false” is returned. We again
average the results of all of the values f(sbest) across the
120 runs. We then run a Welch’s t-test comparing the base-
line results to those under the interactive framework. Be-
fore determining significance, we adjust this value for mul-
tiple comparisons by multiplying by 2496 (24 methods x 13
functions x 8 levels of simulated human accuracy, described
below). The results of this are reported in Fig. 2. To display
the results we create a table (Fig. 3) where we color each cell
green (using our framework performed significantly better,
p < 0.05), blue (no significance in performance difference
when using the framework), or red (using our framework
performed significantly worse, p < 0.05) to show how per-

formance compared with and without the surrogate. We con-
sider our framework successful in all cases where the cell is
not colored red.

As described, simulating human participants for this com-
parison is as simple as running the mathematical comparison
presented by the surrogate to the human, which can be done
in this case since f is known and returns a numerical value.
However, to attempt simulation of human error, we ran mul-
tiple versions of the framework, differing the accuracy of
the comparison. This is done by adding a probability of per-
forming a boolean “not” on the simulated human compari-
son before returning a response to the surrogate. We used 8
different levels of accuracy for the simulated human compar-
isons: 100%, 95%, 90%, 85%, 80%, 75%, 70%, 50%, where
the 50% comparison creates a completely random compari-
son scheme.

62



Figure 2: How performance is measured. To measure performance, we compare (Welsh’s t-test) the fitness of the best solution
found with our interactive framework with the best solution found by the non-interactive baseline on 24 search methods over
13 computable functions for n = 120 runs. We adjust this value for multiple comparison by multiplying by the number of
comparisons using the resulting p-value to color the cells of figure 3, which shows all the results of the various comparisons.

Results
The results are detailed graphically in Fig. 3. In this fig-
ure we find that when the simulated human gives 100% ac-
curate feedback, our surrogate evaluator not only performs
just as well as traditional optimization, but actually signif-
icantly better in almost all cases. The only exceptions to
this level of performance occur in regard to method m12, in
which case it performs significantly worse in 12 out of the
24 functions. We also found that as the simulated human
accuracy decreases, the performance of optimization with
the surrogate falls dramatically such that even at 95% accu-
racy, in 34% of the method and function pairs, it performs
significantly worse and only 2 pairs perform significantly
better. This decreases gradually with each step in accuracy
until reaching 50% accuracy, or essentially random selec-
tion; about half of the pairs perform significantly better and
half significantly worse.

The results suggest that, given accurate comparisons, the
surrogate strategy creates a successful framework for inter-
active optimization. The results persist across the functions
and search methods, suggesting that our surrogate evalua-
tor is indeed agnostic to both search method and applica-
tion problem. Method 12 was Simultaneous Perturbation
Stochastic Approximation (SPSA) [34], which uses a unique
form of gradient approximation that, in itself, could be con-

sidered a type of surrogate for standard gradient approxima-
tion. Thus, when coupling that surrogate with our surrogate,
there appears to be a loss of performance on some of the
functions.

In Fig. 4, rather than compare the absolute performance
of the baseline against the surrogate, we compute the rela-
tive performances of the methods with each other by rank-
ing their performance for each function. This tests whether
a search method retains its performance relative to other
search methods when the surrogate is used. Here we would
ideally like both images to be exactly the same, implying
that relative performance was consistently maintained. This
means that if one method outperforms another on a tradition-
ally optimized function, it will still outperform that method
when used with our framework for interactive optimization.
Given the results over these functions and methods, this
holds true≈ 87% of the time (computed as 100×(1− c

13∗24 ),
where c is the count of cells that differ between a treatment
and the baseline) in the case of the 100% accurate human,
thus indicating a high likelihood of maintaining this condi-
tion in novel problem applications. This number again de-
creases with lowered human accuracy, however, when vi-
sually comparing the baseline to our framework, a general
pattern of relative performance is retained.

Overall, the results for our framework are rather interest-
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Figure 3: Comparison of baseline and surrogate performance. We compare 8 experimental setups with varying accuracy
for our simulated human responses against the baseline performance for all of the 13 methods on each of the 24 functions.
The comparisons are made using a Welch’s t-test over 120 independent trials. We adjust the resulting p-value for multiple
comparisons multiplying by 2496 (24 methods x 13 functions x 8 experimental setups). Green: The surrogate performed
significantly better (p < 0.05) than the baseline on that method function pair. Red: The surrogate performed significantly
worse (p < 0.05) than the baseline on that method function pair. Blue: The surrogate and baseline performance weren’t
significantly different. To show that the surrogate performance is at least as good as the baseline on a method function pair, the
cell must be green or blue.

ing and promising. The performance gains found in the sur-
rogate in the 100% accurate case might be accounted for
by its method of comparison and value assignment, which
transforms the fitness landscape space presented to the op-
timization method. This might make it easier to search by
making it less likely to become trapped in local minima.

Discussion
In this paper, we have presented for the first time a frame-
work for interactive evolution that is agnostic to both the op-
timization algorithm and the application domain. We have
demonstrated in our results that the framework performed as
well as the baseline when accurate simulated human com-
parisons were used and that the relative performance (rank)

of the various search methods was often maintained across
treatments. However, we acknowledge that in some cases,
search methods under performed, as we saw when using
SPSA optimization. It is not clear why our method had
particular difficulties accommodating SPSA, though we hy-
pothesize this may be due to the offsetting of gradients used
in this method which could cause it to either over or under-
shoot when proposing new candidate solutions. From this
demonstration, it could be expected that other search meth-
ods are indigestible by our framework. In this way, other
potential methods that would not work well could be other
stochastic gradient based methods. This also holds true for
the application problems, as shown per our results. Regard-
less of this specific flaw, the rest of the methods worked well,
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Figure 4: Comparison of method rankings for the baseline and surrogate performance. This figure shows the relative
performance of the methods comparatively by ranking them against one another on each function. Every column shows the
rank (out of 13) of a method on that function based on the average performance over the 120 runs. On the top left we show this
ranking for the baseline performance. The other plots show the ranking for the surrogate with various levels of accuracy for the
simulated human. Comparing them shows whether a search method retains its performance relative to other search methods
when the surrogate is used. Ideally, all of these images would look exactly like the baseline image, however, here we can see
a number of differences from about a 23% difference, in the best case (top middle) to about 92% difference (bottom right).
With the best treatment this can be thought of as a 77% likelihood that a method that generally performs better than another
will retain that performance on a novel problem application.

demonstrating that any new search methods not tested here
have a compelling likelihood of being successful when uti-
lizing the framework described in this paper.

It is important to mention that because none of the ap-
plication functions tested were subjective (as is necessary
to make comparisons with the baseline algorithms), it re-
mains to be seen how well our framework would perform
under real conditions of subjective optimization. We also
acknowledge that these subjective factors remain untested
in our treatment of simulated human responses. The viabil-
ity of our framework decreased rapidly as simulated human
accuracy decreased, but it is unclear how accurately humans
would be able to measure the performance of subjective el-
ements. Additionally, our method for simulating humans
did not take into account that humans likely err less when
the comparisons have drastically different performance. In
these ways, our work was not able to capture how well or

poorly our framework adapts to the complexities of human
decision processes when making subjective comparisons.

Ultimately, this study has laid the groundwork, if not a
promising starting point, for agnositc paradigms within the
field of interactive evolution. Future work will focus on test-
ing our framework with real humans. We anticipate that
such testing would raise a number of challenges, such as de-
tecting and resolving groups with differing opinions [8, 5].
A beneficial starting point for this work could therefore be
testing on at least one problem where the measure of util-
ity can be specified mathematically and can also utilize real
human evaluations; the culmination of this framework that
utilizes human input on one problem could then finally be
used to compare its performance against the standard opti-
mization tactic.

In addition, further work should also attempt to incorpo-
rate multi-objective optimization methods into this frame-
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work, specifically in which one or more objectives admit to
formalization (such as prediction accuracy or behavioral ef-
ficiency) while other objectives must be inferred from hu-
man subjective preferences (such as safety or aesthetics).
The simplest, albeit not the only way, to further generalize
our framework to accept multiobjective optimization may be
to expand the surrogate evaluator from a binary tree into a
forest, in which each tree is employed to estimate the value
of each of the objectives.

Finally, to reinforce this framework, we hope to
strengthen it by making it more robust to human error,
and similarly, reduce the amount of human comparisons
needed. This could perhaps be achieved by introducing fur-
ther heuristics into the surrogate evaluator. It would also
be useful to test not just the ‘horizontal’ scalability of this
framework across search methods and application domains,
but also its ‘vertical’ scalability. That is, how many human
participants — with increasingly varying degrees of bias, er-
ror, and differing opinions — can usefully be employed to
collectively discover useful solutions.
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Appendix
All the search methods used came from the Julia BlackBoxOp-
tim and their implementation can be found at github.com/
robertfeldt/BlackBoxOptim.jl. The function used
came from the COCO benchmark package [24] whose implemen-
tation can be found at github.com/numbbo/coco and were
used with 40 dimensions. All code and data for this reasearch can
be found at github.com/jpp46/SAIE2020.

Natural Evolution Strategies (NES)
• Separable NES (M1)

• Exponential NES (M2)

• Distance-weighted exponential NES (M3)

Differential Evolution (DE)
• Adaptive DE/rand/1/bin (M4)

• Adaptive DE/rand/1/bin with radius limited sampling (M5)

• DE/rand/1/bin (M6)

• DE/rand/1/bin with radius limited sampling (M7)

• DE/rand/2/bin (M8)

• DE/rand/2/bin with radius limited sampling (M9)

Direct Search
• Compass coordinate generating set search (M10)

• Direct search through probabilistic descent (M11)

Stochastic and Random Search
• Simultaneous perturbation stochastic approximation (M12)

• Random search (M13)

Function List
• Sphere Function (f1)

• Ellipsoidal Function (f2)

• Rastrigin Function (f3)

• Büche-Rastrigin Function (f4)

• Linear Slope (f5)

• Attractive Sector Function (f6)

• Step Ellipsoidal Function (f7)

• Rosenbrock Function, original (f8)

• Rosenbrock Function, rotated (f9)

• Ellipsoidal Function (f10)

• Discus Function (f11)

• Bent Cigar Function (f12)

• Sharp Ridge Function (f13)

• Different Powers Function (f14)
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• Multi-modal Rastrigin Function (f15)

• Weierstrass Function (f16)

• Schaffers F7 Function (f17)

• Schaffers F7 Functions, moderately ill-conditioned (f18)

• Composite Griewank-Rosenbrock Function F8F2 (f19)

• Schwefel Function (f20)

• Gallagher’s Gaussian 101-me Peaks Function (f21)

• Gallagher’s Gaussian 21-hi Peaks Function (f22)

• Katsuura Function (f23)

• Lunacek bi-Rastrigin Function (f24)
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